
Data-Efficient Temporal Regression with Multi-Task
Recurrent Neural Networks

Sigurd Spieckermann∗
Siemens AG

Corporate Technology
81739 Munich, Germany

Steffen Udluft
Siemens AG

Corporate Technology
81739 Munich, Germany

Thomas Runkler∗
Siemens AG

Corporate Technology
81739 Munich, Germany

Abstract

We demonstrate the utility of multi-task learning with recurrent neural networks
in the context of a temporal regression task using real world gas turbine data. Our
goal is to learn the input-output relationship of a task with temporal dependencies
given only few data by exploiting additional data of related tasks. Therefore, we
propose a multi-task learning approach with many inter-task and few task-specific
parameters making it data-efficient with respect to each individual task and, in
particular, with respect to the target task. We motivate the relevance of our prob-
lem setting by industrial use cases, formalize it, present and discuss the models,
and empirically assess their effectiveness. As a result, learning a model solely on
the target task data is futile due to insufficient samples. However, our multi-task
learning approach successfully exploits auxiliary data from related source tasks
and dramatically boosts the predictive performance.

1 Introduction

Consider a complex technical system, e.g. a gas or wind turbine, for which a model of one or
multiple sensor(s) is needed to perform tasks such as condition monitoring or model based control
[7]. Analytical models explicitly incorporate the technical understanding of domain experts about
the system of interest, but they may be expensive to build and may not be able to capture the full
complexity of a real world task. Data driven methods, such as recurrent neural networks [1], alleviate
some of the difficulties with analytical models by learning the actual input-output relationship from
observations [6], but this approach often requires large amounts of data which is a scarce resource in
many real world applications. For instance, the dynamics of an industrial plant may change due to
maintenance or upgrades invalidating the previously optimized model. However, an accurate model
is desired as soon as possible after recommissioning the plant and only few data are available after
the modifications. Hence, data efficient procedures utilizing all available data are crucial.

In this paper we demonstrate the utility of multi-task learning with recurrent neural networks to suc-
cessfully obtain a model of a NOx sensor despite only relatively few data. Therefore, we introduce
additional related learning tasks, i.e. learning NOx sensor models of turbines with altered configu-
rations. In a series of publications the Factored Tensor Recurrent Neural Network (FTRNN) was
presented as a model that learns the state transition function of a dynamical system given few obser-
vations through multi-task and transfer learning [8, 10, 9]. The FTRNN consists of many inter-task
and few task-specific parameters. Hence, this composite model shares knowledge among the tasks
while yet being able to encode task-specific properties which makes it a data-efficient approach in
particular with respect to the target task. While learning a target task model using only the available
data yields poor predictive performance, multi-task learning—and especially the FTRNN—turns out
to be a successful approach in our problem setting.

∗Technical University of Munich, Department of Informatics, 85748 Garching, Germany

1

2 Problem Definition

Let I := {1, 2, 3, ...} denote the set of task identifiers of related temporal regression tasks, which
are observed in fixed time intervals, defined by the inputs xt ∈ X and the targets yt ∈ Y where X
is the input space Y is the target space.

A data set D := {(i(j), x(j)
t , y

(j)
t) | j ∈ N, t ∈ N} of size |D| is drawn i.i.d. from a probability

distribution D. The triple (i, xt, yt) represents an observation of task i ∈ I made at single point in
time.

Let H ⊆ {h |h : I × XT → Y }, T ∈ N, denote a hypothesis space. Further, let h∗ ∈ H be
the optimal hypothesis within H . Let L : Y × Y → R≥0 be an error metric between a pre-
dicted target ŷt = h(i, xt−T+1, ..., xt) and the true target yt. The optimal hypothesis h∗ mini-
mizes the expected error ε(h) := E(i,xt−T+1,...,xt,yt)∼D[L(h(i, xt−T+1, ..., xt), yt)] where E de-
notes the expectation operator, hence, h∗ = argminh ε(h). Since D is generally unknown, an
approximately optimal hypothesis ĥ is determined by minimizing the empirical error ε̂D(h) :=
1
|D|

∑
(i,xt−T+1,...,xt,yt)∈D L(h(i, xt−T+1, ..., xt), yt) induced by a hypothesis h on a data set D.

Let Isrc ∪ {itar} = I , itar 6∈ Isrc, |Isrc| 6= ∅, denote the set of source task identifiers and the target
task identifier with |Ditar | � |Disrc | ∀isrc ∈ Isrc. Further, let h∗itar

be the optimal hypothesis within H

of the task itar. Assuming the amount of data from task itar is insufficient, ĥitar is expected to differ
significantly from h∗itar

. The problem addressed in this paper is to develop and assess methods that
yield a better hypothesis ĥitar , learned from the data set Ditar , by exploiting auxiliary information
from

⋃
i∈Isrc

Di, based on which a general model is learned, so that it suffices to have a small data
set Ditar in order to adjust the general model to the peculiarities of the target task itar.

3 Temporal Regression with Recurrent Neural Networks

Recurrent neural networks (RNN) are powerful models for sequence modeling tasks. In contrast to
feedforward neural networks, RNNs process their input vectors x1, ..., xT , xt ∈ Rnx (nl denotes
the dimensionality of layer l) sequentially along the time axis thereby taking its sequential structure
directly into account. The input sequence is mapped to a hidden state sequence h1, ..., hT , ht ∈ Rnh ,
from which the output sequence ŷ1, ..., ŷT , ŷt ∈ Rny , is computed. Notation is slightly abused by
overloading the variable h to describe the hidden state of an RNN as well as a hypothesis. In
temporal regression tasks an output yt typically depends on inputs xt−d, ..., xt, d ≥ 0. Thus, the
RNN needs to assemble information from d preceding inputs, where d is task-specific, in order to
be able to compute the output. A simple RNN is defined in the following recursive manner

h0 = 0 (1a)
ht = tanh(Whhht−1 +Whxxt + bh) (1b)

∀t ≥ d : ŷt = Wyhht + by (1c)

where Wvu ∈ Rnv×nu is the weight matrix from layer u to layer v, bv ∈ Rnv is the bias vector of
layer v and tanh is a nonlinear activation function. The loss function is typically chosen as the mean
squared error (MSE) between the predicted and the true target sequence. If outliers are a concern,
the ln cosh loss function is an alternative choice.

3.1 Naı̈ve RNN

The most naı̈ve approach to learn a joint model of multiple tasks is to learn from the concatenated
data of all tasks. This way, the model is forced to generalize over their different properties. However,
since the training examples of the tasks are not distinguished, the model can only learn the average
task which may be vastly suboptimal for rather different tasks. In particular, it is impossible for this
type of model to disentangle the inter-task properties from their individual characteristics.

3.2 RNN+ID

One way to provide information that allows the model to distinguish between the tasks is to tag each
example with an identifier i ∈ I corresponding to the task which generated the data. Encoded as a

2

one-hot vector ei, i.e. the i-th Euclidean basis vector, this tag is provided as an additional input to
the model at each time step and contributes to the hidden state through Whiei. In fact, Whiei yields
the i-th column of Whi which is equivalent to a task-specific bias vector. The task-independent and
task-specific biases can be combined yielding the RNN+ID model through substitution of (1b) with
(2).

h
(i)
t = tanh(Whhh

(i)
t−1 +Whxxt + b

(i)
h) (2)

3.3 Factored Tensor RNN

The temporal memory of an RNN is determined by the matrix Whh. Thus, learning task-specific
matrices W (i)

hh instead of a single task-independent one allows to learn the temporal structure of the
different tasks while sharing the input-to-hidden and hidden-to-output parameters, i.e. the feature
extraction and regression sub-models. However, the fact that the W

(i)
hh are learned independently

prevents any information sharing among the tasks with respect to the common structure among
these transformations. Viewing W

(i)
hh as the i-th slice of a third-order tensor we can reduce the

number of task-specific parameters and increase parameter sharing by learning the factored tensor
representation W

(i)
hh ≈Whf diag(W

(i)
f)Wfh such that only the diagonal matrix diag(W

(i)
f) is task-

specific. The FTRNN model is obtained by substituting (1b) with (3).

h
(i)
t = tanh(Whf diag(W

(i)
f)Wfhh

(i)
t−1 +Whxxt + bh) (3)

4 Experiment: Gas Turbine NOx Emissions

We evaluated the utility of the models presented in section 3 on real world gas turbine data compris-
ing various hardware configurations1. In particular, various burners were installed and tested over
the course of several weeks during which sensor data were collected. Our goal was to obtain a model
of the NOx emissions given ambient conditions (e.g. temperature, pressure, humidity) and control
parameters (e.g. angle of the inlet guide vane, position of fuel valves), in total 23 values per time
step. As a result of the different configurations, the NOx production changed. Despite only relatively
few samples of one of the configurations we required an accurate NOx model of this instance.

We created six learning tasks I = {1, ..., 6} each with a different hardware setup. Out of the six
tasks, we chose five source tasks Isrc = I \ {6}. The examples used to train and evaluate the
models were generated by extracting T -step windows of the sequences of observations. In order
to decorrelate examples of the training, validation and test data sets, the block validation method
discussed in [3] was used. The source tasks comprised 6072, 7126, 5448, 8335, 1361 training
examples and there were 3182 examples available of the target task itar. The training examples of
the target task were upsampled to match the average number of samples of the source tasks. In
order to evaluate the model error we set aside 8895 examples. We compared a simple RNN model
learned only from the target task data with the Naı̈ve RNN, RNN+ID and FTRNN. The models were
configured as follows: nh ∈ {5, 8, 10, 20}, nfh = nh, T = 10, d = 6. For each model we trained 10
instances with randomly initialized parameters and formed an ensemble using the mean prediction.
The experiments were implemented using Theano [2]. The model parameters were optimized using
Hessian-Free optimization with structural damping [4, 5].

Fig. 1 compares the results of the explored models using the mean squared error per time step of
the zero mean unit variance NOx targets according to the training set standardization. As shown in
Fig. 1a the FTRNN performs best across the range of considered hidden layer sizes. The RNN+ID
achieves a comparable but consistently larger error. Compared to the RNN trained only on the target
task, the two models yield an improvement on the order of a factor 10. The Naı̈ve RNN, which is
the simplest multi-task learning model in our comparison, suffers from the auxiliary learning tasks.
In order to better understand the implications of these results we depict the prediction quality of
the models in Fig. 1b by comparing their predicted NOx values with the ground truth. Although
the target task RNN outperformed the Naı̈ve RNN in terms of the MSE we can observe that it was
in fact unable to learn the input-output relationship but rather predicted a nearly constant value on
the test set. The Naı̈ve RNN appeared to have captured some of the structure of the input-output

1Please note that we cannot make the data publicly available due to confidentiality reasons.

3

relationship, but could not adjust properly for each individual task. In contrast, the RNN+ID and
FTRNN could accurately predict the regression targets despite only few data of the target task.

RNN Näıve RNN RNN+ID FTRNN

0

1

2

3

4

1.
99 2.
1

0.
11

6
.9

2
·1

0
−
2

2
.9

9

1.
98

6.
2
5
·1

0
−
2

5.
1
1
·1

0
−
2

0
.6

4

2
.3

9

8.
1
2
·1

0
−
2

7.
51

·1
0
−
2

0.
58

2.
7
1

0
.1

1

7.
6
9
·1

0−
2

M
S

E

nh = 5 nh = 8

nh = 10 nh = 20

(a) Comparison of the model errors

−2

0

2

S
ca

le
d

N
O

x

Target RNN Näıve RNN+ID FTRNN

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

−2

0

2

Examples of the test set

S
ca

le
d

N
O

x

(b) Comparison of the model predictions

Figure 1: Comparison of model performances

5 Conclusion

We demonstrated the utility of multi-task learning in the context of real world gas turbine NOx emis-
sion modeling. We showed that a recurrent neural network trained on the target task alone achieves
poor predictive performance due to insufficient data and suggested three variants of RNNs to utilize
auxiliary data. As a result, the simple concatenation of the source and target task data turned out
unsuccessful. The RNN+ID, which receives a one-hot encoded task identifier as an additional input,
yielded a significantly better NOx model. The FTRNN, which encodes task-specific parameters into
a diagonal third-order core tensor, consistently outperformed all other models. Despite this success-
ful use case of multi-task learning there are many open questions yet to be answered. For instance,
given only few data of the target task, it is unclear how to best employ an early stopping procedure
to avoid overfitting because the validation data are not necessarily trustworthy due to their small
sample size. Using a concatenated validation set of all source and target tasks has served as a proxy,
but there may be alternative approaches. Further, although the FTRNN has proven to be a viable
method in this and previous work, a more comprehensive series of studies is required to solidify its
potential usefulness across a wider range of tasks and to systematically identify its strengths and
weaknesses.

4

References

[1] Coryn A. L. Bailer-Jones, David J. C. MacKay, and Philip J. Withers. A recurrent neural net-
work for modelling dynamical systems. Network: Computation in Neural Systems, 9(4):531–
547, 1998.

[2] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guil-
laume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a CPU
and GPU math expression compiler. In Proceedings of the Python for Scientific Computing
Conference (SciPy), June 2010. Oral Presentation.

[3] Siegmund Düll, Steffen Udluft, and Volkmar Sterzing. Solving partially observable reinforce-
ment learning problems with recurrent neural networks. In Neural Networks: Tricks of the
Trade, pages 709–733. Springer, 2012.

[4] James Martens and Ilya Sutskever. Learning recurrent neural networks with Hessian-Free opti-
mization. In Proceedings of the 28th International Conference on Machine Learning (ICML),
pages 1033–1040, 2011.

[5] James Martens and Ilya Sutskever. Training deep and recurrent networks with Hessian-Free
optimization. In Neural Networks: Tricks of the Trade, pages 479–535. Springer, 2012.

[6] Anton M. Schäfer, Daniel Schneegass, Volkmar Sterzing, and Steffen Udluft. A neural rein-
forcement learning approach to gas turbine control. In Proceedings of the International Joint
Conference on Neural Networks (IJCNN), pages 1691–1696, 2007.

[7] Anton Maximilian Schäfer, Steffen Udluft, and Hans-Georg Zimmermann. The recurrent con-
trol neural network. In Proceedings of the 15th European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (ESANN), pages 319–324, 2007.

[8] Sigurd Spieckermann, Siegmund Düll, Steffen Udluft, Alexander Hentschel, and Thomas Run-
kler. Exploiting similarity in system identification tasks with recurrent neural networks. In
Proceedings of the 22nd European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN), 2014.

[9] Sigurd Spieckermann, Siegmund Düll, Steffen Udluft, and Thomas Runkler. Multi-system
identification for efficient knowledge transfer with factored tensor recurrent neural networks.
In Proceedings of the European Conference on Machine Learning (ECML), Workshop on Gen-
eralization and Reuse of Machine Learning Models over Multiple Contexts, 2014.

[10] Sigurd Spieckermann, Siegmund Düll, Steffen Udluft, and Thomas Runkler. Regularized re-
current neural networks for data efficient dual-task learning. In Proceedings of the 24th Inter-
national Conference on Artificial Neural Networks (ICANN), 2014.

5

	Introduction
	Problem Definition
	Temporal Regression with Recurrent Neural Networks
	Naïve RNN
	RNN+ID
	Factored Tensor RNN

	Experiment: Gas Turbine NOx Emissions
	Conclusion

