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Abstract


We demonstrate the utility of multi-task learning with recurrent neural networks
in the context of a temporal regression task using real world gas turbine data. Our
goal is to learn the input-output relationship of a task with temporal dependencies
given only few data by exploiting additional data of related tasks. Therefore, we
propose a multi-task learning approach with many inter-task and few task-specific
parameters making it data-efficient with respect to each individual task and, in
particular, with respect to the target task. We motivate the relevance of our prob-
lem setting by industrial use cases, formalize it, present and discuss the models,
and empirically assess their effectiveness. As a result, learning a model solely on
the target task data is futile due to insufficient samples. However, our multi-task
learning approach successfully exploits auxiliary data from related source tasks
and dramatically boosts the predictive performance.


1 Introduction


Consider a complex technical system, e.g. a gas or wind turbine, for which a model of one or
multiple sensor(s) is needed to perform tasks such as condition monitoring or model based control
[7]. Analytical models explicitly incorporate the technical understanding of domain experts about
the system of interest, but they may be expensive to build and may not be able to capture the full
complexity of a real world task. Data driven methods, such as recurrent neural networks [1], alleviate
some of the difficulties with analytical models by learning the actual input-output relationship from
observations [6], but this approach often requires large amounts of data which is a scarce resource in
many real world applications. For instance, the dynamics of an industrial plant may change due to
maintenance or upgrades invalidating the previously optimized model. However, an accurate model
is desired as soon as possible after recommissioning the plant and only few data are available after
the modifications. Hence, data efficient procedures utilizing all available data are crucial.


In this paper we demonstrate the utility of multi-task learning with recurrent neural networks to suc-
cessfully obtain a model of a NOx sensor despite only relatively few data. Therefore, we introduce
additional related learning tasks, i.e. learning NOx sensor models of turbines with altered configu-
rations. In a series of publications the Factored Tensor Recurrent Neural Network (FTRNN) was
presented as a model that learns the state transition function of a dynamical system given few obser-
vations through multi-task and transfer learning [8, 10, 9]. The FTRNN consists of many inter-task
and few task-specific parameters. Hence, this composite model shares knowledge among the tasks
while yet being able to encode task-specific properties which makes it a data-efficient approach in
particular with respect to the target task. While learning a target task model using only the available
data yields poor predictive performance, multi-task learning—and especially the FTRNN—turns out
to be a successful approach in our problem setting.
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2 Problem Definition


Let I := {1, 2, 3, ...} denote the set of task identifiers of related temporal regression tasks, which
are observed in fixed time intervals, defined by the inputs xt ∈ X and the targets yt ∈ Y where X
is the input space Y is the target space.


A data set D := {(i(j), x(j)
t , y


(j)
t ) | j ∈ N, t ∈ N} of size |D| is drawn i.i.d. from a probability


distribution D. The triple (i, xt, yt) represents an observation of task i ∈ I made at single point in
time.


Let H ⊆ {h |h : I × XT → Y }, T ∈ N, denote a hypothesis space. Further, let h∗ ∈ H be
the optimal hypothesis within H . Let L : Y × Y → R≥0 be an error metric between a pre-
dicted target ŷt = h(i, xt−T+1, ..., xt) and the true target yt. The optimal hypothesis h∗ mini-
mizes the expected error ε(h) := E(i,xt−T+1,...,xt,yt)∼D[L(h(i, xt−T+1, ..., xt), yt)] where E de-
notes the expectation operator, hence, h∗ = argminh ε(h). Since D is generally unknown, an
approximately optimal hypothesis ĥ is determined by minimizing the empirical error ε̂D(h) :=
1
|D|


∑
(i,xt−T+1,...,xt,yt)∈D L(h(i, xt−T+1, ..., xt), yt) induced by a hypothesis h on a data set D.


Let Isrc ∪ {itar} = I , itar 6∈ Isrc, |Isrc| 6= ∅, denote the set of source task identifiers and the target
task identifier with |Ditar | � |Disrc | ∀isrc ∈ Isrc. Further, let h∗itar


be the optimal hypothesis within H


of the task itar. Assuming the amount of data from task itar is insufficient, ĥitar is expected to differ
significantly from h∗itar


. The problem addressed in this paper is to develop and assess methods that
yield a better hypothesis ĥitar , learned from the data set Ditar , by exploiting auxiliary information
from


⋃
i∈Isrc


Di, based on which a general model is learned, so that it suffices to have a small data
set Ditar in order to adjust the general model to the peculiarities of the target task itar.


3 Temporal Regression with Recurrent Neural Networks


Recurrent neural networks (RNN) are powerful models for sequence modeling tasks. In contrast to
feedforward neural networks, RNNs process their input vectors x1, ..., xT , xt ∈ Rnx (nl denotes
the dimensionality of layer l) sequentially along the time axis thereby taking its sequential structure
directly into account. The input sequence is mapped to a hidden state sequence h1, ..., hT , ht ∈ Rnh ,
from which the output sequence ŷ1, ..., ŷT , ŷt ∈ Rny , is computed. Notation is slightly abused by
overloading the variable h to describe the hidden state of an RNN as well as a hypothesis. In
temporal regression tasks an output yt typically depends on inputs xt−d, ..., xt, d ≥ 0. Thus, the
RNN needs to assemble information from d preceding inputs, where d is task-specific, in order to
be able to compute the output. A simple RNN is defined in the following recursive manner


h0 = 0 (1a)
ht = tanh(Whhht−1 +Whxxt + bh) (1b)


∀t ≥ d : ŷt = Wyhht + by (1c)


where Wvu ∈ Rnv×nu is the weight matrix from layer u to layer v, bv ∈ Rnv is the bias vector of
layer v and tanh is a nonlinear activation function. The loss function is typically chosen as the mean
squared error (MSE) between the predicted and the true target sequence. If outliers are a concern,
the ln cosh loss function is an alternative choice.


3.1 Naı̈ve RNN


The most naı̈ve approach to learn a joint model of multiple tasks is to learn from the concatenated
data of all tasks. This way, the model is forced to generalize over their different properties. However,
since the training examples of the tasks are not distinguished, the model can only learn the average
task which may be vastly suboptimal for rather different tasks. In particular, it is impossible for this
type of model to disentangle the inter-task properties from their individual characteristics.


3.2 RNN+ID


One way to provide information that allows the model to distinguish between the tasks is to tag each
example with an identifier i ∈ I corresponding to the task which generated the data. Encoded as a
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one-hot vector ei, i.e. the i-th Euclidean basis vector, this tag is provided as an additional input to
the model at each time step and contributes to the hidden state through Whiei. In fact, Whiei yields
the i-th column of Whi which is equivalent to a task-specific bias vector. The task-independent and
task-specific biases can be combined yielding the RNN+ID model through substitution of (1b) with
(2).


h
(i)
t = tanh(Whhh


(i)
t−1 +Whxxt + b


(i)
h ) (2)


3.3 Factored Tensor RNN


The temporal memory of an RNN is determined by the matrix Whh. Thus, learning task-specific
matrices W (i)


hh instead of a single task-independent one allows to learn the temporal structure of the
different tasks while sharing the input-to-hidden and hidden-to-output parameters, i.e. the feature
extraction and regression sub-models. However, the fact that the W


(i)
hh are learned independently


prevents any information sharing among the tasks with respect to the common structure among
these transformations. Viewing W


(i)
hh as the i-th slice of a third-order tensor we can reduce the


number of task-specific parameters and increase parameter sharing by learning the factored tensor
representation W


(i)
hh ≈Whf diag(W


(i)
f )Wfh such that only the diagonal matrix diag(W


(i)
f ) is task-


specific. The FTRNN model is obtained by substituting (1b) with (3).


h
(i)
t = tanh(Whf diag(W


(i)
f )Wfhh


(i)
t−1 +Whxxt + bh) (3)


4 Experiment: Gas Turbine NOx Emissions


We evaluated the utility of the models presented in section 3 on real world gas turbine data compris-
ing various hardware configurations1. In particular, various burners were installed and tested over
the course of several weeks during which sensor data were collected. Our goal was to obtain a model
of the NOx emissions given ambient conditions (e.g. temperature, pressure, humidity) and control
parameters (e.g. angle of the inlet guide vane, position of fuel valves), in total 23 values per time
step. As a result of the different configurations, the NOx production changed. Despite only relatively
few samples of one of the configurations we required an accurate NOx model of this instance.


We created six learning tasks I = {1, ..., 6} each with a different hardware setup. Out of the six
tasks, we chose five source tasks Isrc = I \ {6}. The examples used to train and evaluate the
models were generated by extracting T -step windows of the sequences of observations. In order
to decorrelate examples of the training, validation and test data sets, the block validation method
discussed in [3] was used. The source tasks comprised 6072, 7126, 5448, 8335, 1361 training
examples and there were 3182 examples available of the target task itar. The training examples of
the target task were upsampled to match the average number of samples of the source tasks. In
order to evaluate the model error we set aside 8895 examples. We compared a simple RNN model
learned only from the target task data with the Naı̈ve RNN, RNN+ID and FTRNN. The models were
configured as follows: nh ∈ {5, 8, 10, 20}, nfh = nh, T = 10, d = 6. For each model we trained 10
instances with randomly initialized parameters and formed an ensemble using the mean prediction.
The experiments were implemented using Theano [2]. The model parameters were optimized using
Hessian-Free optimization with structural damping [4, 5].


Fig. 1 compares the results of the explored models using the mean squared error per time step of
the zero mean unit variance NOx targets according to the training set standardization. As shown in
Fig. 1a the FTRNN performs best across the range of considered hidden layer sizes. The RNN+ID
achieves a comparable but consistently larger error. Compared to the RNN trained only on the target
task, the two models yield an improvement on the order of a factor 10. The Naı̈ve RNN, which is
the simplest multi-task learning model in our comparison, suffers from the auxiliary learning tasks.
In order to better understand the implications of these results we depict the prediction quality of
the models in Fig. 1b by comparing their predicted NOx values with the ground truth. Although
the target task RNN outperformed the Naı̈ve RNN in terms of the MSE we can observe that it was
in fact unable to learn the input-output relationship but rather predicted a nearly constant value on
the test set. The Naı̈ve RNN appeared to have captured some of the structure of the input-output


1Please note that we cannot make the data publicly available due to confidentiality reasons.
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relationship, but could not adjust properly for each individual task. In contrast, the RNN+ID and
FTRNN could accurately predict the regression targets despite only few data of the target task.
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(b) Comparison of the model predictions


Figure 1: Comparison of model performances


5 Conclusion


We demonstrated the utility of multi-task learning in the context of real world gas turbine NOx emis-
sion modeling. We showed that a recurrent neural network trained on the target task alone achieves
poor predictive performance due to insufficient data and suggested three variants of RNNs to utilize
auxiliary data. As a result, the simple concatenation of the source and target task data turned out
unsuccessful. The RNN+ID, which receives a one-hot encoded task identifier as an additional input,
yielded a significantly better NOx model. The FTRNN, which encodes task-specific parameters into
a diagonal third-order core tensor, consistently outperformed all other models. Despite this success-
ful use case of multi-task learning there are many open questions yet to be answered. For instance,
given only few data of the target task, it is unclear how to best employ an early stopping procedure
to avoid overfitting because the validation data are not necessarily trustworthy due to their small
sample size. Using a concatenated validation set of all source and target tasks has served as a proxy,
but there may be alternative approaches. Further, although the FTRNN has proven to be a viable
method in this and previous work, a more comprehensive series of studies is required to solidify its
potential usefulness across a wider range of tasks and to systematically identify its strengths and
weaknesses.
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1 Introduction
In multi-task reinforcement learning (MTRL), the objective is to simultaneously learn multiple tasks
and exploit their similarity to improve the performance w.r.t. single-task learning. In this paper we
investigate the case when all the tasks can be accurately represented in a linear approximation space
using the same small subset of the original (large) set of features. This is equivalent to assuming
that the weight vectors of the task value functions are jointly sparse, i.e., the set of their non-zero
components is small and it is shared across tasks. Building on existing results in multi-task regres-
sion, we develop two multi-task extensions of the fitted Q-iteration algorithm [4]. While the first
algorithm assumes that the tasks are jointly sparse in the given representation, the second one learns
a transformation of the features in the attempt of finding a more sparse representation. For both
algorithms we provide numerical simulations, while an extensive theoretical analysis is reported in
the long version of this paper [3].


2 Preliminaries
A Markov decision process (MDP) is a tupleM = (X ,A, R, P, γ), where the state space X is a
bounded closed subset of the Euclidean space, the action space A is finite (i.e., |A| < ∞), R :
X ×A → [0, 1] is the reward of a state-action pair, P : X ×A → P(X ) is the transition distribution
over the states achieved by taking an action in a given state, and γ ∈ (0, 1) is a discount factor. A
deterministic policy π : X → A is a mapping from states to actions. We denote by B(X × A; b)
the set of measurable state-action functions f : X ×A → [−b; b] absolutely bounded by b. Solving
an MDP corresponds to computing the optimal action–value function Q∗ ∈ B(X × A;Qmax =
1/(1 − γ)), defined as the largest expected sum of discounted rewards that can be collected in the
MDP and fixed point of the optimal Bellman operator T : B(X × A;Qmax) → B(X × A;Qmax)
defined as T Q(x, a) = R(x, a) + γ


∑
y P (y|x, a) maxa′ Q(y, a′). The optimal policy is obtained


as the greedy policy w.r.t. the optimal value function as π∗(x) = arg maxa∈AQ
∗(x, a). In this


paper we study the multi-task reinforcement learning (MTRL) setting where the objective is to solve
T tasks, defined as Mt = (X ,A, Pt, Rt, γt) with t ∈ [T ] = {1, . . . , T}, with the same state-
action space, but different dynamics Pt and goals Rt. The objective of MTRL is to exploit possible
relationships between tasks to improve the performance w.r.t. running T independent instances of
single-task learning. In particular, we choose linear fitted Q-iteration as the single-task baseline and
we propose multi-task extensions tailored to exploit the sparsity in the structure of the tasks.


3 Multi-task Fitted Q-iteration
Whenever X and A are large or continuous, we need to resort to approximation schemes to learn
a near-optimal policy. One of the most popular approximation methods is the fitted-Q iteration
(FQI) algorithm [4], which extends value iteration to approximate action-value functions. While
exact value iteration proceeds by iterative applications of the Bellman operator (i.e., Qk = T Qk−1),
in FQI, each iteration approximates T Qk−1 by solving a regression problem. Among possible
instances, here we focus on a specific implementation of FQI in the fixed design setting with linear
approximation and we assume access to a generative model of the MDP. Since the action space
A only contains a finite number of A actions, we approximate a value function Q as a collection
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of A independent functions. In particular, we introduce a dx-dimensional feature vector φ(·) =
[ϕ1(·), ϕ2(·), . . . , ϕdx(·)]T, with supx ‖φ(x)‖2 ≤ L. From φ we obtain a linear approximation
space for action-value functions as F = {fw(x, a) = φ(x)Twa, x ∈ X , a ∈ A, wa ∈ Rdx}.


input: Input sets
{
St = {xi}nx


i=1


}T
t=1


, tol, K
Initialize W 0 ← 0 , k = 0
do
k ← k + 1
for a← 1, . . . , |A| do
for t← 1, . . . , T , i← 1, . . . , nx do
Sample rki,a,t = Rt(xi,t, a) and yki,a,t ∼ Pt(·|xi,t, a)
Compute zki,a,t = rki,a,t + γmaxa′ Q̃


k
t (y


k
i,a,t, a


′)
end for
Build datasets Dk


a,t = {(xi,t, a), zki,a,t}nx
i=1


Compute Ŵ k
a by solving Eqs. 1, 2, or 3 on {Dk


a,t}
end for


while
(
max


a


∥∥W k
a −W k−1


a


∥∥
2
≥ tol


)
and k < K


Figure 1: Linear FQI with fixed design and fresh samples at
each iteration in a multi-task setting.


FQI receives as input a fixed set of
states S = {xi}nx


i=1 (fixed design set-
ting) and the space F . Starting from
w0 = 0 defining the function Q̂0,
at each iteration k, FQI first draws a
(fresh) set of samples (rki,a, y


k
i,a)nx


i=1 from
the generative model of the MDP for
each action a ∈ A on each of the
states {xi}nx


i=1 (i.e., rki,a = R(xi, a)


and yki,a ∼ P (·|xi, a)). From the sam-
ples, A independent training sets Dka =
{(xi, a), zki,a}


nx
i=1 are generated, where


zki,a = rki,a + γmaxa′ Q̂
k−1(yki,a, a


′),
and Q̂k−1(yki,a, a


′) is computed using the
weight vector learned at the previous iter-
ation as φ(yki,a)Twk−1a′ . Then FQI solves
A linear regression problems, each fitting
the training set Dka and returns vectors ŵka defining the action value function fŵk with ŵk =
[ŵk1 , . . . , ŵ


k
A]. The process is repeated until a fixed number of iterations K is reached or no sig-


nificant change in the weight vector is observed. The performance of FQI is studied in detail in [8]
and in [6, Thm. 5]. When moving to the multi-task setting, we consider different state sets {St}Tt=1


and we denote by Ŵ k
a ∈ Rdx×T the matrix with vector ŵka,t ∈ Rdx as the t–th column. The structure


of FQI in the multi-task setting is reported in Fig. 1.


High-dimensional regression. We consider a high-dimensional assumption, which guarantees that
the target action-value functions that can be encountered over iterations all belong to the space F .
We define w = [w1, . . . , wA] and ψ(x, a) = [01, . . . , 0a−1, φ(x), 0a+1, . . . , 0A].
Assumption 1. For any function fw ∈ F , the Bellman operator T can be expressed using matrix
Pπw


ψ as T fw(x, a) = R(x, a) + γ Ex′∼P (·|x,a) [fw(x′, πw(x′))] = ψ(x, a)TwR + γψ(x, a)TPπw


ψ w


This assumption implies thatF is closed w.r.t. the Bellman operator, since for any fw, its image T fw
can be computed as the linear combination of ψ(·, ·) and wR+Pπw


ψ w. As a result, the optimal value
function Q∗ itself belongs to F and it can be computed as ψ(x, a)Tw∗. This assumption encodes
the intuition that in the high–dimensional feature space F induced by ψ, the transition kernel P , and
therefore the system dynamics, can be expressed as a linear combination of the features using the
matrix Pπw


ψ , which depends on both function fw and features ψ. This condition is usually satisfied
whenever the space F is spanned by a very large set of features that allows it to approximate a wide
range of different functions, including the reward and transition kernel. Under this assumption, at
each iteration k of FQI, there exists a weight vector wk such that T Q̂k−1 = fwk .


LASSO-FQI. While the regression problem at each iteration could be solved using ordinary least-
squares (OLS) regression, in the high-dimensional case the number of features exceeds the number
of samples (d > n) and OLS would have a poor performance caused by overfitting. In this case,
we propose three different methods constructed under different assumptions of the sparsity of the
problem. First we consider the case when all the tasks are (independently) sparse and we use the `1
regularization of LASSO [5] to recover the sparsity as:


LASSO: ŵka,t = arg min
w∈Rdx


1


nx


nx∑
i=1


(
φ(xi)


Tw − zki,a
)2


+ λ||w||1. (1)


When FQI is paired with LASSO, it can be shown that the sample complexity of the algorithm (i.e.,
the difference in performance between the optimal policy and the policy returned by FQI) is greatly
improved w.r.t. OLS. In fact, whenever the target function TtQ̂k−1 of task t is sparse with st � d
non-zero features, it can be shown that while FQI with OLS would suffer from an average loss over
tasks of order Õ(d/n), LASSO-FQI would dramatically reduces it to Õ(s̄ log d/n) for LASSO
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where s̄ = 1/T
∑
t st is the average sparsity, thus moving from a linear dependency on the number


of features to a linear dependency only on the average number of features that are actually useful in
approximating the target functions. The necessary assumptions and basic results are reported in [2]
and they are extended to the iterative process of FQI in the longer version of the paper.


GL-FQI. Although effective in reducing the sample complexity in learning each task, LASSO-
FQI does not exploit potential similarities between tasks. For this reason, we introduce the Group
LASSO (GL) algorithm [5, 7], which is based on the assumption that the relevant features (i.e., with
non-zero weights) are similar across different tasks (shared-sparsity) and thus the weight matrix
W ∈ Rd×T could have a small `2,1-norm, where the `2-norm measures the “relevance” of feature
i across tasks, while the `1-norm “counts” the total number of relevant features. The corresponding
optimization problem solved at each iteration for each action a ∈ A is


Group-LASSO: Ŵ k
a = arg min


W∈Rdx×T


T∑
t=1


nx∑
i=1


(
φ(xi,t)


Twt − zki,a,t
)2


+ λ ‖W‖2,1 . (2)


In this case, following from [7], the performance loss is of order Õ
(
s̃/n(1 + log(d)/


√
T )
)
, where


s̃ is the number of features which are active for at least one of the tasks. If the shared-sparsity
assumption holds (i.e., the features with non-zero weights are the same across the tasks), we expect
s̃ to be much smaller than d and the performance of the algorithm to improve w.r.t. running LASSO
on each task separately. In fact, although s̄ ≤ s̃, we notice that the dependency on d is further
reduced and it eventually vanishes when the number of tasks increases. This shows that GL–FQI
effectively leverages over the similarity across tasks and benefits from using all the samples from all
the tasks, to better identify the useful features.


FL-FQI. Unlike other properties such as smoothness, the sparsity of a function is intrinsically re-
lated to the specific representation used to approximate it (i.e., the function space F). As a result,
the shared-sparsity assumption of GL may not necessarily hold for a given space F . In this case, the
shared sparsity s̃ may be of order of d and GL may perform significantly worse than LASSO-FQI
itself. Thus, we finally introduce another algorithm that seeks to change the representation by apply-
ing a linear transformation of the features to achieve a high level of joint sparsity. This objective is
pursued by the multi-task feature learning (MTFL) algorithm in [1], where it is shown that learning
a suitable transformation is equivalent to solving the trace-norm regularized problem:


FL: Ŵ k
a = arg min


W∈Rdx×T


T∑
t=1


nx∑
i=1


(
φ(xi,t)


Twt − zki,a,t
)2


+ λ ‖W‖∗ . (3)


While in GL–FQI we only need to learn the weight vectors, in [1] it is shown that the previous
optimization problem is equivalent to learning the weights as well as a novel representation that
maximizes the level of shared sparsity. While this extra complexity translates in a larger dependency
on the number of features, it allows to exploit the shared sparsity of the best possible representa-
tion. Building on results from [9], we can prove that the performance loss of FL-FQI is of order
Õ
(
s∗/n(1 + d/T )


)
, where s∗ is the joint sparsity in the best representation. Whenever s∗ � d, we


can expect a significant improvement w.r.t. GL–FQI and LASSO-FQI as well. Finally, we notice
that s∗ can also be interpreted as the rank of the optimal weight matrix W k


a and it corresponds to the
number of basis tasks from which we can construct the weights of all the others.


In summary, let K be the last iteration and πKt the greedy policy w.r.t. Q̂Kt for each task t, then the
bounds on the performance loss 1/T


∑
t ||Q∗t − Qπ


K
t ||2,ρ w.r.t. any arbitrary target distribution ρ


for the three previous algorithms are


LASSO-FQI: Õ
(
s̄ log(d)


n


)
; GL–FQI: Õ


(
s̃


n


(
1 +


log(d)√
T


))
; FL-FQI: Õ


(
s∗


n


(
1 +


d


T


))
,


where s̄ = 1/T
∑
t st is the average level of sparsity, s̃ is the joint sparsity, and s∗ is the smallest


number of relevant features that can be obtained by linear transformations of the features φ. The
theoretical analysis of the three previous algorithms, reported in the long version of the paper, stems
from the single-task setting of [8], and extends it to linear approximation and multi-task regression.


4 Experiments
In this section we validate the ideas of the previous algorithms and we verify the expected theoretical
performance sketched in the previous section. We consider two variants of the blackjack domain.


3







1000.0 2000.0 3000.0 4000.0 5000.0


-0.1


-0.08


-0.06


-0.04


n


H
E


GL-FQI
FL-FQI
Lasso-FQI


(a) Full variant of blackjack.
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(b) Reduced variant of blackjack.


Figure 2: Comparison of FL-FQI, GL–FQI and LASSO–FQI. On the y axis we report the average house
edge (HE) across tasks.


The player can choose to hit to obtain a new card or stay to end the episode. The two settings differ
in the possibility of performing a double (doubling the bet) on the first turn. We refer to the variant
with the double option as the full variant, while the other is the reduced variant. After the player
concludes the episode, the dealer hits until a fixed threshold is reached or exceeded. Different tasks
can be defined changing several parameters of the game, such as the number of decks, the value at
which the dealer stays and whether she hits when the such value is research exactly with a soft hand.


Full variant experiment. The tasks are generated by selecting 2, 4, 6, 8 decks, by setting the stay
threshold at {16, 17} and whether the dealer hits on soft, for a total of 16 tasks. We define a very rich
description of the state space with the objective of satisfying the high-dimensional Assumption 1.
At the same time, this is likely to come with a large number of useless features, which makes it
suitable for sparsification. In particular, we include the player hand value, indicator functions for
each possible player hand value and dealer hand value, and a large description of the cards not dealt
yet (corresponding to the history of the game) under the form of indicator functions for various
ranges. In total, the representation contains d = 212 features. We notice that although none of
the features is completely useless (as requested in the definition of sparsity), the features related
with the history of the game are unlikely to be very useful for most of the tasks defined in this
experiment. We collect samples from up to 5000 episodes, although they may not be representative
enough given the large state space of all possible histories that the player can encounter and the
high stochasticity of the game. The evaluation is performed by simulating the learned policy for
2,000,000 episodes and computing the average House Edge (HE) across tasks. For each algorithm
we report the performance for the best regularization parameter λ in the range {2, 5, 10, 20, 50}.
Results are reported in Fig. 2a. Although the set of features is quite large, we notice that all the
algorithms succeed in learning a good policy even with relatively few samples, showing that all
of them can take advantage of the sparsity of the representation. In particular, GL–FQI exploits
the fact that all 16 tasks share the same useless features (although the set of useful features may
not overlap entirely) and its performance is the best. On the other hand, FL–FQI suffers from the
increased complexity of representation learning, which in this case does not lead to any benefit since
the initial representation is already sparse (s̄ ≈ s̃ ≈ s∗). Nonetheless, it is interesting to note that
the performance of FL–FQI is comparable to single-task LASSO–FQI.


Reduced variant experiment. In the second experiment we construct a representation for which
we expect the weight matrix to be dense. In particular, we only consider the value of the player’s
hand and of the dealer’s hand and we generate features as the Cartesian product of these two discrete
variables plus a feature indicating whether the hand is soft, for a total of 280 features. Similar to the
previous setting, the tasks are generated with 2, 4, 6, 8 decks, whether the dealer hits on soft, and a
larger number of stay thresholds in {15, 16, 17, 18}, for a total of 32 tasks. We used regularizers in
the range {0.1, 1, 2, 5, 10}. Since the history is not included, the different number of decks influ-
ences only the probability distribution of the totals. Moreover, limiting the actions to either hit or
stay further increases the similarity among tasks. Therefore, we expect to be able to find a dense,
low-rank solution (s∗ � s̃). The results in Fig. 2b confirms this guess, with FL–FQI performing
significantly better than the other methods. In addition, GL–FQI and LASSO–FQI perform sim-
ilarly, since the dense representation penalizes both single-task and shared sparsity. This was also
observed by the fact that both methods favor low values of λ, indicating that the sparse-inducing
penalties are not effective.
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1 Introduction
For a learning algorithm to be able to learn from only a few samples, it is necessary to exploit some
structural bias in the environment of the task at hand. Such bias has been defined and included
in the learning algorithms in many different ways, from Bayesian priors to regularization (e.g.,
smoothness, sparsity). One particularly successful way todefine such bias is to learn it directly from
multiple different, yet related tasks. While this approach,known as multi-task or transfer learning
(see [7] for a survey), has made significant gains in supervised learning scenarios (see e.g., [3]), it
received less attention for sequential decision making problems with limited feedback. In a recent
work [5], it is shown that sequential transfer may indeed have a positive impact also in the multi-
armed bandit problem with a significant reduction in the regret. In multi-arm bandit, the goal is to
learn the reward (e.g., a click through rate or a star ranking) of different arms (e.g., items) and to
sequentially select the arms that lead to the highest reward.


In this paper we propose an alternative multi-task approachand we move the focus from the multi-
armed bandit scenario to thelinear banditsetting. In the particular setting of linear bandit, each arm
is characterized by a feature vector and the reward functionis assumed to be a linear combination of
the feature vector with an unknown parameter vectorθ (e.g., a vector characterizing the preference
of a user). Solving this problem requires to find a suitable balance between choosing arms that
can contribute to better learn the parameter vector (e.g., learn user’s preference) and selecting arms
which are more rewarding. The introduction of multi-task learning in this particular setting would
allow to exploit the fact that if two users have similar parameter vectors, then knowledge of one’s
interactions can be exploited to minimize “regret” of a learning algorithm while interacting with the
other. In this paper, we focus on this setting and we explore how multi-task learning can contribute
to boosting the performance of linear bandit algorithms.


2 Preliminaries
Multi-task linear bandits. We formalize the multi-task learning problem in the linear stochastic
bandit setting. The learner is given a finite set of armsX ⊂ R


d with ||x||2 ≤ L for anyx ∈ X .
We assume that the learner has to solve a sequence of tasks. Ateach taskj in the sequence, the
learner is given a limited sampling budgetnj and it can sequentially choosenj armsx ∈ X . At
any time steps ≤ nj , after an armxj,s ∈ X is chosen, the learner observes a noisy realizationrj,s
corresponding to the selected arm. In particular, here we assume that the reward is given by a linear
function, characterized by an unknown parameterθj ∈ R


d, where||θj ||2 ≤ S, ∀j. More precisely,
the noisy realization (orreward), denotedrj,s, is given by the following model:


rj,s = x⊤
j,sθj + ηj,s, (1)


whereη is a random R-sub-Gaussian noise. Typically at each taskj, the learner’s objective is to
maximize the sum of expected rewards


∑nj


s=1 x
⊤
j,sθj . Since the parameterθj is unknown, the learner


faces the so-calledexploration-exploitation dilemma, where the exploration of the arms improves


∗{marta.soare,alessandro.lazaric}@inria.fr
†ouais.alsharif@gmail.com
‡jpineau@cs.mcgill.ca


1







the estimate of the unknown parameterθj , while the exploitation of the estimated best-arms would
supposedly maximize the sum of rewards. The performance of the learner is evaluated with respect
to the sum of rewards obtained by an oracle-algorithm, whichknows the value ofθj . Denoting
x∗
j = argmaxx∈X x⊤θj the best arm for taskj, thepseudo-regretsuffered by the learner is given


by the difference between the two sums of rewards. More precisely, for a taskj, we compute the
pseudo-regret at the end of taskj as follows:


Rnj
=


nj∑


s=1


x∗ ⊤
j θj −


nj∑


s=1


x⊤
s θj =


nj∑


s=1


(x∗
j − xs)


⊤θj . (2)


In any multi-task/transfer scenario, it is crucial to definea suitable notion ofsimilarity between tasks
that can be exploited by a multi-task learning algorithm. Similarly to [4], we define the similarity
between tasks with respect to the similarity between their corresponding parameters (or targets).
Thus, whenever the characterizing vectors of two tasks are close to each other (in aℓ2-norm sense),
we say the two tasks are similar.


Definition 1. Letθ, θ′ ∈ R
d be the parameters characterizing the linear functions corresponding to


two different tasks. If||θ − θ′||2 ≤ ε, then tasksi andj are similar.


Given the assumption that all the tasks considered by the learner are similar, the goal of this paper
is to study how the overall performance (the sum of regrets for all tasks) can be improved if the
task similarity is exploited by transferring the information collected from the rewards observed in
the previous tasks. Before providing a multi-task version of the LinUCB algorithm, we introduce
additional technical tools.


Tools. For a single-taskj, at each time steps = 1, . . . , nj the parameterθj is estimated using
the available sample-rewards obtained during taskj, through the regularized least-squares solution.
Thus, the estimate ofθj , after observingt ≤ nj rewards is given by:


θ̂λj,t = (Aj,t + λI)−1bj,t = (Aλ
j,t)


−1bj,t, (3)


whereAj,t =
∑t


s=1
xj,sx


⊤
j,s is the design matrix,λ is the regularization parameter (Aλ


j,t is a short-


hand for the regularized design-matrix), andbj,t =
∑t


s=1
xj,srj,s is the sum of all observed rewards.


For the typical linear-bandit (single-task) setting, the regret is given by [1, Theorem 2].


Preposition 1(Theorem 2 in [1]). Let θ̂j,t be the single-task regularized least-squares estimate, for
anyδ ≥ 0, with probability at least1− δ and , for anyt ≥ 1, it holds that:


∣∣x⊤
θ̂
λ
j,t − x


⊤
θj
∣∣ ≤


∣∣∣∣x
∣∣∣∣(


Aλ
j,t


)
−1


(
R


√√√√
2 log


(
det


(
Aλ


j,t


)
1/2


det(λI)−1/2


δ


)
+ λ


1/2
S


)
= Bj,t(x). (4)


3 Multi-task confidence bounds
We now extend the previous single-task result to the multi-task scenario where at taskm + 1 the
learner uses all the rewards observed from the past tasks(θ1, . . . , θj , . . . , θm). Using the similarity
assumption between tasks, we define the multi-task estimate, θ̃λm+1,t computed as the “global” reg-
ularized least-squares solution. More precisely, supposethat we are at time stept in taskm+ 1. By
denotingAj the design matrix for taskj andbj the vector of rewards observed during taskj, we can
compute the the multi-task estimate ofθm+1 as follows:


θ̃λm+1,t =
( m∑


j=1


Aj +Am+1,t + λI
)−1( m∑


j=1


bj + bm+1,t


)


=
( m∑


j=1


nj∑


s=1


xsx
⊤
s +


t∑


s=1


xm+1,sx
⊤
m+1,s + λI


)−1( m∑


j=1


nj∑


s=1


xsyj,s +


t∑


s=1


xm+1,sy
⊤
m+1,s


)


= (Ãm+1,t + λI)−1 · b̃m+1,t = (Ãλ
m+1,t)


−1 · b̃m+1,t (5)


where in the last step we introduce the notationÃm+1,t for the global design matrix (containing all
observed rewards), its regularized versionÃλ


m+1,t, andb̃m+1,t the vector of all observations, from
all tasks.
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Also, we introduce the “average” task implicitly defined in computingθ̃λm+1,t characterized by the


multi-task parameter vector̃θ∗m+1,t:


E
[
θ̃m+1,t


]
= θ̃∗m+1,t. (6)


In the following, we discuss the construction of confidence ellipsoids around the empirical multi-
task estimatẽθλm+1,t, such that with high probability the true parameter vector of taskm + 1 is
included in the confidence set at each time step. Intuitively, while one can expect the confidence sets
to be much tighter compared to the corresponding bounds for the single-task estimatêθλm+1,t thanks
to the much larger number of samples transferred from past tasks, one must also consider the fact
that these rewards come from tasks withθs different fromθm+1, thus potentially introducing a bias.


We proceed by bounding the error in estimating the expected rewardx⊤θm+1 of any armx. We
decompose the error of the multi-task least-squares estimate (Eq. 5) into the estimation error due to
the use of random rewards and the approximation error causedby the difference between the tasks:


∣∣x⊤θ̃λm+1,t − x⊤θm+1


∣∣ ≤
∣∣x⊤θ̃λm+1,t − x⊤θ̃∗m+1,t


∣∣
︸ ︷︷ ︸


1


+
∣∣x⊤θ̃∗m+1,t − x⊤θm+1


∣∣
︸ ︷︷ ︸


2


.


1 While the following is true for anyt ∈ [1, nm+1], to simplify the notation, we suppose that we
are at the end of taskm+ 1. Thus, we useAm+1 instead ofAm+1,t andt becomesnm+1.


θ̃λm+1 =
(
Ãλ


m+1


)−1(m+1∑


j=1


nj∑


s=1


xj,syj,s
)
=


(
Ãλ


m+1


)−1(m+1∑


j=1


nj∑


s=1


xj,s(x
⊤
j,sθj + ηj,s)


)


=
(
Ãλ


m+1


)−1 ·
(m+1∑


j=1


nj∑


s=1


xj,sηj,s
)
+ θ̃∗m+1 − λ


(
Ãλ


m+1


)−1 · θ̃∗m+1.


Then, following the derivation detailed in Appendix A, we obtain that w.p.≥ 1− δ it holds that:


∣∣x⊤θ̃λm+1,t − x⊤θ̃∗m+1,t


∣∣ ≤
∣∣∣∣x


∣∣∣∣(
Ãλ


m+1


)
−1


(
R


√√√√
2 log


(
det


(
Ãλ


m+1


)1/2
det(λI)−1/2


δ


)
+ λ1/2S


)
.


Thus, assuming that the R-sub-Gaussianity condition holdsfor the noise in any task, we recover the
same type of bound as in the single-task setting (Prop. 1). The only difference is that the single-task
matrixAλ


j is replaced here with the multi-task matrix̃Aλ
m+1.


2 We begin with a convenient rewriting of̃θ∗m+1,t (Eq. 6). LetAj = nj


(
1


nj


∑nj


s=1 xsx
⊤
s


)
= nj ·Cj


andN =
∑m


j=1
nj + t. Then we havẽAm+1,t = N


(∑m
j=1


nj


N Cj +
t
NCm+1,t


)
= NC̃m+1,t and


θ̃∗m+1,t =
m∑


j=1


nj


N
C̃−1


m+1,tCjθj +
t


N
C̃−1


m+1,tCm+1,tθm+1 = C̃−1


m+1,t


( m∑


j=1


nj


N
Cjθj +


t


N
Cm+1,tθm+1


)
.


Then, using the steps described in Appendix B, it follows that


∣∣∣∣θ̃∗m+1,t − θm+1


∣∣∣∣ ≤
∣∣∣∣


m∑


j=1


nj


N
C̃−1


m+1,tCj


∣∣∣∣ ·
∣∣∣∣θj − θm+1


∣∣∣∣ ≤ ε.


This result shows that although the arms were chosen mostly according to the estimations of some
parameters different fromθm+1, the current notion of similarity ensures that the total approximation
error is upper-bounded byε. Keeping the same assumptions and notation as defined above,we can
now use1 and 2 to define the multi-task confidence bound.


Theorem 1. Let θ̃λm+1,t be the multi-task regularized least-squares estimate defined in Eq. 5. Then,
for anyδ ≥ 0, for anyt ≥ 1, with probability at least1− δ it holds that:
∣∣x⊤(θ̃λm+1,t − θm+1)


∣∣ ≤ (7)


∣∣∣∣x
∣∣∣∣(


Ãλ
m+1,t


)
−1


(
R


√√√√
2 log


(
det


(
Ãλ


m+1,t


)1/2
det(λI)−1/2


δ


)
+ λ1/2S


)
+ x⊤ε = B̃m+1,t(x).


Relying on the multi-task confidence bound, we now introducean algorithm that selects arms ac-
cording toB̃m+1,t, whenever this is tighter than the corresponding single-task boundBm+1,t.
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4 Multi-task LinUCB Algorithm


Input: budgets{nj}j , armsX ⊂ R
d, regularizerλ


j = 1


A = λId, b̃ = b = 0d, Ãj = λId, θ̂j = A−1b
for t = 1, . . . , nj do


Choose:xt = argmaxx∈X (x⊤
t θ̂j +Bj,t(x))


Observe reward:rt = x⊤
t θj + ηt


UpdateA, b and the estimatêθj = A−1b
end for
for j = 2, . . . ,m+ 1 do


Ãj = Ãj +A− λId, b̃ = b̃+ b, θ̃j = Ã−1


j b̃


A = λId, b = 0d, θ̂j = A−1b
for t = 1, . . . , nj do


xt = argmaxx∈Xmin
(
x⊤θ̂j +Bj,t(x);x


⊤θ̃j + B̃j,t(x)
)


Observe reward:rt = x⊤
t θj + ηt


Update:A, b, θ̂j , Bj,t, Ãj , b̃, θ̃j , B̃j,t


end for
end for


Figure 1:Multi-task LinUCB


Similarly to L INUCB[2, 6], MT-
L INUCB relies on confidence
bounds for the arms’ values to
select the arms to be pulled. The
difference comes from the fact
that here after each arm pull,
both the single-task (Prop.1) and
the multi-task (Th.1) bounds are
updated and the arm selected at
the next time step will depend on
the two bounds. More precisely,
for the first taskj = 1 one can
only construct the task-specific
estimate and use the bound
Bj in Eq. 4 (as in L INUCB).
Starting with taskj = 2, after
each observation we can update
simultaneously the task-specific
estimateθ̂j,t, the multi-task esti-
mateθ̃j,t, and their corresponding
confidence bounds (Bj,t(x) andB̃j,t(x)). Since both bounds are valid upper-confidence bounds on
the reward of the arm, we only retain the tightest (smallest)of them, that is, the one closest to the
true value of the arm. Then, we select the armx ∈ X with the largest retained confidence bound.
The resulting algorithm is sketched in Fig.1.


Numerical simulations. We illustrate the performance of the multi-task strategy ina setting con-
sisting of 200 tasks, with parametersθ1, . . . , θ200 ∈ R


2, generated at random, but bounded, with
maxθ ||θ||2 = 1.1 ·


√
2, and||ε||2 = 0.2 ·


√
2. The decision setX consists of five arms withℓ2 norm


smaller than 1. The regularization parameterλ is set to 0.02, the noiseη is distributed uniformly
on (−0.5, 0.5) andδ = 0.05. In Fig. 2 we report the regret for each task, averaged over 1000 runs,
where the sampling budget is limited to 100 samples for each task.
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Figure 2:Per-task regret


We compare the per-task regret obtained by
MT-L INUCB with the regret ofL INUCB that
only uses the samples from the current task for
the arm selection. These preliminary numerical
results show that while the regret forL INUCB
remains constant over time, in the case of the
multi-task algorithm the regret decreases with
every additional task. Indeed, given the strong
similarity between the vectorsθ and the fact
that the sampling is done on only five arms, we
gain valuable knowledge by exploiting the sim-
ilarity between tasks and transferring samples
from the past, while the bias introduced does
not penalize the regret performance. In fact, we can expect that the regret ofMT-L INUCB will be
reduced down to the task-similarity termε with the increase in the number of tasks.


5 Conclusion


This preliminary work shows the potential impact that multi-task learning could have in a sequence
of decision-making tasks such as in the linear bandit setting. The transfer of samples strategy im-
plemented inMT-L INUCB is relatively simple but already shows that the improvementwith respect
to single-task learning could be significant whenever the tasks at hand are similar. In the future we
intend to provide a regret analysis forMT-L INUCB and test the similarity assumption through the
empirical evaluation on recommendation system datasets. In addition, a number of interesting future
challenges arise, such as defining a less restrictive notionof similarity between tasks or weighting
the samples from past tasks according to their relevance forthe current task.
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A. Derivation of results in 1


Following the same steps as in the proof of [1, Theorem 2], we obtain:
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Ãλ


m+1


)
−1


)
(by Cauchy-Schwarz)


≤
∣∣∣∣x


∣∣∣∣(
Ãλ
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B. Derivation of results in 2


Using the notation introduced in Sec.3, we obtain:
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1 Introduction


In a classical transfer learning setting, we have sufficient fully labeled data from the source domain
(or the training domain) where we fully observe the data points Xtr, and all corresponding labels
Y tr are known. On the other hand, we are given data points, Xte, from the target domain (or the
test domain), but few or none of the corresponding labels, Y te, are given. The source and the target
domains are related but not identical, thus the joint distributions, P (Xtr, Y tr) and P (Xte, Y te), are
different across the two domains.


The real-world application we consider is an autonomous agriculture application where we want
to manage the growth of grapes in a vineyard [3]. Recently, robots have been developed to take
images of the crop throughout the growing season. The measured yield after each harvest season
can be used to learn a model to predict yield from images. Farmers would like to know their yield
early in the season so they can make better decisions on selling the produce or nurturing the growth.
Acquiring training labels early in the season is very expensive because it requires a human to go out
and manually estimate the yield. Ideally, we can apply a transfer-learning model which learns from
previous years and/or on other grape varieties to minimize this manual yield estimation.


In this paper, we focus our attention on real-valued regression problems. We propose a transfer
learning algorithm that allows both the support on X and Y , and the model P (Y |X) to change
across the source and target domains. We assume only that the change is smooth as a function of X .
In this way, more flexible transformations are allowed than mean-centering and variance-scaling.


As an illustration, we show a toy problem in Fig. 1, where neither the support of P (X) or the support
of P (Y ) overlap across the two domains. In Fig. 2, we show the labels (the yield) of two real-world
grape image dataset (Fig. 3), along with the 3rd dimension of its feature space. We can see that
the real-world problem is quite similar to the toy problem, which indicates that the algorithm we
propose in this paper will be both useful and practical for real applications.
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Figure 1: Toy problem
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Figure 2: Real grape data
Figure 3: A part of one image
from each grape dataset


We evaluate our methods on synthetic data and real-world grape image data. The experimental
results show that our transfer learning algorithms significantly outperform existing methods with
few labeled target data points. This work is included in our paper [1].
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2 Related Work


Transfer learning is applied when joint distributions differ across source and target domains. Tradi-
tional methods for transfer learning use Markov logic networks [4], parameter learning [5, 6], and
Bayesian Network structure learning [7], where specific parts of the model are considered to be
carried over between tasks.


Recently, a large part of transfer learning work has focused on the problem of covariate shift [8, 9,
10]. However, this work suffers two major problems. First, the conditional distribution P (Y |X) is
assumed to be the same, which might not be true under many real-world cases. Second, the KMM
method requires that the support of P (Xte) is contained in the support of P (Xtr), i.e., the training
set is richer than the test set. If it is not true, one might mean-center (and possibly also variance-
scale) the data to ensure that the support of P (Xte) is contained in (or at least largely overlapped
with) P (Xtr). More recent research [12] made a similar assumption on the support of P (Y ). In
this paper, we provide an alternative way to solve the support shift problem that allows more flexible
transformations than mean-centering and variance-scaling.


3 Approach


3.1 Problem Formulation


We are given a set of n labeled training data points, (Xtr, Y tr), from the source domain where each
Xtr


i ∈ <dx and each Y tr
i ∈ <dy . We are also given a set of m test data points, Xte, from the target


domain. Some of these will have corresponding labels, Y teL. When necessary we will separately
denote the subset of Xte that has labels as XteL, and the subset that does not as XteU .


3.2 Transfer Learning Approach (SMS)


Our strategy is to simultaneously learn a nonlinear mapping Xte → Xnew and Y te → Y ∗. This
allows flexible transformations on both X and Y , and our smoothness assumption using GP prior
makes the estimation stable. We call this method Support and Model Shift (SMS).


We apply the following steps (K in the following represents the Gaussian kernel, and KXY repre-
sents the kernel between matrices X and Y , λ ensures invertible kernel matrix):


1. Transform XteL to Xnew(L) by a location-scale shift: Xnew(L) = WteL �XteL + BteL,
such that the support of P (Xnew(L)) is contained in the support of P (Xtr);


2. Build a Gaussian Process on (Xtr, Y tr) and predict on Xnew(L) to get Y new(L);


3. Transform Y teL to Y ∗ by a location-scale shift: Y ∗ = wteL � Y teL + bteL, then we
optimize the following empirical loss:


arg min
WteL,BteL,wteL,bteL,wte


||Y ∗ − Y new(L)||2 + λreg||wte − 1||2, (1)


where WteL,BteL are matrices with the same size as XteL. wteL,bteL are vectors with the same
size as Y teL (l by 1, where l is the number of labeled samples in the target domain), and wte is an
m by 1 scale vector on all Y te. λreg is a regularization parameter.


To make the transformation smooth w.r.t. X , we parameterize WteL,BteL,wteL,bteL using:
WteL = RteLG,BteL = RteLH,wteL = RteLg,bteL = RteLh, where RteL = LteL(LteL +
λI)−1, LteL = KXteLXteL . Following the same smoothness constraint we also have: wte = Rteg,
where Rte = KXteXteL(LteL + λI)−1. This parametrization results in the new objective:


arg min
G,H,g,h


||(RteLg � Y teL +RteLh)− Y new(L)||2 + λreg||Rteg − 1||2. (2)


We use a Metropolis-Hasting algorithm to optimize the objective (Eq. 2) which is multi-modal due
to the use of the Gaussian kernel. The proposal distribution is given by θt ∼ N (θt−1,Σ), where Σ
is a diagonal matrix with diagonal elements determined by the magnitude of θ ∈ {G,H,g,h}. In
addition, the transformation on X requires that the support of P (Xnew) is contained in the support
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of P (Xtr), which might be hard to achieve on real data, especially when X has a high-dimensional
feature space. To ensure that the training data can be better utilized, we relax the support-containing
condition by enforcing an overlapping ratio between the transformed Xnew and Xtr, i.e., we reject
those proposal distributions which do not lead to a transformation that exceeds this ratio.


After obtaining G,H,g,h, we make predictions on XteU by:
(1) Transform XteU to Xnew(U) with the optimized G,H: Xnew(U) = WteU �XteU + BteU =
RteUG�XteU +RteUH; (2) Build a Gaussian Process on (Xtr, Y tr) and predict on Xnew(U) to
get Y new(U); (3) Predict using optimized g,h: Ŷ teU = (Y new(U) − bteU )./wteU = (Y new(U) −
RteUh)./RteUg, where RteU = KXteUXteL(LteL + λI)−1.


With the use of W = RG,B = RH,w = Rg,b = Rh, we allow more flexible transformations
than mean-centering and variance-scaling while assuming that the transformations are smooth w.r.t
X . We will illustrate the advantage of the proposed method in the experimental section.


3.3 A Kernel Mean Embedding Point of View


Under the kernel mean embedding point of view, it is easy to see that step (2) in the SMS approach is
equivalent to estimating µ̂[PY new(L) ] using conditional embeddings [11] with a linear kernel on Y :
µ̂[PY new(L) ] = Û [PY tr|Xtr ]µ̂[PXnew(L) ] = ψ(ytr)(φ(xtr)>φ(xtr) + λI)−1φ>(xtr)φ(xnew(L)) =


(KXnew(L)Xtr (KXtrXtr +λI)−1Y tr)>. In step (3) we want to find the optimal G,H,g,h such that
the distributions on Y are matched across domains, i.e., PY ∗ = PY new(L) . The objective function
Eq. 2 is effectively minimizing the maximum mean discrepancy: ||µ̂[PY ∗ ] − µ̂[PY new(L) ]||2 =


||µ̂[PY ∗ ]− Û [PY tr|Xtr ]µ̂[PXnew(L) ]||2, with a Gaussian kernel on X and a linear kernel on Y .


The transformation {W,B,w,b} are smooth w.r.t X . Take w for example, µ̂[Pw] =


Û [Pw|XteL ]µ̂[PXteL ] = ϕ(g)(φ>(xteL)φ(xteL) + λI)−1φ>(xteL)φ(xteL) = ϕ(g)(LteL +


λI)−1LteL = (RteLg)>.


4 Experiments


Synthetic Dataset. We generate the synthetic data with (using matlab notation): Xtr =
randn(80, 1), Y tr = sin(2Xtr + 1) + 0.1 ∗ randn(80, 1); Xte = [w ∗ min(Xtr) + b : 0.03 :
w ∗max(Xtr)/3 + b], Y te = sin(2(revw ∗Xte + revb) + 1) + 2. The synthetic dataset used is with
w = 0.5; b = 5; revw = 2; revb = −10, as shown in Fig. 1. We compare the SMS approach with
the following approaches:
(1) Only test x: prediction using labeled test data only; (2) Both x: prediction using both the train-
ing data and labeled test data without transformation; (3) Offset: the offset approach [16]; (4) DM:
the distribution matching approach [16]; (5) KMM: Kernel mean matching [9]; (6) T/C shift: Tar-
get/Conditional shift [12], code is from http://people.tuebingen.mpg.de/kzhang/Code-TarS.zip.


To ensure the fairness of comparison, we apply (3) to (6) using: the original data, the mean-
centered data, and the mean-centered+variance-scaled (mean-var-centered) data.


A detailed comparison with different number of observed test points are shown in Fig. 4, averaged
over 10 experiments. The selection of which test points to label is done uniformly at random for
each experiment. The parameters are chosen by cross-validation. As we can see from the results,
our proposed approach performs better than all other approaches.


As an example, the results for transfer learning with 5 labeled test points on the synthetic dataset
are shown in Fig. 5. The 5 labeled test points are shown as filled blue circles. First, our proposed
model, SMS, can successfully learn both the transformation on X and the transformation on Y ,
thus resulting in almost a perfect fit on unlabeled test points. Using either only labeled test points,
or training+labeled test points, results in a poor fit towards the right part of the function because
there are no observed test labels in that part. The DM/offset approach also results in a poor fit
because simple variance-scaling does not yield a good match on P (Y |X). The KMM approach, as
mentioned before, applies the same conditional model P (Y |X) across domains, hence it does not
perform well. The Target/Conditional Shift approach does not perform well either since it does not
utilize any of the labeled test points. Its predicted support of P (Y te), is constrained in the support
of P (Y tr), which results in a poor prediction of Y te once there exists an offset between the Y ’s.
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Figure 4: Comparison of MSE on the synthetic dataset with {2, 5, 10} labeled test points


−4 −2 0 2 4 6
−2


−1


0


1


2


3


4


X


Y


 


 


SMS


source data


target


selected test x


prediction


−4 −2 0 2 4 6
−2


0


2


4


6


X


Y


 


 


use only labeled test x


source data


target


selected test x


prediction


−2 −1 0 1 2 3
−2


−1


0


1


2


3


X


Y


offset (mean−var−centered data)


 


 


source data


target


selected test x


prediction (w=1)


prediction (w=5)


−2 −1 0 1 2 3
−2


−1


0


1


2


3


X


Y


DM (mean−var−centered data)


 


 


source data


target


selected test x


prediction (p=1e−3)


prediction (p=0.1)


−2 −1 0 1 2 3
−2


−1


0


1


2


3


X


Y


KMM/TC Shift (mean−centered data)


 


 


source data


target


selected test x


prediction (KMM)


prediction (T/C shift)


−2 −1 0 1 2 3
−2


−1


0


1


2


3


X
Y


KMM/TC Shift (mean−var−centered data)


 


 


source data


target


selected test x


prediction (KMM)


prediction (T/C shift)


Figure 5: Comparison of results on the synthetic dataset: An example


Real-world Dataset. The two grape datasets we use are riesling (128 labeled images) and traminette
(96 labeled images), as shown in Fig. 3. The goal is to transfer the model learned from one grape
dataset to another. The results are shown in Table 1. In each row the result in bold indicates the
result with the best RMSE (* means statistically significant at a p = 0.05 level with unpaired t-
tests). We can see that our proposed algorithm yields better results under most cases, especially
when the number of labeled test points is small.


Table 1: RMSE for transfer learning on real data


# XteL SMS DM Offset Only test x Both x KMM T/C Shift
5 1197±23∗ 1359±54 1303±39 1479±69 2094±60 2127 2330
10 1046±35∗ 1196±59 1234±53 1323±91 1939±41 2127 2330
15 993±28 1055±27 1063±30 1104±46 1916±36 2127 2330
20 985±13 1056±54 1024±20 1086±74 1832±46 2127 2330
30 960±19 921±29 961±30 937±29 1663±31 2127 2330
50 893±16 925±59 935±59 926±64 1558±51 2127 2330
70 860±40 805±38 819±40 804±37 1399±63 2127 2330
90 791±98 838±102 863±99 838±104 1288±117 2127 2330


5 Conclusion


In this paper, we proposed a transfer learning algorithm that handles both support and model shift.
The algorithm transforms both X and Y by a location-scale shift, then the labels across domains are
matched to learn both transformations. Since we allow more flexible transformations than mean-
centering and variance-scaling, the proposed method yields better results than traditional methods.
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Abstract


We present a Bayesian approach for jointly learning distance metrics for a large
collection of potentially related learning tasks. We assume there exists a rela-
tively smaller set ofbasis distance metricsand the distance metric for each task
is asparse, positively weighted combination of these basis distance metrics. The
set of basis distance metrics and the combination weights are learned from data.
Moreover, taking a nonparametric Bayesian approach, the number of basis dis-
tance metrics need not be seta priori. Our proposed construction significantly
reduces the number of parameters to be learned, especially when the number
of tasks and/or data dimensionality is large. Several existing methods for multi-
task/transfer distance metric learning arise as special cases of our model. Prelimi-
nary results on real-world data show that our model outperforms various baselines.
We also discuss some possible extensions of our model and future work.


1 Introduction


Computing distances between data points is a key step in manyproblems such as classification, clus-
tering, and ranking. In many cases, the standard Euclidean distance is not appropriate andproblem-
specificdistance functions are deemed more suitable. Distance metric learning [14, 1] algorithms are
appealing in such cases as they allow learning data-driven distance metrics. Specifically, the distance
between two data pointsxi andxj is defined asd =


√


(xi − xj)⊤A(xi − xj) whereA is aD ×D
positive semi-definite matrix denoting the distance metric. Distance metric learning algorithm try to
learn the “right” distance metricA, given a set of constraints (pairwise similarities/dissimilarities,
or relative preferences) provided as a form of supervision.


Often, we are interested in solving not just one butT > 1 learning tasks and wish to learnmultiple
distance metricsA1, . . . , AT (one per task). Since the tasks could possibly be related, itis desir-
able tojointly learn these distance metrics in order to share statistical strengths across the multiple
learning tasks, especially when the amount of training dataand/or the number of distance-based
constraints known for each task is small. This has been the motivation behind some recent meth-
ods fortransfer/multitaskdistance metric learning [10, 17, 16, 18]. However, the task-relatedness
is usually unknowna priori. It is beneficial to learn the task-relatedness while jointly learning the
distance metrics for the multiple tasks.


In this paper, we present a Bayesian approach to the multitask distance metric learning problem.
Our proposed approach is appealing due to several reasons. Firstly, our approach discovers the task-
relatedness and allows a proper sharing of statistical strength among the multiple learning tasks.
Secondly, the Bayesian formulation naturally provides a full posterior distribution over the distance
metrics [15], rather than a point estimate, which gives the solution more robustness against overfit-
ting when the amount of training data is small.


Specifically, our proposed formulation expresses the distance metric of each task as asparse
weighted combination of a set ofbasisdistance metrics (intuitively, the degree of similarity oftwo
tasks would be proportional to the number of basis distance metrics they share). Note that this is
akin to a sparse coding [6, 8] of each task-specific distance metric using the elements from adistance
metric dictionary. The sparse code for each task as well as the distance metric dictionary will be
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learned from data using a nonparametric Bayesian approach.Our model allows incorporating both
strictly pairwise (similar or dissimilar) as well as relative preference (e.g., triplets) based constraints.


2 Bayesian Multitask Distance Metric Learning


We assume that we are givenT tasks, with their corresponding distance metrics denoted as
A1, . . . , AT . We further assume that eachD × D distance metricAt can be written as a sparse,
positively weighted combination of a small set ofK basis metricsM1, . . . ,MK , plus an off-
setM0 shared by all the tasks. EachMk, k = 0, . . . ,K, is assumed to be a symmetric posi-
tive definite matrix, which is further assumed to be a low-rank matrix of the formBkB


⊤


k where
Bk ∈ R


D×L with L ≤ D. Specifically, the taskt distance metricAt is modeled as follows:


At =


K
∑


k=1


WtkMk +M0


Mk = BkB
⊤


k where Bk ∈ R
D×L


Bkl ∼ Nor(0, σ2
b ID)


Wtk = ZtkStk


Ztk ∼ Ber(πk), πk ∼ Bet(α/K)


Stk ∼ HN (0, σ2
s )


Figure 1: Graphical model in plate no-
tation. Shaded nodes are observed.


In the above construction,Ztk denotes whether basisk (given byMk) is chosen by taskt andStk ∈
R+ specifies theweight. Note that in the above construction, the Beta-Bernoulli prior distribution
over the basis selection matrixZ assumes a finiteK; for large enoughK it approximates the Indian
Buffet Process (IBP) [3]. Alternatively,Z can be drawn from the IBP, in which caseK need not
be set beforehand. Likewise, the number of columnsL of each low-rank matrixBk can be inferred
nonparametrically using the multiplicative gamma processprior [2].


Our model requires estimatingZ ∈ {0, 1}T×K, S ∈ R
T×K
+ , and{Bk}Kk=1


with eachBk ∈ R
D×L.


Therefore, the total number of parameters to be estimated isO(TK + KDL). In contrast, the
multitask metric learning model in [10] which learns a separate distance metric for each task (plus a
shared distance matrix) requires estimatingO(TD2) parameters which can be expensive when the
number of tasks (T ) and/or the number of features (D) per task is large.


3 Full Model and Inference


Figure 1 shows the full model. The training data for taskt is given in form ofNt examplesXt =
[xt


1, . . . , x
t
Nt


] and a setCt = {St,Dt,Rt} of constraints defined between examples whereSt, Dt,
andRt denote pairwise similarity, pairwise dissimilarity, andrelativecomparison based constraints
(given as triplets of the form “examplei is more similar toj than tok), respectively. The goal is to
infer the distributionP (Θ | {Xt, Ct}Tt=1) over the latent variables, given data from all theT tasks,
whereΘ collectively refers to the set of all the latent variables{Z, S, {Bk}Kk=0


} that we need to
infer (note that we do not need to explicitly maintainMk but onlyBk sinceMk = BkB


⊤


k ).


Pairwise Constraints: Each (similarity/dissimilarity based) pairwise constraint is modeled using a
logistic function with a marginµ [15]:


P (ytij |x
t
i, x


t
j ,Θ, µ) =


1


1 + exp(ytij(d
2
At
(xt


i, x
t
j)− µ))


whereytij = +1 if xt
i, x


t
j are similar, andytij = −1 otherwise. Two points are likely to be assigned


to the same class only when their distance is less thanµ. Hered2At
(xt


i, x
t
j) = (xt


i−xt
j)


⊤At(x
t
i−xt


j)


is the squared distance between two examplesxt
i, x


t
j from taskt, under the distance metricAt.


Preference Based Constraints: For taskt, the relative preference based constraintsRt are of the
form (i, j, k) which means that data pointxt


i is more similar toxt
j than toxt


k. We impose the large
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margin assumption [10] on the triplet constraints and require the following condition to be satisfied
for each triplet(i, j, k) of taskt: d2At


(xt
i, x


t
k) ≥ d2At


(xt
i, x


t
j) + 1.


Following other metric learning methods [13, 10], we express the “loss” associated with triplet
(i, j, k) of taskt to be: max(1 − {d2At


(xt
i, x


t
k) − d2At


(xt
i, x


t
j)}, 0). and use the following pseudo-


likelihood for each triplet based likelihood term:


exp(−max(1 − {d2At
(xt


i, x
t
k)− d2At


(xt
i, x


t
j)}, 0))


Exact inference in our model is intractable. We use MCMC to perform approximate inference in
our model. We use Gibbs sampling [3] to sample each binary-valued entry of the basis selection
matrixZ, and use elliptical slice-sampling [9] to sample forS and{Bk}Kk=0


. For brevity, we skip
the details of the inference.


4 Special Cases


For specific choices of the basis selection matrixZ (i.e., when it is set to afixedvalue) and the global
shared distance metricM0, our model leads to some spacial cases such as:


• The case whenZ is an identity matrix of sizeT × T andM0 = 0 is equivalent to learning
independent distance metric for each task, i.e.,At = Mt.


• The case whenZ is an identity matrix of sizeT × T andM0 6= 0 is equivalent to the
method proposed in [10] which assumes that the distance metric of each task is a sum of a
global distance metric and a task-specific distance metric,i.e.,At = M0 +Mt.


• The case whenZ is a matrix of all zeros, each distance metricAt = M0, which is equiva-
lent to all the tasks sharing a single global distance metricM0.


Our model, in addition to subsuming the above-mentioned cases, can flexibly model different relat-
edness between tasks by inferring metric basis{Mk} and basis selection matrixZ.


Also note that our model can be used to learnclass-specificdistance metrics [13] in single-task
learning. In this case, each task corresponds to a class and the data for each task only consists of
examples from the corresponding class.


5 Possible Extensions and Future Work


Our model can also be extended tozero-datatransfer learning [5] settings. For instance, in many
problems, features-descriptors/covariates for tasks maybe available [5] which, in our framework,
can be leveraged to predict the basis combination weightsZt ⊙ St, especially for anew task that
may not have any labels/distance-based-constraints. To model the basis combination weights of such
tasks, one possibility could to replace the Beta-Bernoulli/IBP prior onZt by afeature-dependentIBP
prior such as the linear probit model [11]: Suppose, a new task t has a task-descriptor feature vector
ft ∈ R


P then we could modelZt asP (Ztk = 1) = Φ0,1(β
⊤


k ft+Φ−1


0,1(ak)) whereak is thea priori
probability of basisk to be chosen,βk ∈ R


P are regression weights on the task descriptors, andΦ
represent the normal CDF. Note that the set of regression weights{βk}Kk=1


and basis usage prob-
abilities{ak}Kk=1


would be learned from the previous tasks. This would allow predicting the basis
combination weights for a new task, for which no supervision(in form of constraints) is available,
solely based on its task-descriptor feature vector.


Another possible extension could be doingactivedistance metric learning [15] in our multitask dis-
tance metric learning setting, which is expected to furtherreduce the number of constraints needed
for each task. Our Bayesian framework would naturally allowdoing this.


Finally, scaling up the model to large-data problems is another avenue of future work, especially to
handle the enormously large number of pairwise/triplet constraints in the training data which make
the likelihood computations a bottleneck in efficient inference. In this direction, two approaches
seem worth pursuing: (1) finding the most useful “support” pairs/triplets such that computing the
likelihood using only those can provide an approximation tothe likelihood on the entire set of con-
straints, e.g., using the idea of Firefly Monte Carlo [7]; and(2) instead of MCMC, using online
variational inference methods such as stochastic variational inference [4], which would be a promis-
ing way to scale up our model for larger data sets.
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6 Experiments


We report preliminary results of our model on a real-world data - Isolet [10]. The Isolet data set
consists of 5 tasks, constructed from speech data from 150 speakers with 5 groups. Each task is
a multiclass classification problem (classifying an utterance into one of 26 English alphabets). We
experiment with the more challenginglabel-incompatiblesetting [10] where the number of labels
in could be different across the different tasks (we construct the data such that some tasks had less
than 26 alphabets in the utterances). The data originally had 617 features and PCA was applied as a
preprocessing step (as done in [10]) to reduce the dimensionality to 169 using principal components
that capture 95% variance. We use a subset of the data which consists of 360 training, 120 test,
and 120 validation examples for each task. In our experiments, we only use triplet constraints; note
however that, if provided, the proposed model is capable of using pairwise constraints. To generate
the triplets, we follow the strategy used in [12]: for each training example, we choose 3 nearest
neighbors from the same class and 10 nearest neighbors from different classes.


For these experiments, we use nearest neighbors classification to predict the labels for the test data.
For this step, the number of nearest neighbors for each baseline as well as our method is chosen using
cross-validation on the validation set. We compare our model BMDML (for Bayesian Multitask
Distance Metric Learning) with the following baselines:


• Independent task learning with Euclidean distance (Ind-Euc).


• Global multitask distance metric learning (gMDML) which learns a single distance metric
shared by all the tasks, i.e.,At = M0 for t = 1, . . . , T .


• Multitask large-margin distance metric learning [10] which assumes each distance metric
to be of the formAt = M0 +Mt.


In our experiments, for our model we setK = 20 andL = 50, which worked well for our experi-
ments Alternatively, these values can be inferred from datausing the Indian Buffet Process [3] and
the multiplicative gamma process [2] prior onZt’s andBk’s, respectively.


Table 1: Classification accuracies on Isolet data


Ind-Euc gMDML mt-LMNN BMDML
Task 1 90.83% 91.12% 92.56% 93.74%
Task 2 95.00% 94.48% 96.12% 97.53%
Task 3 90.83% 91.04% 93.02% 93.95%
Task 4 87.50% 87.11% 89.35% 92.24%
Task 5 93.33% 94.12% 94.92% 96.72%
Average 91.50% 91.37% 93.19% 94.83%


Table 1 shows the results of our model and the various baselines. Our results for each experiment
are obtained by averaging the distance metrics over the posterior samples after burn-in. We report
results in terms of the classification accuracies on each task as well as the average classification
accuracy over all the tasks. As shown in Table 1, BMDML outperforms all the baselines which
demonstrates the model’s effectiveness in appropriately sharing the right amount of information
across the multiple tasks. We also notice that the gMDML baseline sometimes gets outperformed
by the simpler method Ind-Euc, which is probably a result of the small size of the training data
and/or adverse effects due to pooling all the tasks’ data to learn a single shared distance metric.


7 Conclusion
We have presented a model for learning distance metrics for multiple tasks by appropriately sharing
information across the different tasks. Our models leads toa flexible way of jointly learning multiple
distance metrics and, as discussed in Section 5, our model can be extended in several useful ways
such aszero-datatransfer learning to new tasks with no supervised information, active distance met-
ric learning, and can be given a fully nonparametric Bayesian treatment. We are currently exploring
these possibilities, as well as ways to scale up the model to larger data sets by employing alternative,
more efficient inference methods.


Acknowledgements: This work is supported in part by AOR, DARPA, DOE, NGA, and ONR.
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1 Introduction


A key element in transfer learning is representation learning; if representations can be developed that
expose the relevant factors underlying the data, then new tasks and domains can be learned readily
based on mappings of these salient factors. We propose that an important aim for these representa-
tions are to be unbiased. Different forms of representation learning can be derived from alternative
definitions of unwanted bias, e.g., bias to particular tasks, domains, or irrelevant underlying data di-
mensions. One very useful approach to estimating the amount of bias in a representation comes from
maximum mean discrepancy (MMD) [5], a measure of distance between probability distributions.
We are not the first to suggest that MMD can be a useful criterion in developing representations that
apply across multiple domains or tasks [1]. However, in this paper we describe a number of novel
applications of this criterion that we have devised, all based on the idea of developing unbiased
representations. These formulations include: a standard domain adaptation framework; a method
of learning invariant representations; an approach based on noise-insensitive autoencoders; and a
novel form of generative model. We suggest that these formulations are relevant for the transfer
learning workshop for a few reasons: (a). they focus on deep learning; (b). the formulations include
both supervised and unsupervised learning scenarios; and (c). they are well-suited to the scenario
emphasized in the call-for-papers, where the learning task is not focused on the regime of limited
training data but instead must manage large scale data, which may be limited in labels and quality.


2 Maximum Mean Discrepancy


Each of our approaches to learn unbiased features rely on a sample-based measure of the bias in
the representation. A two sample test is a statistical test that tries to determine, given two datasets
{Xn} ∼ P and {Ym} ∼ Q, whether the datasets have been generated from the same underlying
distribution, i.e., if P = Q. Maximum mean discrepancy [5] is a useful distance measure between
two distributions that can be used to perform two sample tests.


MMD(X,Y ) =


∥∥∥∥∥ 1


N


N∑
n=1


φ(Xn)−
1


M


M∑
m=1


φ(Ym)


∥∥∥∥∥
2


(1)


=
1


N2


N∑
n=1


N∑
n′=1


φ(Xn)
>φ(Xn′) +


1


M2


M∑
m=1


M∑
m′=1


φ(Ym)>φ(Ym′)− 2


NM


N∑
n=1


M∑
m=1


φ(Xn)
>φ(Ym)


(2)


Where φ(·) is a feature expansion function. We can apply the kernel trick to each inner product in
Equation (2) to use an implicit feature space. When the space defined by the kernel is a universal
reproducing kernel Hilbert space then asymptotically MMD is 0 if and only if P = Q [6].
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E→B B→D K→D D→E B→K E→K
Linear SVM 71.0 ± 2.0 79.0 ± 1.9 73.6 ± 1.5 74.2 ± 1.4 75.9 ± 1.8 84.5 ± 1.0


RBF SVM 68.0 ± 1.9 79.1 ± 2.3 73.0 ± 1.6 76.3 ± 2.2 75.8 ± 2.1 82.0 ± 1.4
TCA 71.8 ± 1.4 76.9 ± 1.4 73.3 ± 2.4 75.9 ± 2.7 76.8 ± 2.1 80.2 ± 1.4


NN 70.0 ± 2.4 78.3 ± 1.6 72.7 ± 1.6 72.8 ± 2.4 74.1 ± 1.6 84.0 ± 1.5
NN MMD∗ 71.8 ± 2.1 77.4 ± 2.4 73.9 ± 2.4 78.4 ± 1.6 77.9 ± 1.6 84.7 ± 1.6
NN MMD 73.7 ± 2.0 79.2 ± 1.7 75.0 ± 1.0 79.1 ± 1.6 78.3 ± 1.4 85.2 ± 1.1


Table 1: Domain adaptation results for product review sentiment classification task. NN MMD∗:
neural net with MMD trained and tested on word count instead of TF-IDF features.


3 Applications


3.1 Domain Adaptation


In domain adaptation, we are given a set of labeled data from a source domain and a set of unlabeled
data from a different target domain. The task is to learn a model that works well on the target
domain.


In our framework, we want to learn unbiased features that are invariant to the nuances across dif-
ferent domains. The classifier trained on these features can then generalize well over all domains.
We use deep neural networks as the classification model. MMD is used as a penalty on one hidden
layer of the neural net to drive the distributions of features for the source and target domains to be
close to each other. While the use of MMD is similar to that of [1], we use a neural network to learn
both the features and classifier jointly. The distributed representation of a neural network is far more
powerful than the linear transformation and clustering method proposed in [1].


We tested the neural network with MMD penalty model on the Amazon product review sentiment
classification dataset [2]. This dataset contains product reviews from 4 domains corresponding to
4 product categories (books, dvd, electronics, kitchen). Each review is labeled either positive or
negative, and we preprocessed them as TF-IDF vectors. We tested a 2 hidden layer neural net model
on the adaptation tasks between all pairs of source and target domains. For each task, a small
portion of the the labeled source domain data is used as validation data for early stopping. Other
hyper parameters are chosen to optimize the average target performance over 10 random splits of the
data, in a setting similar to cross-validation. The best target accuracy with standard deviation for a
few tasks are shown in Table 1. More results and experiment settings can be found in the appendix.


We compare our method with SVM models with no adaptation, neural net with the same architecture
but no MMD penalty, and another popular domain adaptation baseline Transfer Component Analysis
(TCA) [8]. The neural net model with MMD penalty dominates on most tasks. Even with the more
basic word count features the “NN MMD” method still works better than most other baselines,
demonstrating the ability of our model to learn features useful across domains.


3.2 Learning Invariant Features


In this application we use the proposed framework to learn features invariant to transformations on
input data. More specifically, we want to learn features for human faces that are both good for
identity recognition and invariant to different lighting conditions.


In the experiment we used the extended Yale B dataset, which contains faces of 38 people under
various lighting conditions corresponding to light source from different directions. We created 5
groups of images, corresponding to light source in upper right, lower right, lower left, upper left
and the front. Then for each group of images, we chose 1 image per person to form one domain for
that lighting condition. In this way we had 5 domains with 5 × 38 = 190 images in total. All the
other images (around 2000) are used for testing. The task is to recognize the identity of the person
in image, i.e. a 38-way classification task. For this task, we did not use a validation set, but rather
report the best result on test set to see where the limits of different models are. Note that the lighting
conditions here can be modeled very well with a Lambertian model, however we did not use this
strong model but rather choose to use a generic neural network to learn invariant features, so that the
proposed method can be readily applied to other applications.
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(a) Without MMD (b) With MMD


Figure 1: PCA projection of the representations of the second hidden layer for the training images.
Each example is plotted with the person ID and the image. Zoom in to see the details.


The proposed model for this task is similar to the one used in the previous section, except that the
MMD penalty is now applied to the distribution of hidden representations for 5 different domains
rather than two. We used the following formulation which is a sum of MMD between each individual
distribution and the average distribution across all domains


MMD =


S∑
s=1


∥∥∥∥∥ 1


Ns


∑
i:di=s


φ(hi)−
1


N


∑
n


φ(hn)


∥∥∥∥∥
2


(3)


where s indexes domains, i indexes examples, S = 5 is the number of different domains, Ns is the
number of examples from domain s, N is the total number of examples across all domains, di is the
domain label for example i and hi is the hidden representation computed from a neural network. We
use a two hidden layer neural net with 256 and 128 ReLU units on each of them for this task. The
MMD penalty with a Gaussian kernel is applied to the second hidden layer. Dropout [7] is used for
all the methods compared here to regularize the network as overfitting is a big problem.


On this task, the baseline model trained without the MMD penalty achieves a test accuracy of 72%
(100% training accuracy). Using the MMD penalty with Gaussian kernel, the best test accuracy
improved significantly to around 82%. Using a linear kernel leads to a test accuracy to 78%.


We visualize the hidden representations for the training images learned with the Gaussian kernel
MMD penalty in Figure 1. Note that examples for each person under very different lighting condi-
tions are grouped together even though the MMD penalty only depends on lighting condition, and
does not take into account identity.


3.3 Noise-Insensitive Autoencoders


Auto-encoders (AEs) are neural network models that have two basic components: an encoder, that
maps data into a latent space, and a decoder, that maps the latent space back out into the origi-
nal space. Auto-encoders are typically trained to minimize reconstruction loss from encoding and
decoding. In many applications, reconstruction loss is merely a proxy and can lead to spurious rep-
resentations. Researchers have spent a great deal of effort developing new regularization schemes to
improve the learned representation [11, 12, 9]. Two such methods include denoising auto-encoders
(DAEs) [12] and contractive auto-encoders (CAEs) [9]. With denoising auto-encoders, the data is
perturbed with noise and the reconstruction loss is altered to measure how faithfully the original data
can be recovered from the pertrubed data. Contractive auto-encoders more explicitly penalize the
latent representation so that it becomes invariant to infinitesimal perturbations in the original space.
In the appendix, we show how the CAE penalty can be interpreted as a form of MMD penalty with
a linear kernel.


We experiment with several single-layer auto-encoder variants, including an ordinary auto-encoder
trained on reconstruction loss, a contractive auto-encoder, and a denoising auto-encoder. For com-
parison, we augment both the ordinary auto-encoder and denoising auto-encoder with the MMD
penalty on their hidden layer, sampling a new set of perturbed hidden units with each weight up-
date. We trained each model on 10, 000 MNIST digits and tuned hyperparameters to minimize a
denoising reconstruction loss on held-out data. Further details can be found in the appendix.
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(a) (b)


Figure 2: (a) visualization of some bottom layer weights; (b) independent samples from the model.


To measure the invariance to perturbation, we created a noisy copy of the test data and trained an
SVM classifier on the latent representations to distinguish between clean and noisy data. A worse ac-
curacy corresponds to a more unbiased latent representation. The MMD autoencoder outperformed
the other approaches on this measure. Surprisingly, the denoising autoencoder performed the worst,
demonstrating that denoising does not necessarily produce features that are invariant to noise. Also
interesting is that a relatively low contraction penalty was chosen for the CAE, as higher penalties
seemed to incur higher denoising reconstruction loss. This is likely due to the difference between
the applied Bernoulli noise, and the infintesimal noise assumed by the CAE. Plots of the filters can
be found in the appendix.


Model AE DAE CAE MMD MMD+DAE
SVM Accuracy 78.6 82.5 77.9 61.1 72.9


Table 2: SVM accuracy on distinguishing clean from noisy data. Lower accuracy means the learned
features are more invariant to noise.


3.4 Learning Generative Deep Models


The last application we consider is to use the MMD criterion for learning generative models. Unlike
previous sections where MMD is used to learn unbiased representations, in this application we use
MMD to match the distribution of the generative model with the data distribution. The idea is MMD
should be small on samples from a good generative model.


Here we train a generative deep model proposed in [4] on a subset of 1000 MNIST digits. The model
contains a stochastic hidden layer h at the top with a fixed prior distribution p(h), and a mapping
f that deterministically maps h to x. The prior p(h) and the mapping f(x|h) together implicitly
defines the distribution p(x).


In [4] the authors proposed a minimax formulation to learn the mapping f , where one extra classifier
looks at the data and the samples of the model and then try to do a good job of distinguishing them,
and the parameters of f is updated to make this classifier do as bad as possible so that samples
generated will be close to the data. As the formulation interleaves two optimization problems with
opposite objectives, careful scheduling is required for the model to converge to a good point.


We propose to directly minimize the MMD between the data and the model samples. Given a fixed
sample of h, we can backpropagate through the MMD penalty and the whole network, to drive
the model samples to be close to the data. This method utilizes a single consistent objective and
completely avoids the minimax problem. Details of our architecture and training can be found in the
appendix.


Figure 2 visualizes some bottom layer weights of the network and a set of samples generated from
the model. We can see that with this method the model learns some meaningful features and is able
to generate realistic samples.
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D→B E→B K→B B→D E→D K→D
Linear SVM 78.3 ± 1.4 71.0 ± 2.0 72.9 ± 2.4 79.0 ± 1.9 72.5 ± 2.9 73.6 ± 1.5


RBF SVM 77.7 ± 1.2 68.0 ± 1.9 73.2 ± 2.4 79.1 ± 2.3 70.7 ± 1.8 73.0 ± 1.6
TCA 77.5 ± 1.3 71.8 ± 1.4 68.8 ± 2.4 76.9 ± 1.4 72.5 ± 1.9 73.3 ± 2.4


NN 76.6 ± 1.8 70.0 ± 2.4 72.8 ± 1.5 78.3 ± 1.6 71.7 ± 2.7 72.7 ± 1.6
NN MMD∗ 76.5 ± 2.5 71.8 ± 2.1 72.8 ± 2.4 77.4 ± 2.4 74.3 ± 1.7 73.9 ± 2.4
NN MMD 78.5 ± 1.5 73.7 ± 2.0 75.7 ± 2.3 79.2 ± 1.7 75.3 ± 2.1 75.0 ± 1.0


B→E D→E K→E B→K D→K E→K
Linear SVM 72.4 ± 3.0 74.2 ± 1.4 82.7 ± 1.3 75.9 ± 1.8 77.0 ± 1.8 84.5 ± 1.0


RBF SVM 72.8 ± 2.5 76.3 ± 2.2 82.5 ± 1.4 75.8 ± 2.1 76.0 ± 2.2 82.0 ± 1.4
TCA 72.1 ± 2.6 75.9 ± 2.7 79.8 ± 1.4 76.8 ± 2.1 76.4 ± 1.7 80.2 ± 1.4


NN 70.1 ± 3.1 72.8 ± 2.4 82.3 ± 1.0 74.1 ± 1.6 75.8 ± 1.8 84.0 ± 1.5
NN MMD∗ 75.6 ± 2.9 78.4 ± 1.6 83.0 ± 1.2 77.9 ± 1.6 78.0 ± 1.9 84.7 ± 1.6
NN MMD 76.8 ± 2.0 79.1 ± 1.6 83.9 ± 1.0 78.3 ± 1.4 78.6 ± 2.6 85.2 ± 1.1


Table 3: Domain adaptation results for product review sentiment classification task. NN MMD∗:
neural net with MMD trained and tested on word count instead of TF-IDF features.


4 Appendix


4.1 More Details of the Domain Adaptation Experiments


The dataset contains 2000 product reviews in each of the 4 domains. Each product review is repre-
sented as a bag of words and bigrams. We preprocessed the data and ignored all words and bigrams
occurring less than 50 times across the whole dataset. Then computed the new word-count vectors
and TF-IDF vectors for each product review and use these vectors as input representations of the
data.


To make the experiment results robust to sampling noise, we generated 10 random splits of the
dataset, where each domain is split into 1500 examples for training, 100 for validation and 400 for
testing. For each domain adaptation task from one source domain to a target domain, the training
data in the source domain is used as labeled source domain data, and the training data without labels
in the target domain is used as unlabeled target domain data. The validation data in the source
domain is used for early stopping in neural network training, and the prediction accuracy on the test
data from target domain is used as the evaluation metric. For each of the methods we considered
in the experiments, hyper parameters are tuned to optimize the average target domain prediction
accuracy across all 10 random splits, and the best average accuracy is reported, which is a setting
similar to cross-validation for domain adaptation tasks.


We used a fully connected neural network with two hidden layers, 128 hidden units on the first
layer and 64 hidden units on the second. All hidden units are rectified linear units (ReLU). The
MMD penalty is applied on the second hidden layer. We used Gaussian kernels for MMD. The final
objective is composed of a classification objective on the source domain and a MMD penalty for the
source and target domains. The model is trained using stochastic gradient descent, where the initial
learning rate is fixed and gradually adapted according to AdaGrad [3]. The hyperparameters of the
model include the scale parameter in Gaussian kernel and the weight for the MMD penalty. The
learning rate, momentum, weight-decay and dropout rate for neural network training are fixed for
all the experiments.


For TCA baseline, we tried both linear kernels and Gaussian RBF kernels, and found that linear
kernels actually works better, so the reported results are all from linear kernel TCA models. The
projection matrix after kernel transformation projects the examples down to 64 dimensions (same
as the 2nd hidden layer of the neural net above). Then a Gaussian kernel RBF SVM is trained on
the mean-std normalized projected features (we’ve tried linear SVMs as well but found RBF SVMs
work better). We found the normalization step to be critical to the performance of TCA as the scale
of the features can differ by a few orders of magnitudes.
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Full results on all source-target pairs are shown in Table 3. NN MMD with word count features are
shown as “NN MMD∗”. Overall all methods gets a significant boost from using TF-IDF features.
But NN MMD method is able to learn useful features for domain adaptation even with word count
features, and performs better than the baselines on most tasks.


4.2 Relationship Between Contractive Auto-Encoders and MMD


It is straightforward to show that the contractive auto-encoder can be written as an MMD penalty
with a linear kernel. First take ei to be an elementary vector with a 1 at index i and 0 everywhere
else. We will take a Taylor expansion of a hidden unit hj(x) around ei [10]:


hj(x+ εei) ≈ hj(x) + εe>i ∇hj(x) + o(ε2), (4)
hj(x+ εei)− hj(x)


ε
≈ e>i ∇hj(x), (5)


hj(x+ εei)− hj(x) ≈ ε
∂hj(x)


xi
. (6)


Squaring both sides and summing over each hidden dimension and data dimension recovers the
contractive auto-encoder penalty.∑


j


∑
i


(hj(x+ εei)− hj(x))2 ≈ ε2
∑
j


∑
i


(
∂hj(x)


xi


)2


. (7)


The left hand side can be rewritten as an MMD penalty ||h(x) − h̃(x)||2, where h̃(x) = [h1(x +
εe1), h2(x+ εe1), . . . , hK(x+ εeD)], assuming K hidden units and D data dimensions. Since there
is no feature expansion, this is equivalent to using a linear kernel.


4.3 Auto-Encoder Training Details


We use a stochastic variant of the contraction penalty, where we sample h̃(x) from a noise distribu-
tion. As in [12], we use Bernoulli noise where each data dimension is zeroed out with probability
p, which is tuned along with the other hyperparameters. We use MMD with a Gaussian kernel
K(h(x), h̃(x)) = exp(− 1


σ2 ||h(x) − h̃(x)||2). The networks each have one layer of 100 sigmoidal
hidden units and are trained using stochastic gradient descent with momentum.


4.4 Auto-Encoder Weight Filters


Figure 3 shows the weight filters, the weights from the each hidden unit to the data visualized as
images. The MMD filters tend to be cleaner and more localized than the other variants.


4.5 Training Details for the Generative Experiments


We learn a generative deep model with 32 stochastic hidden units with independent uniform prior
distributions in [−1, 1], the deterministic mapping is implemented by a feedforward network with
two ReLU layers with 64 and 128 units each, and then a final sigmoid layer of 784 units (MNIST
images are of size 28 × 28 = 784). We use a Gaussian kernel for the MMD. For training, a set of
new samples h is generated from p(h) after every 200 updates to f .
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(a) AE (b) DAE (c) CAE


(d) MMD (e) MMD+DAE


Figure 3: Visualization of the weight matrices for each variety of auto-encoder.
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Abstract


Generalization bounds for time series prediction and other non-i.i.d. learning sce-
narios that can be found in the machine learning and statistics literature assume
that observations come from a (strictly) stationary distribution. The first bounds
for completely non-stationary setting were proved in [6]. In this work we present
an extension of these results and derive novel algorithms for forecasting non-
stationary time series. Our experimental results show that our algorithms sig-
nificantly outperform standard autoregressive models commonly used in practice.


1 Introduction


Given a sample ((X1, Y1), . . . , (Xm, Ym)) of pairs in Z = X ×Y , the standard supervised learning
task consists of selecting, out of a class of functions H , a hypothesis h : X → Y that admits a small
expected loss measured using some specified loss function L : Y ×Y → R+. The common assump-
tion in the statistical learning theory and the design of algorithms is that samples are drawn i.i.d.
from some unknown distribution and generalization in this scenario has been extensively studied in
the past. However, for many problems such as time series forecasting, the i.i.d. assumption is too
restrictive and it is important to analyze generalization in the absence of that condition. A variety of
relaxations of this i.i.d. setting have been proposed in the machine learning and statistics literature.
In particular, the scenario in which observations are drawn from a stationary mixing distribution has
become standard and has been adopted by most previous studies [1, 8, 9, 10, 13, 15] and most of
the modern time series prediction methods either assume stationarity or attempt to transform the
data in order to satisfy this assumption. For a more detailed survey of state-of-the-art results in this
area we refer the reader to [6]. However, a wide spectrum of stochastic processes considered in
applications, such as for example Markov chains, are in fact non-stationary. In this work, we present
generalization bounds under the more realistic assumption of non-stationary data. Furthermore, we
argue that under some additional assumptions our generalization bounds lead to novel algorithms
for forecasting non-stationary time series.


2 Generalization bounds


To state our main results we will first need to introduce some notation. Suppose we are given a
doubly infinite sequence of Z-valued random variables {Zt}∞t=−∞ jointly distributed according to
P. We will write Zba to denote a vector (Za, Za+1, . . . , Zb) where a and b are allowed to take values
−∞ and∞. Similarly, Pba denotes the distribution of Zba. Recall that a sequence of random variables
Z∞−∞ is (strictly) stationary provided that, for any t and any non-negative integers m and k, Zt+mt


and Zt+m+k
t+k have the same distribution. We will not assume that the process that we sample from


is stationary but we will assume that it is mixing. Following [3], we define β-mixing coefficients for
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P as follows. For each positive integer a, we set β(a) = supt ‖Pt−∞ ⊗P∞t+a −Pt−∞ ∧P∞t+a‖TV ,
where Pt−∞∧P∞t+a denotes the joint distribution of Zt−∞ and Z∞t+a. and ‖·‖TV is the total variation
distance. Roughly speaking, this means that the future has a sufficiently weak dependence on the
distant past. Often, processes that arise naturally in applications are β-mixing. For example, one
can show that Markov processes are geometrically β-mixing with β(a) = O(d−a) for some d > 1.


The goal of the learner is to find a hypothesis h that will have a small generalization error in the
near future: LT+s(h) = EZT+s


[`(h, ZT+s)], where `(h, z) = L(h(x), y) and L is some given loss
function. For alternative definitions of the generalization error for time series prediction see [6].


Finally, a key ingredient of the bounds we present is the notion of discrepancy between two proba-
bility distributions that was used by Mohri and Muñoz Medina [12] to give generalization bounds for
sequences of independent (but not identically distributed) random variables. In our setting, discrep-
ancy can be defined as d(t1, t2) = suph∈H |Lt1(h)− Lt2(h)|. Discrepancy is a natural measure of
the non-stationarity of a stochastic process with respect to the hypothesis classH and a loss function
L. For instance, if the process is strictly stationary then d̄(t1, t2) = 0 for all t1, t2 ∈ Z.


Generalization bounds for non-i.i.d. scenarios that can be found in the machine learning and statistics
literature assume that observations come from a (strictly) stationary distribution. The first bounds
for completely non-stationary setting were proved in [6]. Here we present an extension of these
results and use it to derive novel time series prediction algorithms. Our main result is the following.


Theorem 1. Let L be a loss function bounded by M and H an arbitrary hypothesis set. For any
a and m such that T = 2am, partition the given sample ZT1 into blocks 2m blocks each of size a.
Fix any w1, . . . , wT , such that


∑T
t=1 wt = 1 and wt ≥ 0. Then, for any δ > 2(m − 1)β(a), with


probability 1− δ, the following holds for all hypotheses h ∈ H:


LT+s(h) ≤
T∑
t=1


wt`(h, Zt) +
4


a


2a−1∑
j=0


Rj + 2


T∑
t=1


wtd(t, T + s) + c(
√
a‖w − u‖2 + 1√


m
),


where Rj = 1
mE[suph∈H


∑m
i=1 σi`(h2ai+j , Z2ai+j)] are Rademacher complexities, c =


2M
√


log 2
δ′ and u is the uniform distribution.


The main difference of this result with the result presented in [6] is that wt is not required to be
uniform anymore. Unlike in i.i.d. setting, it is natural to weight the errors of a given hypothesis
h differently on different sample points since distances between their distributions and distribution
that we are trying to predict may vary. As we shall see below this also leads to new algorithms for
time series prediction. The proof of this result follows the same arguments as in [6] which are based
on independent block technique of [15]. We omit the proof and refer the reader to [6] for details.


The learning bound of Theorem 1 indicates the challenges faced by the learner when presented with
data drawn from a non-stationary stochastic process. In particular, the presence of the third term in
the bound shows that generalization in this setting depends on the “degree” of non-stationarity of
the underlying process. The dependency in the training instances reduces the effective size of the
sample from T to m (if choose uniform weights wt = 1/T ).


3 Algorithms


In this section we will show how the bounds of Section 2 can be used to derive novel algorithms for
forecasting non-stationary time series. We will assume that that dt = d(t, T + s) can be computed
analytically or has been estimated from the data. Either of these assumptions can naturally arise
in applications. For instance, the discrepancy measure dt can be replaced by an upper bound that,
under mild conditions, can be estimated from data [7, 4]. Alternatively, suppose L is a quadratic
loss L(y, y′) = (y − y′)2 and X = Yd × X ′, i.e. our feature vector xt = (yt−1, . . . , yt−d, x


′
t)


consists of the d previous values of the stochastic process that we are trying to predict and a side
information x′t at time t. If we use a set of linear hypothesis H = {x 7→ h · x : ‖h‖2 ≤ Λ}, then
we can compute dt explicitly in terms of the autocovariance function of the underlying stochastic
process. In particular, if for simplicity we omit side information then we observe that for any t we
can write E[(


∑d
j=1 hjYt−j−Yt)2] =


∑d
i,j=0 hihjE[Yt−jYt−i] =


∑d
i,j=0 hihjρ(t−i, t−j), where
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ρ(r, s) = E[YrYs] and we take h0 = −1. Therefore, we can write


dt = sup
h∈H
|


d∑
i,j=0


hihj(ρ(t− i, t− j)− ρ(T − i, T − j))|.


In particular, the last expression implies that if the process is only weakly stationary, i.e. there is a
function f such that ρ(r, s) = f(r − s) and EYr is constant as a function of r, then dt = 0 for
all t. Note that this result together with Theorem 1 gives strong theoretical guarantees for learning
autoregressive processes (AR) with linear hypothesis, since these processes are weakly stationary.


More generally, for linear hypotheses with quadratic loss, dt is completely determined by the co-
variance structure of the underlying stochastic process. In particular, dt ≤ O(‖Pt − PT ‖), where
Pt = (ρ(t − i, t − j))i,j is (d + 1) × (d + 1) matrix. Consider, for instance, a process defined by
Yt+1 = aYt + εt, where εt’s are mean zero independent random variables with E[ε2t ] = σt. One
can show that the autocovariance function is given by ρ(t + s, t) = σta


s/(1 − a2) and the process
is not (weakly) stationary unless σt is constant. Recall that a standard approach when dealing with
non-stationary processes is so called “differencing”, i.e. considering Y ′t = Yt − Yt−1 and higher
order differences to obtain a stationary processes. This approach, for instance, leads to a celebrated
ARIMA model. However, this method will fail for the process Yt that we have just defined. On the
other hand, process Yt can arise naturally in the applications in which the variance of the stochas-
tic process evolves with time. In summary, in many practical applications, dt can either be found
analytically or estimated from the data and under this assumption we will present our algorithms.


3.1 SRM-style Algorithm


The first algorithm that we present here is a meta-algorithm that is close in spirit to Structural Risk
Minimization (SRM) of [14]. The major difference is that now we also need to control the weighted
discrepancy term that appears in the bound. Suppose we have access to an infinite nested sequence
of hypothesis sets H0 ⊂ H1 ⊂ H2 . . .. For each n ∈ N, we find a hypothesis hn that optimizes the
trade-off between weighted discrepancy and weighted empirical error. More precisely,


hn = argminh∈Hn
inf
w∈∆


( T∑
t=1


wt(`(h, Zt) + dt) + c‖w − u‖2
)


= argminh∈Hn
ψ(h),


where ∆ is a probability simplex and ψ(h) = infw∈∆(
∑T
t=1 wt(`(h, Zt) + dt) + c‖w − u‖2). We


set the SRM hypothesis to be hn that achieves the optimal trade-off between complexity term and
discrepancy-risk functional ψ:


hSRM = argminhn


(
ψ(hn) +


4


a


2a−1∑
j=0


Rj(Hn)


)
.


This algorithm directly optimizes the upper bound of Theorem 1, however, it is tractable only in
certain special cases and we consider some of these special cases below.


3.2 EM-style Algorithm


Here we consider the case of quadratic loss function L with a set H of linear hypotheses with
bounded norm. Recall that Rademacher complexity of such hypothesis set H is bounded above by
Λr/
√
m (see for example [11]). Then Theorem 1 leads to the following optimization problem:


min
w,h


λ1‖w − u‖22 + λ2‖h‖22 +


T∑
t=1


wt(dt + (h · xt − yt)2)


subject to:
T∑
t=1


wt = 1 and wt ≥ 0,∀t = 1, . . . , T


where λ1, λ2 are parameters to our learning algorithm that can be set via cross-validation. It should
be noted that this optimization problem can viewed as a special case of optimization problem con-
sidered in Subsection 3.1 with these particular L and H . Note also that this problem is not convex,
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Table 1: Stochastic processes for ADS1, ADS2, ADS3 (Zt i.i.d N(0, 0.01)).
ADS1 ADS2 ADS 3


Yt = atYt−1 + Zt Yt = atYt−1 + Zt Yt = atYt−1 + (1− at)Yt−2 + Zt


at = 1 if t < 1800 and−1 otherwise at = 0.9− 1.8(t/2000) at = 0.9t/2000


Table 2: Average L2 error (st.dev.)
ADS1 ADS2 ADS3 FX1 FX2


WRA 0.0099 (0.0155) 0.0997 (0.1449) 0.1026 (0.1509) 0.0072 (0.0102) 0.0069 (0.0112)
ARIMA(q,0,0) 0.1432 (0.2091) 0.4797 (0.6942) 0.2598 (0.3696) 0.0366 (0.0329) 0.0252 (0.0254)


Ratio 14.5 4.8 2.6 5.1 3.7


but we observe that for a fixed w it is a QP. The same is true in reverse: when h is fixed, we have
a different a QP. This suggests an alternating scheme, similar to EM algorithm, where we alternate
between solving QP for h and keeping w fixed and vice verse. Of course, this algorithm is not
immune to the usual problems that one faces when objective function is non-convex. In particular,
there is no guarantee that this algorithm will converge to a global minimum.


3.3 Weighted Ridge Regression (WRA)


In some special cases optimal wt can be computed explicitly or set to some fixed values according
to some natural heuristic. For example, in many applications dt may increase as t decreases and one
can choose an increasing sequence w1, . . . , wT such that


∑T
t=1 wt = 1 and wt ≥ 0. This leads to a


simple optimization problem:


min
h


λ‖h‖22 +


T∑
t=1


wt(h · xt − yt)2


where λ are parameters that can be set via cross-validation. This is can be viewed as an instance of
weighted Ridge Regression, or more generally, QP problem and we can use standard techniques of
convex optimization to find the solution.


4 Experiments


We have compared WRA against standard autoregressive model (ARIMA(q,0,0)) that is commonly
used in practice. In our experiments we have used a number of artificial (ADS1, ADS2, ADS3) and
real (FX1, FX2) datasets. For artificial datasets we have generated time series with 2,000 sample
points, trained on the first 1,999 points and tested on the last point. To gain statistically significance,
we repeat this procedure 1,000 times. The processes used to generate these time series are sum-
marized in Table 1. We have also used daily foreign exchange rates (12/31/1979 - 12/31/1998) for
CAD/USD and FRF/USD pairs (FX1 and FX2 respectively) found in [2] as examples of real life
non-stationary time series. Both FX1 and FX2 contain 4,774 points and we train on the first T − 1
points and test on the T -th observation, where T = 250, . . . , 4,774. Results of our experiments
are summarized in Table 2. Observe that results of each experiment are statistically significant us-
ing paired t-test and in each case WRA significantly outperforms the standard approach. Moreover,
WRA has a better performance on at least 80% of individual runs in each experiment and the average
error of ARIMA(q,0,0) is at least two times larger than that of WRA.


5 Conclusion


We presented generalization guarantees for learning in presence of non-stationary stochastic pro-
cesses in terms of a weighted discrepancy measure that appears as a natural quantity in our general
analysis. We show that our results provide learning guarantees for some well-known approaches
such as learning autoregressive processes with linear models. We argued that our bounds can guide
the design of time series prediction algorithms that would tame non-stationarity in the data by min-
imizing an upper bound on the discrepancy that can be estimated from the data [7, 4] or computed
analytically. Our empirical results show that our algorithm significantly outperform standard au-
toregression models. In this work we focused here on the problem of time series prediction but
the same learning guarantees and algorithms with only minor modifications can be formulated for
random fields with more complex temporo-spatial or any other dependence structure.
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Abstract


Multi-task feature selection methods often make the hypothesis that learning tasks
share relevant and irrelevant features. However, this hypothesis may be too restric-
tive in practice. For example, there may be a few tasks with specific relevant and
irrelevant features (outlier tasks). Similarly, a few of the features may be rele-
vant for only some of the tasks (outlier features). To account for this, we propose
a model for multi-task feature selection based on a robust prior distribution that
introduces a set of binary latent variables to identify outlier tasks and outlier fea-
tures. Expectation propagation can be used for efficient approximate inference
under the proposed prior. Our experiments show that a model based on the new
robust prior obtains better predictive performance than other benchmark methods.


1 Introduction


Multi-task feature selection methods are used to improve the learning of model coefficients from
the observed data under the sparsity assumption [1, 2, 3, 4, 5]. In these methods several learning
tasks that have a common feature space are solved simultaneously. Furthermore, it is often assumed
that the tasks share relevant and irrelevant features, as illustrated by Figure 2 (left). Unfortunately,
in some situations this hypothesis may be too restrictive [6]. Figure 2 (right) shows this scenario,
in which a few of the tasks may have specific relevant and irrelevant features (outlier tasks) and a
few of the features may be arbitrarily relevant and irrelevant across tasks (outlier features). In this
situation, traditional multi-task feature selection methods are expected to perform poorly. To deal
with these situations, in this paper we propose a multi-task feature selection model that is expected to
have better properties in the presence of diverse tasks, i.e., data with the properties described above.
The model is based on a robust prior distribution for enforcing sparsity in the model coefficients.
Exact inference is intractable under this prior. However, expectation propagation can be used for
efficient approximate inference [7]. Our experiments illustrate the benefits of the model proposed.
Specifically, it has better prediction properties than other methods from the literature. This model
can also be used to identify relevant attributes for prediction, and outlier tasks and outlier features.


2 Model Description


Assume K regression tasks with data {X(k),y(k)}Kk=1, where X(k) and y(k) are the design matrix
and the vector of targets for task k, respectively. All tasks share the same d attributes or features.
A linear model is considered for each task, i.e., y(k) = X(k)w(k) + ε(k), where w(k) ∈ Rd is
the vector of model coefficients for task k and ε(k) ∼ N (0, Iσ2


(k)). Let W be a K × d ma-
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trix whose k-th row is w(k) and Y a matrix whose k-th row is y(k). The likelihood for W is
p(Y|{X(k)}Kk=1,W, {σ2


(k)}
K
k=1) =


∏K
k=1N (y(k)|X(k)w(k), Iσ2


(k))). Furthermore, feature selec-
tion for each task, or equivalently, sparsity in w(k) is expected to be beneficial. We also assume
that the K tasks share, in general, relevant and irrelevant features, but we allow for small deviations
from this hypothesis. All this prior knowledge is introduced in the model by a robust prior for W.


2.1 Robust prior distribution


To favor sparse solutions we use the discrete mixture prior described in [8]. After reviewing this
prior we extend it to perform feature selection across several tasks in a robust way.


2.1.1 Discrete mixture prior
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Figure 1: Density of different priors.


This is a spike and slab prior in which the i-th coeffi-
cient of task k satisfiesw(k)


i ∼ (1−ρ)δ0+ρπ(w
(k)
i ),


where ρ is the prior inclusion probability, δ0 is a
point of probability mass at zero, and π(·) is a den-
sity that specifies the distribution of the coefficients
that are not zero. Each w(k)


i is a priori zero with
probability (1 − ρ). In [8] it is suggested for π(·)
the Strawderman-Bergen prior [9, 10], which has
Cauchy-like tails and yet allows for a closed form
convolution with the Gaussian likelihood. This dis-
crete mixture prior is a scale mixture of Gaussians:


π
(
w


(k)
i


)
=


∫
N (w


(k)
i |0, λ


2
i )


λi


(λ2i + 1)
3
2


dλi =
1√
2π


(
1− |w(k)


i |
Φ(−|w(k)


i |)
N (w


(k)
i |0, 1)


)
, (1)


where | · | denotes absolute value, and Φ(·) and N (·|0, 1) respectively denote the cdf and density of
a standard Gaussian distribution. Figure 1 compares the discrete mixture prior with other priors (an
arrow denotes a point of probability mass). We observe that the discrete mixture has heavy tails to
explain coefficients that significantly differ from zero. It also has a point mass at zero that allows for
exact zeros in the coefficients. Thus, such a prior is very convenient for feature selection [8].


2.1.2 A robust prior to favor sparse solutions across tasks


The discrete mixture prior is extended to carry out feature selection across several tasks. We assume
that these tasks have in general jointly relevant and irrelevant features. However, we consider a few
outlier tasks with specific relevant and irrelevant features. Similarly, we also consider a few outlier
features that may be arbitrary relevant and irrelevant for each task. This is illustrated in Figure 2
(right). Tasks 4 and 8 are outlier tasks and features 19 and 21 are outlier features. The remaining
tasks and features follow the main assumption of jointly relevant and irrelevant features.
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Figure 2: (left) Traditional multi-task feature selection: All tasks share relevant and irrelevant features (model
coefficients). (right) Dirty multi-task feature selection: Most tasks share relevant and irrelevant features, but we
allow for outlier tasks (tasks 4 and 8) and for outlier features (dimensions 19 and 21). White squares represent
irrelevant coefficients, i.e., equal to zero. Colored squares represent relevant coefficients with non-zero values.


To model this type of prior knowledge we introduce the following binary latent variables:
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zi Indicates whether feature i is an outlier (zi = 1) or not (zi = 0). If it is an outlier it can be
independently relevant or irrelevant for each task.


ωk Indicates whether task k is an outlier (ωk = 1) or not (ωk = 0). If it is an outlier it can have specific
relevant and irrelevant features for prediction.


γi Indicates whether the non-outlier feature i is relevant (γi = 1) for prediction or not (γi = 0) in all
tasks that are not outliers, i.e., those tasks for which ωk = 0.


τ
(k)
i Indicates whether, given that task k is an outlier task, i.e., ωk = 1, feature i for that task is relevant


(τ (k)i = 1) or irrelevant (τ (k)i = 0) for prediction.


η
(k)
i Indicates whether, given that feature i is an outlier feature, that particular feature is relevant for


prediction in task k (η(k)i = 1) or not (η(k)i = 0).


Consider Ω to summarize all these latent variables, i.e. Ω = {z,ω,γ, {τ (k)}Kk=1, {η(k)}Kk=1}. We
specify the prior distribution for the model coefficients to be p(W|Ω) =


∏d
i=1


∏K
k=1 p(w


(k)
i |Ω),


where p(w(k)
i |Ω) = {π(w


(k)
i )η


(k)
i δ


1−η(k)
i


0 }zi{[π(w
(k)
i )τ


(k)
i δ


1−τ(k)
i


0 ]ωk [π(w
(k)
i )γiδ1−γi0 ]1−ωk}1−zi .


Under this prior a coefficient w(k)
i is different from zero if (i) it corresponds to an outlier feature


(zi = 1) which is relevant for task k (η(k)i = 1); or (ii) it does not correspond to an outlier feature
(zi = 0), but it corresponds to an outlier task (ωk = 1) and the feature is relevant for that task
(τ (k)i = 1); or (iii) it does not correspond to an outlier feature (zi = 0), nor an outlier task (ωk = 0),
but the feature is relevant for prediction across tasks (γi = 1). Otherwise, the coefficient is zero.


We fix the hyper-priors for the latent variables to Bernoullis with parameters ρz , ρω , ργ , ρτ and
ρη . That is, p(z) =


∏d
i=1 Bern(zi|ρz), p(ω) =


∏K
k=1 Bern(ωk|ρω), p(γ) =


∏d
i=1 Bern(γk|ργ),


p({τ (k)}Kk=1) =
∏K
k=1


∏d
i=1 Bern(τ


(k)
i |ρτ ) and p({η(k)}Kk=1) =


∏K
k=1


∏d
i=1 Bern(η


(k)
i |ρη). The


hyper-prior for each ρz , ρω , ργ , ρτ and ρη is a beta distribution with parameters a0 and b0, e.g.,
p(ρz) = Beta(ρz|a0, b0) for the case of ρz . We set a0 = 1 and b0 = 10. These values favor sparse
solutions (hyper-parameter values close to zero) and, at the same time, produce high variance to
identify of the correct hyper-parameter values from the training data.


3 Expectation Propagation


Define ρ = {ρz, ρω, ργ , ρτ , ρη} and p(ρ) =
∏
ρ∈ρ p(ρ). The joint distribution


p(Y,W,Ω,ρ|{X(k)}Kk=1, {σ2
(k)}


K
k=1) = p(Y|{X(k)}Kk=1,W, {σ2


(k)}
K
k=1)p(W|Ω)p(Ω|ρ)p(ρ)


can be normalized with respect to W, Ω and ρ to get a posterior distribution over the latent variables,


p(W,Ω,ρ|Y, {X(k)}Kk=1, {σ2
(k)}


K
k=1) =


p(Y,W,Ω,ρ|{X(k)}Kk=1, {σ2
(k)}


K
k=1)


p(Y|{σ2
(k)}


K
k=1)


, (2)


whose exact computation is intractable in most real applications. To circumvent this problem, EP
approximates (2) by replacing each factor in p(Y,W,Ω,ρ|{X(k)}Kk=1, {σ2


(k)}
K
k=1) that is not inside


a particular exponential family F of distributions with an approximate factor inside that particular
family [7]. We set F to be the product of Gaussian distributions on W, Bernoulli distributions on
Ω and beta distributions on ρ. Therefore, the only factors not in F are p(W|Ω) and p(Ω|ρ). The
likelihood is Gaussian and the hyper-priors are beta. Thus, these factors need not be approximated.


In our EP method each factor p(w
(k)
i |Ω) in p(W|Ω) is approximated as p(w


(k)
i |Ω) ≈


s̃
(k)
i N (wi|m̃(k)


i , σ̃2
(i,k))Bern(zi|p̃(i,k)z )Bern(ωk|p̃(i,k)ω )Bern(γi|p̃(i,k)γ )Bern(τ


(k)
i |p̃


(i,k)
τ )Bern(η


(k)
i |


p̃
(i,k)
η ). Each factor in p(Ω|ρ) is approximated similarly. Namely, for the particular case of
ρz , Bern(zi|ρz) ≈ κ̃izBern(zi|p̃(i)z )Beta(ρz|ã(i)z , b̃


(i)
z ). Furthermore, all the parameters with the


superscript ˜ are to be adjusted by EP. EP does this so that the approximate factors look similar
to the corresponding exact factors in regions of high posterior probability. Once this fitting
process is finished, the EP approximation of (2) is obtained by replacing in the joint distribution
p(Y,W,Ω,ρ|{X(k)}Kk=1, {σ2


(k)}
K
k=1) each exact factor by the corresponding approximate factor.


Denote with q̃ the resulting approximate joint distribution. After normalization, q̃ becomes the EP
posterior approximation q, which is inside of F because F is closed under the product operation.
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4 Experimental evaluation


We compare the proposed model for dirty multi-task feature selection (DMFS) with single task
learning (STL) and with a model for multi-task feature selection (MFS) that assumes jointly relevant
and irrelevant features across tasks. STL and MFS are particular cases of DMFS where all tasks are
outliers (STL) and where there are no outlier tasks nor outlier features (MFS). We also compare
with the dirty model (DM) described in [6], the robust multi-task feature selection method (RMFS)
given in [11] and the model for learning feature selection dependencies (MFSDep) proposed in [12].
Besides these, other works from the literature also model outlier tasks, e.g., [13, 14]. However, they
do not consider sparsity in the model coefficients and are expected to perform poorly in our setting.


We generate 12 tasks where the model coefficients are sampled from a Student’s distribution with
5 degrees of freedom. Each task k has d = 200 associated attributes and nk = 100 samples. The
sparsity pattern employed for the model coefficients is displayed in Figure 2 (right). All coefficients
above dimension 26 are set to zero. The noise is Gaussian and σ2


(k) = 0.5 ∀k. Each entry of X(k)


is standard Gaussian ∀k. We use 90% of the instances for training and 10% for testing. We average
results over 100 repetitions. For each method we report the test root mean squared error (RMSE) and
the reconstruction error of W, i.e., 1/K


∑K
k=1 ||w(k) − ŵ(k)||2, where ŵ(k) is either the posterior


mean (probabilistic models) or a point estimate of w(k) (DM and RMFS). In the probabilistic models
we set σ2


(k) = 1/2, ∀k. In DM and RMFS we choose hyper-parameters using a grid of values and an
inner cross-validation method. In MFSDep we use type-II maximum likelihood [15] for this purpose.


Table 1: Avg. Test RMSE and Reconstruction Error.


Method Test RMSE Rec. Error
MFS 0.80±0.06 0.41±0.03
DMFS 0.74±0.05 0.27±0.02
DM 0.89±0.06 0.58±0.04
MFSDep 0.76±0.05 0.32±0.02
RMFS 0.95±0.08 0.65±0.06
STL 0.78±0.05 0.36±0.03
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Figure 3: Avg. Posterior Prob. for ωk = 1 and zi = 1.


The average results obtained are displayed in Table 1. The best method is DMFS. This model makes
the hypothesis most compatible with the the data. The differences of DMFS with respect to the other
methods are statistically significant (p-value < 5% using a paired Student’s T test). MFSDep also
performs well since the hypothesis made is also very flexible. DM and RMFS perform poorly in
general. The reason for this is that DM is unable to model outlier tasks [6]. It can only model outlier
features. Similarly, RMFS is unable to model outlier features [11]. Furthermore, in RMFS outlier
tasks cannot be sparse. All the model coefficients of these tasks are expected to be relevant. Another
reason for the bad behavior of DM and RMFS is that the norms employed by these methods cannot
provide very sparse solutions without shrinking relevant coefficients [8, 16]. The better results
obtained by DMFS are also explained by Figure 3, which shows the average posterior probability
that each task and each feature is an outlier, as estimated by DMFS. DMFS successfully identifies
tasks 4 and 8 as outlier tasks and features 19 and 21 as outlier features.


5 Conclusions


Most methods for multi-task feature selection assume jointly relevant and irrelevant features across
tasks. This may be too restrictive in practice. In this work we have proposed a prior distribution that
considers that most tasks share relevant and irrelevant features, but that allows for some tasks to have
different relevant and irrelevant coefficients (outlier tasks), and for some features to be arbitrarily
relevant or irrelevant for each task (outlier features). This is a more flexible assumption. Exact
inference is infeasible under the proposed prior. However, a closed-form expectation propagation
algorithm can be used for approximate inference. A model using such a prior has been evaluated
showing gains in the prediction performance and in the identification of relevant features. Such a
prior is also useful to better understand the data by identifying outlier tasks and outlier features.


Acknowledgement: D.H.L. is supported by MCyT and by CAM (projects TIN2010-21575-C02-02, TIN2013-
42351-P and S2013/ICE-2845). J.M.H.L acknowledges support from the Rafael del Pino Foundation.
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Abstract


The interactions between covariates may change with learning domains. Discover-
ing such transitions may offer key information helping us transfer our knowledge
from one domain to another. We study the problem of learning sparse structure
changes between two Markov networks P and Q. Rather than fitting two Markov
networks separately to two sets of data and figuring out their differences, a re-
cent work proposed to learn changes directly via estimating the ratio between two
Markov network models. In this paper, we give sufficient conditions for success-
ful change detection with respect to the sample size np, nq , the dimension of data
m, and the number of changed edges d. More specifically, we prove that the
true sparse changes can be consistently identified for np = Ω(d2 log m2+m


2 ) and
nq = Ω(n2p/d), with an exponentially decaying upper-bound on learning error.


1 Introduction


Learning changes in interactions between random variables plays an important role in many real-
world applications. For example, genes may regulate each other in different ways when exter-
nal conditions are changed. EEG signals from different regions of the brain may be synchro-
nized/desynchronized when the patient is performing different activities. Identifying such changes
in interactions helps us expand our knowledge on these real-world phenomena.


We consider the problem of learning changes between two undirected graphical models. Such a
model, also known as a Markov network (MN) [2], expresses interactions via the conditional inde-
pendence between random variables. Naively, one may utilize existing MN learning methods (e.g.
Graphical Lasso [1]) to approximate two separated MNs and compare their differences.


One most recent effort based on density ratio estimation, proposes to learn the changes directly
between MNs without modelling each individual MN [3]. In this paper, we theoretically investigate
the success of such approach and provide sufficient conditions for successful change detection with
respect to the number of samples np, nq , data dimension m, and the number of changed edges d.


More specifically, we prove that if np = Ω(d2 log m2+m
2 ) and nq = Ω(


n2
p


d ), changes between two
MNs can be consistently learned under mild assumptions, regardless the sparsity of individual MNs.


2 Direct Change Learning between Markov Networks


2.1 Problem Formulation


Consider two sets of independent samples drawn separately from two probability distributions P
and Q on Rm:{x(i)


p }np


i=1
i.i.d.∼ P and {x(i)


q }nq


i=1
i.i.d.∼ Q. We assume that P and Q belong to the


family of Markov networks (MNs) consisting of univariate and bivariate factors, i.e., their respective
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probability densities p and q are expressed as


p(x;θ(p)) =
1


Z(θ(p))
exp


 m∑
u≥v


θ(p)u,v
>ψ(xu, xv)


 , (1)


where x = (x1, . . . , xm)> is them-dimensional random variable, u ≥ v is short for u, v = 1, u ≥ v
(same below), > denotes the transpose, θ(p)u,v is the parameter vector for the elements xu and


xv , and θ(p) = (θ
(p)>
1,1 , . . . ,θ


(p)>
m,1 ,θ


(p)>
2,2 , . . . ,θ


(p)>
m,2 , . . . ,θ


(p)>
m,m)> is the entire parameter vec-


tor. ψ(xu, xv) : R2 → Rb, and Z(θ(p)) is the normalization factor defined as Z(θ(p)) =∫
exp


(∑m
u≥v θ


(p)
u,v
>ψ(xu, xv)


)
dx. q(x;θ(q)) is defined in the same way.


Given two parametric models p(x;θ(p)) and q(x;θ(q)), the goal is to discover changes in parame-
ters from P to Q, i.e., θ(p) − θ(q).


2.2 Density Ratio Formulation for Structural Change Detection


The key idea in [3] is to consider the ratio of p and q:


p(x;θ(p))


q(x;θ(q))
∝ exp


(∑
u≥v(θ


(p)
u,v − θ


(q)
u,v)
>ψ(xu, xv)


)
, where θ(p)u,v − θ


(q)
u,v encodes the difference be-


tween P and Q for factor ψ(xu, xv), i.e., θ(p)u,v − θ
(q)
u,v is zero if there is no change in the factor


ψ(xu, xv).


Once the ratio of p and q is considered, each parameter θ(p)u,v and θ(q)u,v does not have to be estimated,
but only their difference θu,v = θ(p)u,v−θ


(q)
u,v is sufficient to be estimated for change detection. Thus,


in this density-ratio formulation, p and q are no longer modeled separately. We directly model the
ratio between p and q as


r(x;θ) =
1


N(θ)
exp


∑
u≥v


θ>u,vψ(xu, xv)


 , (2)


where N(θ) is the normalization term. The normalization term N(θ) is chosen to fulfill∫
q(x)r(x;θ)dx = 1, and is defined as N(θ) =


∫
q(x) exp


(∑
u≥v θ


>
u,vψ(xu, xv)


)
dx, which


is the expectation over q(x). This expectation can be easily approximated by the sample average
over {x(i)


q }nq


i=1
i.i.d.∼ q(x).


2.3 Direct Density-Ratio Estimation


For a density ratio model r(x;θ), the Kullback-Leibler importance estimation procedure (KLIEP)
minimizes the Kullback-Leibler divergence from p(x) to p̂(x) = q(x)r(x;θ):


KL[p‖p̂] =


∫
p(x) log


p(x)


q(x)r(x;θ)
dx = Const.−


∫
p(x) log r(x;θ)dx. (3)


In practice, one minimizes the negative empirical approximation of the second term in Eq.(3)


`KLIEP(θ) = − 1


np


np∑
i=1


log r(x(i)
p ;θ)


Because `KLIEP(θ) is convex with respect to θ, its global minimizer can be numerically found by
standard optimization techniques such as gradient ascent or quasi-Newton methods. To find a sparse
change between P and Q, one may regularize the KLIEP solution with a sparsity-inducing norm∑
u≥v ‖θu,v‖, i.e., the group-lasso penalty [8].


Now we have reached the final objective provided in [3]:


θ̂ = argmin
θ


`KLIEP(θ) + λnp


∑
u≥v


‖θu,v‖. (4)
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3 Support Consistency of Direct Sparse-Change Detection


3.1 Notation


Before introducing our consistency results, we define a few notations. In the previous section, a
sub-vector of θ indexed by (u, v) corresponds to a specific edge of an MN. From now on, we use
new indices with respect to the “oracle” sparsity pattern of the true parameter θ∗ for notational
simplicity. By defining two sets of sub-vector indices S := {t′ | ‖θ∗t′‖ 6= 0} and its complement
Sc := {t′′ | ‖θ∗t′′‖ = 0}, we rewrite the objective (4) as


θ̂ = argmin
θ


`KLIEP(θ) + λnp


∑
t′∈S
‖θt′‖+ λnp


∑
t′′∈Sc


‖θt′′‖. (5)


The support of estimated parameter and its complement are denoted as Ŝ and Ŝc. Sample Fisher


information matrix I ∈ R
b(m2+m)


2 × b(m2+m)
2 is the Hessian of the log-likelihood: I = ∇2`KLIEP(θ∗).


IAB is a sub-matrix of I indexed by two sets of indices A and B on rows and columns.


3.2 Assumptions


Similar to previous researches on sparsity recovery analysis [6, 5], the first two assumptions are
made on Fisher Information Matrix.
Assumption 1 (Dependency Assumption). The sample Fisher Information Matrix ISS has bounded
eigenvalues: Λmin(ISS) ≥ λmin > 0.


This assumption is to ensure that the model is identifiable. Although Assumption 1 only bounds the
smallest eigenvalue, the largest eigenvalue of I is in fact, also upper-bounded, as we stated in later
assumptions.
Assumption 2 (Incoherence Assumption). The unchanged edges cannot exert overly strong effects
on changed edges: maxt′′∈Sc ‖It′′SI−1SS‖1 ≤ 1− α, α ∈ (0, 1], where ‖Y ‖1 =


∑
i,j ‖Y i,j‖1.


We also make the following assumptions as an analogy to those made in [7].
Assumption 3 (Smoothness Assumption on Log-normalization Function). We assume that the nor-
malization term log N̂(θ) is smooth around its optimal value and has bounded derivatives


max
δ,‖δ‖≤‖θ∗‖


∣∣∣∣∣∣∣∣∣∇2 log N̂(θ∗ + δ)
∣∣∣∣∣∣∣∣∣ ≤ λmax, (6)


max
t∈S∪Sc


max
δ,‖δ‖≤‖θ∗‖


∣∣∣∣∣∣∣∣∣∇θt
∇2 log N̂(θ∗ + δ)


∣∣∣∣∣∣∣∣∣ ≤ λ(3)max,


where |||·||| is the spectral norm of a matrix or tensor. Note that (6) also implies the bounded largest
eigenvalue of Fisher Information Matrix I, because I = ∇2`KLIEP(θ∗) = ∇2 log N̂(θ∗).


A key difference between this paper and previous proofs is that we make no explicit restrictions
on the type of distribution P and Q, as KLIEP allows us to learn changes from various dis-
crete/continuous distributions. Instead, we make the following assumptions on the density ratio:
Assumption 4 (The Correct Model Assumption). The density ratio model is correct, i.e. there exists
θ∗ such that p(x) = r(x;θ∗)q(x).


Assumption 5 (Smooth Density Ratio Model Assumption). For any vector δ ∈ Rdim(θ∗) such that
‖δ‖ ≤ ‖θ∗‖ and every t ∈ R, the following inequality holds:


Eq [exp (t (r(x,θ∗ + δ)− 1))] ≤ exp


(
10t2


d


)
,


where d is the number of changed edges.


The following main theorem establishes sufficient conditions of change detection in terms of pa-
rameter sparsity. Let’s define g(m) = log(m2+m)


(log m2+m
2 )2


which is smaller than 1 when m is reasonably


large.
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Figure 1: Rates of successful change detection versus np normalized by log m2+m
2 (a-c) and d


1
4 (d).


Theorem 1. Suppose that Assumptions 1, 2, 3, 4, and 5 as well as mint′∈S ‖θ∗t′‖ ≥ 10
λmin


√
dλnp are


satisfied, where d is the number of changed edges. Suppose also that the regularization parameter
is chosen so that


8(2− α)


α


√
M1 log m2+m


2


np
≤ λnp


≤ 4(2− α)M1


α
min


(
‖θ∗‖√
b
, 1


)
where M1 = λmaxb+ 2, and nq ≥


M2n
2
pg(m)


d , where M2 is some positive constant. Then there exist
some constants L1, K1, and K2 such that if np ≥ L1d


2 log m2+m
2 , with the probability at least


1− exp
(
−K1λ


2
np
np


)
− 4 exp


(
−K2dnqλ


4
np


)
, the following properties hold:


• Unique Solution: The solution of (5) is unique


• Successful Change Detection: Ŝ = S and Ŝc = Sc.


Note that the probability of success converges to 1 as λ2np
np → ∞ and dnqλ4np


→ ∞. The proof
follows the steps of previous support consistency proofs using primal-dual witness method [6] and
is provided in the supplementary material [4].


4 Experiments


One important consequence of Theorem 1 is that, for fixed d, the number of samples np required for
detecting the sparse changes grows with log m2+m


2 . The first set of experiments are performed on
four-neighbor lattice-structured MNs. We draw samples from a Gaussian lattice-structured MN P .
Then we remove 4 edges randomly, to construct another Gaussian MN Q. We scale dimension m


and np and let np = nq . As suggested by Theorem 1, λnp
is set to a constant factor of


√
log m2+m


2


np
.


The rate of successful change detection versus the number of samples np normalized by log m2+m
2


is plotted in Figure 1(a). It can be seen that KLIEP with different input dimensionsm tend to recover
the correct sparse change patterns immediately beyond a certain critical threshold. All curves are
well aligned around such a threshold, as Theorem 1 has predicted. We repeat the same experiment
on non-Gaussian Diamond dataset [3] and results are shown in Figure 1(b).


Finally, we evaluate the dependency between number of samples np = nq and number of changed
edges d. Our theory predicts np required for successful change detection grows with d. We again
construct Gaussian lattice-structured MNs. As we can see from Fig. 1(c), curves are well aligned,
which suggests that np scales linearly with d


1
4 .
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Abstract


An important computational tool in drug design is target prediction where either
for a given chemical structure the interacting biomolecules (e.g. proteins) must be
identified. Chemical structures interact with different biomolecules if they have
similar 3D structure. Thus, the outputs of the prediction are highly interdependent
from each other. Furthermore, we have partially labelled molecules since not all
training molecules are measured of being active on each biomolecule.
The Merck Kaggle challenge on chemical compound activity was won by Hin-
ton’s group with deep networks. This indicates the high potential of deep learning
in drug design and attracted the attention of big pharma. However, the unreal-
istically small scale of the Kaggle dataset does not allow to assess the value of
deep learning in drug target prediction if applied to in-house data of pharmaceu-
tical companies. Even a publicly available drug activity data base like ChEMBL
is magnitudes larger than the Kaggle dataset. ChEMBL has 13 M compound de-
scriptors, 1.3 M compounds, and 5 k drug targets, compared to the Kaggle dataset
with 11 k descriptors, 164 k compounds, and 15 drug targets.
On the ChEMBL database, we compared the performance of deep learning to
seven target prediction methods, including two commercial predictors, three pre-
dictors deployed by pharma, and machine learning methods that we could scale to
this dataset. Deep learning outperformed all other methods with respect to the area
under ROC curve and was significantly better than all commercial products. Deep
learning surpassed the threshold to make virtual compound screening possible and
has the potential to become a standard tool in industrial drug design.


1 Introduction


The pharmaceutical industry is currently challenged to increase the efficiency of drug development,
since every year fewer drugs reach the market [1]. Machine learning methods could exploit a wealth
of measurements that were accumulated by pharma companies and, thereby, offer Big Pharma alter-
natives.


The first step of a drug design pipeline is to identify a biomolecular target upon which a potential
drug can act, e.g. a protein whose activity can be modified by a compound to achieve a benefi-
cial therapeutic effect. Predicting these target-interactions using computational approaches is an
important tool in modern drug design.


∗These authors contributed equally to this work
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Figure 1: Hierarchical nature of fingerprint features: by combining the ECFP features we can build
reactive centers. By pooling specific reactive centers together we obtain a pharmacophore that en-
codes a specific pharmacological effect.


Applying target prediction in a realistic setting involves predicting several hundrets or thousands of
outputs at the same time, some of which might be highly correlated. The correlation stems from the
fact that some targets are structurally very similar to each other. For most targets, only have partially
labelled data is available, because compounds are typically only measured on a small set of targets.


In the Merck Kaggle challenge, Deep Learning showed promise for these kind of data. We assess the
applicability and performance of deep networks at target prediction and compare them to state-of-
the-art as well as commercial target prediction methods. Toward this goal we compiled a benchmark
data set from ChEMBL, a database which resembles in-house databases of Big Pharma, though it
still is considerably smaller. The Kaggle challenge comprised 15 targets, 164,024 compounds, and
11,081 features, while our ChEMBL benchmark contains more than 1,200 targets, 1.3 M compounds
with 13 M ECFP12 features. This dataset serves to assess not only the raw performance, but also
whether the methods scale to pharma in-house data.


Deep learning architectures seem to be well suited for target prediction because they (1) allow for
multi-task learning [2] and (2) automatically construct complex features [3], which for target pre-
diction are assumed to resemble pharmacophore descriptors. First, multiple target learning has
two advantages: (a) it naturally allows for multi-label information and therefore can utilize rela-
tions between targets; (b) it allows to share hidden unit representations among prediction tasks.
The latter item is particularly important as for some targets very few measurements are available,
therefore single target prediction may fail to construct an effective representation. In contrast, deep
networks exploit representations learned across different tasks and can boost the performance on
tasks with few training examples. Secondly, deep networks provide hierarchical representations of
a compound, where higher levels represent more complex concepts [4]. In pharmaceutical research
complex representations of compounds have a long tradition: A major goal of drug design is the
identification of pharmacophores, [5] which are the sets of steric and electronic properties that to-
gether enable an interaction with a target. These properties include hydrophobic regions, aromatic
rings, electron acceptors or donors, which in turn can be described by substructures yielding these
properties. Deep networks with ECFP12 fingerprints (chemical substructures) are ideally suited to
represent properties in their first layer and in turn form pharmacophores in higher layers, as seen
in Figure 1. The potential of deep learning is to find novel pharmacophores or representations of
comparable complexity.


2 Experiments


2.1 Dataset


We compiled a target prediction benchmark dataset out of the ChEMBL database [6], a manually
curated database of bioactivity measurements, which aims to centrally store the high-quality mea-
surements of other chemistry resources.We extracted all pharmaceutically relevant measurements
from ChEMBL. Target measurements are reported in ChEMBL as continuous values, however for a
classification task we require binary labels. We thus rely on explicit activity comments where pro-
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vided, and defined a threshold otherwise. This yielded 2,103,018 measurements distributed across
5,069 targets and 743,336 compounds. Additionally there are 415,527 measurements which exhibit
a very weak signal. These are not used for testing as their signal is no reliable but they may still
be a valuable enhancement of the training set. In order to make sure each target was realistically
learnable, we discarded all targets with less than 15 samples per label, leaving 1,230 targets.


ChEMBL stores compounds as connected graphs of atoms, which we transformed into a high-
dimensional binary representation using Extended Connectivity FingerPrints (ECFP12) [7] fea-
tures.Each feature/fingerprint denotes the presence or absence of a certain chemical substructure.
This yielded a total of 13,558,545 sparse features.


It is important that compounds which share a scaffold are not shared across training and test set, in
order to guarantee that our dataset reflects the challenges of the daily drug development reality. As
already mentioned, the value of virtual screening is determined by the ability to find new scaffolds
with target activity. Thus, we clustered compounds using single linkage clustering to guarantee a
minimal distance between training and test set. Clustering yielded 400,000 clusters which were
partitioned into three folds of approximately equal size for cross-validation.


The performance of a classifier is evaluated by the AUC (area under the ROC curve) separately for
each target. We report the mean AUC for each method.


2.2 Methods


2.2.1 Deep Neural Network


Our network consists of one or multiple layers of ReLU hidden units [8, 9], followed by one layer
of 1,230 sigmoid output units, one for each molecular target or classification task.


Using all the 7 M inputs for the deep net were infeasible on our hardware, therefore we removed
features that were present in less than 100 compounds. 43,340 input features were kept. We stored
the weight parameters on a single GPU with 12 GB RAM and used mini-batches of 1,024 samples
for stochastic gradient descent learning. Since storing our input data in dense format requires about
5 TB of disk space, we used a sparse storage format. However, it proved to be faster to upload a
mini-batch in sparse format to the GPU and then convert it to dense format instead of using sparse
matrix multiplication. Overall, training a network takes between 3 to 4 days.


2.2.2 Multi-Task Learning for Deep Networks


Each single training sample contributed only to a few of these tasks. Thus output units that were not
active during a training sample were masked out during backpropagation.


Additionally we weighted the output-layer deltas coming from each output by the number of com-
pounds that have been measured on the associated target. This ensures that across the whole training
set each target has the same amount of influence on the hidden representation.


2.2.3 Other Methods


We compare Deep Learning to the following Machine Learning methods that are used in target
prediction, namely, Support Vector Machines, Binary Kernel Discrimination [10], Logistic Regres-
sion, k-nearest neighbour. We also re-implemented the following commercial products: a Parzen-
Rosenblatt KDE-based approach [11],the Pipeline Pilot Bayesian Classifiers (a Naive Bayes statis-
tics based approach) [12] and the Similarity Ensemble Approach (SEA) [13].


2.3 Results


Table 1 shows the mean AUC values across 1,230 targets for each of the classifiers we used. The
deep neural network significantly outperformed its competitors, including two commercial methods
with respect to the area under ROC curve (AUC) averaged over the prediction tasks, i.e. targets.
Other well-established machine learning methods that could be scaled to the data set, such as SVMs,
also performed better than the commercial methods.
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Table 1: Performance of target prediction methods in terms of mean AUC across targets. The first
column gives the method, the second column the AUC value, and the third column the p-value of a
paired Wilcoxon test with the The alternative hypothesis that the deep neural network has on average
a larger AUC than the other method.


Method AUC p-value
Deep network 0.830
SVM 0.816 1.0e-07
BKD 0.803 1.9e-67
Logistic Regression 0.796 6.0e-53
k-NN 0.775 2.5e-142
Pipeline Pilot Bayesian Classifier 0.755 5.4e-116
Parzen-Rosenblatt 0.730 1.8e-153
SEA 0.699 1.8e-173


The neural net achieves an AUC ≥ 0.8 on 813 out of the 1,230 targets, or ≈ 66% of the time. The
median AUC lies at 0.8588. On 12 targets we achieve perfect prediction accuracy (AUC = 1.0). This
is in stark contrast to current commercial solutions, where the median AUC lies below 0.8. Allmost
all methods suffered from severe outliers. Of the methods that achieved an average AUC of over 0.8,
the Deep Network has the least severe outliers. We hypothesize that the network could leverage its
shared hidden representation to predict tasks which are difficult to solve when tackled in isolation.
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Abstract


This paper provides a theoretical analysis of domain adaptation based on the PAC-
Bayesian theory. We propose an improvement of the previous domain adaptation
bound obtained by Germain et al. [1] in two ways. We first give another general-
ization bound tighter and easier to interpret. Moreover, we provide a new analysis
of the constant term appearing in the bound that can be of high interest for devel-
oping new algorithmic solutions.


1 Introduction


Domain adaptation (DA) arises when the distribution generating the target data differs from the one
from which the source learning has been generated from. Classical theoretical analyses of domain
adaptation propose some generalization bounds over the expected risk of a classifier belonging to a
hypothesis class H over the target domain [2, 3, 4]. Recently, Germain et al. have given a general-
ization bound expressed as an averaging over the classifiers inH using the PAC-Bayesian theory [1].
In this paper, we derive a new PAC-Bayesian domain adaptation bound that improves the previous
result of [1]. Moreover, we provide an analysis of the constant term appearing in the bound opening
the door to design new algorithms able to control this term. The paper is organized as follows. We
introduce the classical PAC-Bayesian theory in Section 2. We present the domain adaptation bound
obtained in [1] in Section 3. Section 4 presents our new results.


2 PAC-Bayesian Setting in Supervised Learning


In the non adaptive setting, the PAC-Bayesian theory [5] offers generalization bounds (and algo-
rithms) for weighted majority votes over a set of functions, called voters. Let X ⊆ Rd be the input
space of dimension d and Y = {−1,+1} be the output space. A domain Ps is an unknown dis-
tribution over X × Y . The marginal distribution of Ps over X is denoted by Ds. Let H be a set
of n voters such that: ∀h ∈ H, h : X → Y , and let π be a prior on H. A prior is a probability
distribution onH that “models” some a priori knowledge on quality of the voters ofH.


Then, given a learning sample S = {(xi, yi)}ms
i=1 , drawn independently and identically distributed


(i.i.d.) according to the distribution Ps, the aim of the PAC-Bayesian learner is to find a posterior
distribution ρ leading to a ρ-weighted majority voteBρ overH that has the lowest possible expected
risk, i.e., the lowest probability of making an error on future examples drawn from Ds. More
precisely, the vote Bρ and its true and empirical risks are defined as follows.
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Definition 1. Let H be a set of voters. Let ρ be a distribution over H. The ρ-weighted majority
vote Bρ (sometimes called the Bayes classifier) is:


∀x ∈ X, Bρ(x)
def
= sign


[
E
h∼ρ


h(x)


]
.


The true risk of Bρ on a domain Ps and its empirical risk on a ms-sample S are respectively:


RPs
(Bρ)


def
= E


(xi,yi)∼Ps


I [Bρ(xi) 6= yi] , and RS(Bρ)
def
=


1


ms


ms∑
i=1


I [Bρ(xi) 6= yi] .


where I[a 6= b] is the 0-1 loss function returning 1 if a = b and 0 otherwise. Usual PAC-Bayesian
analyses [5, 6, 7, 8, 9] do not directly focus on the risk ofBρ, but bound the risk of the closely related
stochastic Gibbs classifier Gρ. It predicts the label of an example x by first drawing a classifier h
fromH according to ρ, and then it returns h(x). Thus, the true risk and the empirical on ams-sample
S of Gρ correspond to the expectation of the risks overH according to ρ:


RPs(Gρ)
def
= E


h∼ρ
RPs(h) = E


(xi,yi)∼Ps


E
h∼ρ


I [h(xi) 6= yi] ,


and RS(Gρ)
def
= E


h∼ρ
RS(h) =


1


ms


ms∑
i=1


E
h∼ρ


I [h(xi) 6= yi] .


Note that it is well-known in the PAC-Bayesian literature that the risk of the deterministic classi-
fier Bρ and the risk of the stochastic classifier Gρ are related by RPs


(Bρ) ≤ 2RPs
(Gρ).


3 PAC-Bayesian Domain Adaptation of the Gibbs classifier


Throughout the rest of this paper, we consider the PAC-Bayesian DA setting introduced by Germain
et al. [1]. The main difference between supervised learning and DA is that we have two different
domains over X ×Y : the source domain Ps and the target domain Pt (Ds and Dt are the respective
marginals over X). The aim is then to learn a good model on the target domain Pt knowing that we
only have label information from the source domain Ps. Concretely, in the setting described in [1],
we have a labeled source sample S = {(xi, yi)}ms


j=1 , drawn i.i.d. from Ps and a target unlabeled
sample T = {xj}mt


j=1 , drawn i.i.d. from Dt. One thus desires to learn from S and T a weighted
majority vote with the lowest possible expected risk on the target domain RPt


(Bρ), i.e., with good
generalization guarantees on Pt. Recalling that usual PAC-Bayesian generalization bound study the
risk of the Gibbs classifier, Germain et al. [1] have done an analysis of its target riskRPt


(Gρ), which
also relies on the notion of disagreement between the voters:


RD(h, h′)
def
= E


x∼D
I[h(x) 6= h′(x)] . (1)


Their main result is the following theorem.
Theorem 1 (Theorem 4 of [1]). LetH be a set of voters. For every distribution ρ overH, we have:


RPt
(Gρ) ≤ RPs


(Gρ) + disρ(Ds, Dt) + λρ,ρ∗T , (2)


where disρ(Ds, Dt) is the domain disagreement between the marginals Ds and Dt,


disρ(Ds, Dt)
def
=


∣∣∣∣ E
(h,h′)∼ρ2


(RDs(h, h′)−RDt(h, h
′))


∣∣∣∣ , (3)


with ρ2(h, h′) = ρ(h)× ρ(h′) , and λρ,ρ∗T = RPt
(Gρ∗T ) + RDt


(Gρ, Gρ∗T ) + RDs
(Gρ, Gρ∗T ) ,


where ρ∗T = argminρ RPt(Gρ) is the best distribution on the target domain.


Note that this bound reflects the usual philosophy in DA: It is well known that a favorable situation
for DA arrives when the divergence between the domains is small while achieving good source per-
formance [2, 3, 4]. Germain et al. [1] have then derived a first promising algorithm called PBDA for
minimizing this trade-off between source risk and domain disagreement.
Note that Germain et al. [1] also showed that, for a given hypothesis class H, the domain disagree-
ment of Equation (3) is always smaller than theH∆H-distance of Ben-David et al. [2, 3] defined by
1
2 sup(h,h′)∈H2 |RDt(h, h


′)−RDs(h, h′)|.
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4 New Results


4.1 Improvement of Theorem 1


First, we introduce the notion of expected joint error of a pair of classifiers (h, h′) drawn according
to the distribution ρ, defined as


ePs(Gρ, Gρ)
def
= E


(h,h′)∼ρ2
E


(x,y)∼Ps


I[h(x) 6= y]× I[h′(x) 6= y] . (4)


Thm 2 below relies on the domain disagreement of Eq. (1), and on expected joint error of Eq. (4).
Theorem 2. LetH be a hypothesis class. We have


∀ρ onH, RPt(Gρ) ≤ RPs(Gρ) +
1


2
disρ(Ds, Dt) + λρ , (5)


where λρ is the deviation between the expected joint errors of Gρ on the target and source domains:


λρ
def
=


∣∣∣ ePt(Gρ, Gρ)− ePs(Gρ, Gρ)
∣∣∣ .


Proof. First, note that for any distribution P onX×Y , with marginal distributionD onX , we have


RP (Gρ) =
1


2
RD(Gρ, Gρ) + eP (Gρ, Gρ) ,


as 2RP (Gρ) = E
(h,h′)∼ρ2


E
(x,y)∼P


(
I[h(x) 6= y] + I[h′(x) 6= y]


)
= E


(h,h′)∼ρ2
E


(x,y)∼P


(
1× I[h(x) 6= h′(x)] + 2× I[h(x) 6= y] I[h′(x) 6= y]


)
= RD(Gρ, Gρ) + 2× eP (Gρ, Gρ) .


Therefore,


RPt
(Gρ)−RPs


(Gρ) =
1


2


(
RDt


(Gρ, Gρ)−RDs
(Gρ, Gρ)


)
+
(
ePt


(Gρ, Gρ)− ePs
(Gρ, Gρ)


)
≤ 1


2


∣∣∣RDt
(Gρ, Gρ)−RDs


(Gρ, Gρ)
∣∣∣+
∣∣∣ePt


(Gρ, Gρ)− ePs
(Gρ, Gρ)


∣∣∣
=


1


2
disρ(Ds, Dt) + λρ .


The improvement of Theorem 2 over Theorem 1 relies on two main points. On the one hand, our
new result contains only the half of disρ(Ds, Dt). On the other hand, contrary to λρ,ρ∗


T
of Eq. (2),


the term λρ of Eq. (5) does not depend anymore on the best ρ∗T on the target domain. This implies
that our new bound is not degenerated when the two distributions Ps and Pt are equal (or very close).
Conversely, when Ps = Pt, the bound of Theorem 1 gives


RPt(Gρ) ≤ RPt(Gρ) +RPt(Gρ∗T ) + 2RDt(Gρ, Gρ∗T ) ,


which is at least 2RPt(Gρ∗T ). Moreover, the term 2RDt(Gρ, Gρ∗T ) is greater than zero for any ρ
when the support of ρ and ρ∗T inH is constituted of at least two different classifiers.


4.2 A New PAC-Bayesian Bound


Note that the improvements introduced by Theorem 2 do not change the form and the philosophy of
the PAC-Bayesian theorems previously presented by Germain et al. [1]. Indeed, following the same
proof technique, we obtain the following PAC-Bayesian domain adaption bound.
Theorem 3. For any domains Ps and Pt (resp. with marginals Ds and Dt) over X × Y , any set of
hypothesis H, any prior distribution π over H, any δ ∈ (0, 1], any real numbers α > 0 and c > 0,
with a probability at least 1 − δ over the choice of S × T ∼ (Ps × DT )m, for every posterior
distribution ρ onH, we have


RPt
(Gρ) ≤ c′RS(Gρ) + α′ 12 disρ(S, T ) +


(
c′


c
+
α′


α


)
KL(ρ‖π) + ln 3


δ


m
+ λρ + 1


2 (α′−1) ,


where λρ is defined by Eq. (6), and where c′
def
=


c


1− e−c
, and α′


def
=


2α


1− e−2α
.
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4.3 On the Estimation of the Unknown Term λρ


The next proposition gives an upper bound on the term λρ of Theorems 2 and 3.
Proposition 4. LetH be the hypothesis space. If we suppose that Ps and Pt share the same support,
then


∀ρ onH, λρ ≤
√
χ2
(
Pt‖Ps


)
ePs


(Gρ, Gρ) ,


where ePs
(Gρ, Gρ) is the expected joint error on the source distribution, as defined by Eq. (4), and


χ2
(
Pt‖Ps


)
is the chi-squared divergence between the target and the source distributions.


Proof. Supposing that Pt and Ps have the same support, then we can upper bound λρ using Cauchy-
Schwarz inequality to obtain line 4 from line 3.


λρ =


∣∣∣∣ E
(h,h′)∼ρ2


[
E


(x,y)∼Pt


I[h(x) 6= y] I[h′(x) 6= y]− E
(x,y)∼Ps


I[h(x) 6= y] I[h′(x) 6= y]


]∣∣∣∣
=


∣∣∣∣ E
(h,h′)∼ρ2


[
E


(x,y)∼Ps


Pt(x, y)


Ps(x, y)
I[h(x) 6= y] I[h′(x) 6= y]− E


(x,y)∼Ps


I[h(x) 6= y] I[h′(x) 6= y]


]∣∣∣∣
=


∣∣∣∣ E
(h,h′)∼ρ2


E
(x,y)∼Ps


(
Pt(x, y)


Ps(x, y)
− 1


)
I[h(x) 6= y] I[h′(x) 6= y]


∣∣∣∣
≤


√
E


(x,y)∼Ps


(
Pt(x, y)


Ps(x, y)
− 1


)2


×
√


E
(h,h′)∼ρ2


E
(x,y)∼Ps


(I[h(x) 6= y] I[h′(x) 6= y])
2


≤


√
E


(x,y)∼Ps


(
Pt(x, y)


Ps(x, y)
− 1


)2


× E
(h,h′)∼ρ2


E
(x,y)∼Ps


I[h(x) 6= y] I[h′(x) 6= y]


=


√
E


(x,y)∼Ps


(
Pt(x, y)


Ps(x, y)
− 1


)2


× ePs
(Gρ, Gρ) =


√
χ2
(
Pt‖Ps


)
ePs


(Gρ, Gρ) .


This result indicates that λρ can be controlled by the term ePs , which can be estimated from samples,
and the chi-squared divergence between the two distributions that we could try to estimate in an
unsupervised way or, maybe more appropriately, use as a constant to tune, expressing a tradeoff
between the two distributions. This opens the door to derive new learning algorithms for domain
adaptation with the hope of controlling in part some negative transfer.
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Abstract
Domain adaptation techniques aim at adapting a classifier learnt on a source do-
main to work on the target domain. Exploiting the subspaces spanned by features
of the source and target domains respectively is one approach that has been inves-
tigated towards solving this problem. These techniques normally assume the ex-
istence of a single subspace for the entire source / target domain. In this work, we
consider the hierarchical organization of the data and consider multiple subspaces
for the source and target domain based on the hierarchy. We evaluate different
subspace based domain adaptation techniques under this setting and observe that
using different subspaces based on the hierarchy yields consistent improvement
over a non-hierarchical baseline.


1 Introduction
While evaluating unseen test instances on a classifier trained over a set of labelled training instances,
there is a standard assumption that test instances and training instances follow the same distribution.
However, many real world scenarios violate this assumption. Think of a case where someone wants
to classify the images taken with his low quality phone camera for which he doesn’t have labels
available. Can the person classify those images using the classifier which was trained on some
publicly available dataset like ImageNet or Flickr ? The obvious answer is no. Many studies have
shown that if the test instances are not sampled from the same distribution as the training instances
then the performance of the classifier significantly diminishes [4, 14, 15]. This problem of domain
shift is also extensively studied in the field of natural language processing and speech processing
[6, 7]. To address this challenge, methods have been suggested to adapt a domain (Source Domain)
with respect to the other domain (Target Domain) so that a classifier trained on Source Domain data
also contains the property of Target Domain data. One can distinguish two settings in the domain
adaptation literature: (1) the unsupervised setting when the target domain is completely unlabeled
and (2) the semi-supervised setting when the target domain is partially labeled. In both settings, the
source domain is fully labelled. In this work we focus on the unsupervised setting that is more chal-
lenging one. A promising line of work to solve this problem is by subspace based domain adaptation
[1, 2, 3]. However, none of the above approaches takes the semantic (dis)similarity of the category
classes into account. Classes which are semantically similar have a very different distribution than
classes which are semantically different. Based on this observation, we advocate that it’s better to
align the subspaces separately rather than considering the whole target data distribution at once.
To address this challenge we propose a new method of step-wise subspace alignment for domain
adaptation. Step-wise subspace alignment here indicates that we first align the subspaces for a set
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of larger clusters or group of semantically similar categories and then for the categories within the
clusters.
We evaluate the effectiveness of proposed approach on a standard dataset having classes arranged
according to their semantics in the hierarchy. However, the proposed approach can also be effective
for the case when the hierarchy is not available. In such scenario similar categories can be clustered
together in unsupervised way.


2 Related Work
As mentioned in section 1 domain adaptation is widely studied in many fields including Natural
Language Processing, Speech Processing and Computer Vision [4, 6, 9]. A survey on recent ad-
vances in domain adaptation in natural language processing and computer vision can be found in
[5, 8, 13]. Subspace based approaches are most popular for solving the visual domain shift problem
[1, 2, 3]. The same principal lies behind these approaches. They first determine separate subspaces
for source and target data and then project the data onto these subspaces and/or a set of intermediate
sampled subspaces with the aim of making the feature point domain invariant. In [3], a method is
proposed to sample subspaces along the geodesic between source and target subspace on the Grass-
mann manifold. Once sampling is done then features are projected onto those sampled subspaces
and a classifier is trained on the projected features. In [2], the geodesic flow kernel is proposed to
capture the incremental details in subspaces between source and target subspace along the geodesic.
Instead of using intermediate subspaces, [1] proposes to learn a transformation to directly align the
source subspace to the target subspace.


Only few works have looked at the use of hierarchies in the context of domain adaptation. In [10],
Nguyen et al. propose to adapt a hierarchy of features to exploit the richness of visual data. The
intent behind this work is similar to our work, in that semantic closeness and context information
are exploited to boost domain adaptation performance. Taking this idea forward a recent work
on hierarchical adaptive structural SVM for domain adaptation has been proposed in [11]. They
organize multiple target domains into a hierarchical structure (tree) and adapt the source model to
them jointly. Others have used statistical methods for hierarchical domain adaptation, e.g. in [12] a
hierarchical Bayesian prior is used to solve the domain shift problem in natural language and speech
processing. However, the previous works have assumed a single common subspace between source
and target, while our approach makes use of the hierarchical structure among the different classes to
learn separate subspaces.


3 Background
The proposed approach builds up on the previously proposed subspace based methods [1, 2, 3]. One
could learn the domain shift between source and target data on the original features itself. However
this would be sub-optimal and involve significantly modifying the classifiers. Therefore, it is more
common to learn it on a more robust representation of the data by first selecting d dominating
eigenvectors obtained using principal component analysis. These d eigenvectors work as the basis
vectors for the source and target subspaces. The source and target features are then projected on the
subspaces. Two recently proposed state-of-the-art subspace based domain adaptation methods [1, 2]
used in this paper are discussed in 3.1 and 3.2


3.1 Subspace Alignment
Subspace alignment based domain adaptation method consists of learning a transformation matrix
M that maps the source subspace to the target one [1]. The mathematical formulation to this problem
is given by


F (M) = ‖XSM −XT ‖2F M∗ = argmin
M


(F (M)). (1)


Xs and Xt are matrices containing the d most important eigenvectors for source and target respec-
tively. M is a transformation matrix from the source subspace XS to target subspace XT and ‖.‖F
is the Frobenius norm. The solution of eq. 1 isM∗ = X ′SXT and hence for the target aligned source
coordinate system we get Xa = XSX


′
SXT .


3.2 Geodesic Flow Kernel
The geodesic flow kernel based domain adaptation method constructs an infinite-dimensional feature
space that carries the information of incremental change from source to target domain data [2]. A key
step in this method is to determine the geodesic curve between the two subspaces and to construct
the geodesic flow kernel. If XS and XT are source and target subspaces having the same dimension
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then these two subspaces are separate points on a Grassmann manifold which is also a Riemannian
Manifold. LetRS be the orthogonal complement toXS . From the property of Riemannian Manifold,
flow from XS towards XT can be calculated as:


φ(t) = XSU1Γ(t)−RSU2Σ(t) where XT
SXT = U1ΓV T , RT


SXT = −U2ΣV T .


Based on the decomposition of the source subspace XS and its orthogonal complement RS , we can
obtain a geodesic flow kernel matrix G that is given by


[ G ] = [ PSU1 RSU2 ]


[
Λ1 Λ2


Λ2 Λ3


] [
UT
1 P


T
S


UT
2 R


T
S


]
where Λs are diagonal matrices that depend on


the principal angles.


Once we obtain the geodesic flow matrix G, we can relate labeled samples xi from the source
subspace Xi and unlabeled samples xj from the target subspace Xj by using the distance metric
xTi [G]xj .


4 Our Approach
In this section we describe how the methods explained in section 3 are adapted for hierarchical
domain adaptation. Instead of using the same subspace throughout, we postulate that better results
can be obtained by using different subspaces for different levels of the hierarchy. Indeed, the more
specific subspaces spanned by instances of categories of a certain branch of our tree (corresponding
to similar categories), can be expected to better fit the data and therefore better model the domain
shift. For the source domain, these subspaces can easily be obtained. For the target domain, however,
no class labels are available as we are working in the unsupervised setting. Therefore, the exact
subspaces cannot be computed. We circumvent this problem by first predicting the parent class
label for each instance, using the global subspaces and applying domain adaptation at the level of
the root node. We then use these predicted parent class labels to compute the next level of subspaces.
This results in a two step approach, as summarized in the algorithm below. In hierarchical subspace


Algorithm 1 Subspace Based Hierarchical Domain Adaptation


1: procedure HIERARCHICAL DOMAIN ADAPTATION(Source Data S,Target Data T)
2: XSroot


← PCA(S) and XTroot
← PCA(T )


3: SubspaceAlign(XSroot
, XTroot


) or GFK(XSroot
, XTroot


)
4: ClassifyParent(Target Data T)
5: i← 0
6: while i < No. of Parents do
7: XSi


← PCA(Si) . Sis are labeled data points (from ith parent)
8: XTi ← PCA(Ti) . Tis are data points classified as ith parent by the root classifier
9: SubspaceAlign(XSi , XTi) or GFK(XSi , XTi)


10: ClassifyChild(Target Data Ti)
11: return Accuracy


alignment we learn different metric M at different levels of hierarchy independently. Without loss
of generality, we consider here hierarchies with only two levels, i.e. composed of a root node, a
set of parent nodes (each corresponding to a set of similar categories) and a set of child nodes or
leaf nodes (corresponding to the different categories). Hence the mathematical formulation of our
approach is governed by eq. 2 and 3.


F (Mroot) = ‖XSroot
Mroot −XTroot


‖2F M∗root = argmin
Mroot


(F (Mroot)) (2)


∀i ∈ parent, F (Mi) = ‖XSiMi −XTi‖2F M∗i = argmin
Mi


(F (Mi)) (3)


Here M∗root is the transformation matrix learned at the topmost level of hierarchy to differentiate
between the parents. Each parent category consists of several similar child categories. XSroot and
XTroot are the source and target subspaces considering all the source and target data. M∗i is the
transformation matrix learned at the second level of hierarchy to distinguish between the children of
parent i. XSi and XTi are source and target subspaces for categories that belong to parent i. Hence
XSi


and XTi
are obtained using only the data points that belong to a child category of parent i.


Solutions of the eq. 2 and 3 are similar to eq. 1.


In hierarchical geodesic flow kernel we compute different kernel matrices at different levels of hier-
archy for categorization at a specific level. For classifying between the parent classes, kernel matrix
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(a) Penguin cal-
tech 256


(b) Penguin bing
caltech


(c) Bear caltech
256


(d) Bear bing
caltech


(e) Conch cal-
tech 256


(f) Conch bing
caltech


Figure 1: Image samples taken from caltech-256 and bing caltech to show domain shift


Groot is computed considering the source and target subspaces generated by all the data. For classi-
fying between the children of a specific parent category i we compute kernel matrix Gi considering
the subspace obtained from the children classes of parent i. Similarity between two data points
depends on the hierarchy level at which prediction is performed.
5 Experiments
In this section we evaluate our results on a part of hierarchy taken from the caltech-256 and
bing-caltech [17, 18]. We show our experimental results on the animal hierarchy consisting of
the following three parent nodes: aquatic, terrestrial and avian animals and each parent consists
of several child categories. For each image in the dataset we compute 4096− dimensional
convolutional neural network based features obtained using Decaf [16] by first resizing the full
image to the desired input size. Note that the dataset has not been augmented with any virtual
examples by flipping or random cropping. In this paper we have used K-NN as our classifier as this
has also been similarly used in [1, 2]. The rank of the domain is decided using the procedure given
in [2] and based on this procedure we fix the dimensionality of the subspaces for both root and
parent subspaces as 53. We first show the result without applying any domain adaptation algorithm
on the source and target data to show that there exists a non-negligible domain shift between these
two datasets. This is shown in table 1 in column “Base Accuracy”. The results in table 1 show
that the hierarchy based subspace alignment consistently improves the results. We also evaluate the
similarity between subspaces of source and target domain by taking dot product (trace(A′ ∗ B)) at
various levels of hierarchy to analyse our approach. This result is provided in table 2. As can be
seen from the table 2, the maximum similarity is observed to be between the relevant subspaces in
source and target. The low values we obtain off the main diagonal indicate the subspaces for the
different parent nodes are quite different from one another and different from the root subspace.


Base Accuracy AccuracySource Dataset Target Dataset Method
Accuracy (without Hierarchy) (with Hierarchy)


Caltech-256 Caltech-Bing GFK 24.41 39.96 40.41
Caltech-Bing Caltech-256 GFK 21.11 45.23 49.67
Caltech-256 Caltech-Bing SA 24.41 39.24 40.78
Caltech-Bing Caltech-256 SA 21.11 44.12 48.36


Table 1: Result for hierarchical domain adaptation on animal hierarchy of caltech-256 and bing-
caltech. Here GFK represents Geodesic flow kernel and SA represents subspace alignment


Root(Target) Avian(Target) Terrestrial(Target) Aquatic(Target)
Root(Source) 3.96 1.35 0.26 2.05
Avian(Source) 3.11 3.74 -0.10 0.18
Terrestrial(Source) 1.44 2.62 3.92 0.76
Aquatic(Source) 1.22 0.43 1.42 3.16


Table 2: Similarity Matrix for Source Subspace and Target Subspace considering each Hierarchy
level separately. Here caltech-256 is considered as source and bing-caltech as target.
6 Conclusion
In this paper, we have considered a hierarchical subspace based domain adaptation approach. Based
on the evaluation we observe that considering different domain adaptation subspaces specific to the
individual category level can indeed aid the domain adaptation. In future, we would like to evaluate
the effect of restricting the subspaces to groups of classes which need not be obtained strictly based
on hierarchy which would generalize the approach to any source and target domains that are not
hierarchically labeled.
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Abstract


Current learning-based brain tumor classification methods show good perfor-
mance but require large datasets of manually annotated training examples. Since
image acquisition hardware and setup vary from clinic to clinic, training has to be
repeated and the required time-consuming labeling effort limits a wider applicabil-
ity of these approaches in clinical routine. We propose an approach that allows la-
belling of only small and unabiguous parts of the training data. Domain adaptation
is applied to correct for the induced sampling error. We validated our approach
using multimodal MR-scans of 19 patients and showed that our approach reduces
the labeling time significantly while giving results that closely match those from a
fully annotated training set. This is an important step towards bringing automatic
tumor segmentation into clinical routine.


1 Introduction


Manual segmentation of tumors in the context of treatment planning or therapy control is time-
consuming and error-prone. It often requires the simultaneous consideration of complex imaging
features and partial volume effects (blurry and unclear borders) in multiple 3D images. Mazzara
et al., for example, reported that it takes between 20 min and 1 hour to label a 3D-MR-scan that
contains a malignant glioma – the most common primary brain tumor [1]. They also reported an
intra-rater and inter-rater volume variability of 20 ± 15% and 28 ± 12% respectively. Menze et
al. reported that they needed about 4 hour to label a single training patient [2]. An automated
segmentation can reduce the work-load while giving more consistent segmentations [1].


Automated machine learning-based methods were previously shown to successfully learn glioma ap-
pearance from training databases [3–8]. The tumor in new images is then segmented by predicting
the label of each voxel separately. This step integrates multiple sources of information such as dif-
ferent modalities (e.g. different magnetic resonance imaging (MRI)-protocols which are commonly
available in clinical routine), derived features, or brain atlas-based information.


One common drawback of these approaches is that the training and labelling has to be repeated
if the clinical setup changes. MRI-images have a high variability depending on the scanner type,
sequence, and configuration, so for optimal performance each clinic has to create a unique training
base reflecting their setting. The above mentioned problems of this tedious process often render
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(a) (b) (c)


Figure 1: a: An exemplary slice of a T1w-MR image of the brain of a patient with glioma tumor. b:
The corresponding slice of a T2-Flair image. The tumor is outlined in yellow. c: The T2-Flair with
the small segmentations. Green is healthy - red, blue and yellow are tumor. Note that border regions
are included in all labels.


learning-based methods inadequate for clinical use. To alleviate these problems, Verma et al. [9]
avoided full manual segmentations and learned from nearly complete segmentations excluding am-
biguous areas. We hypothesize that this introduces a domain adaption problem since the test and
train data are generated from different distributions. In this work, we also exclusively label nonam-
biguous regions in only small fractions of the data. We correct the resulting sampling selection bias
using a domain adaptation technique that assumes a covariate shift.


2 Method


Labeling only small parts of the image leads to a sampling bias. Some areas are over-represented
while others are under-represented. This is true for the tissue classes as well as for the feature
distribution. We assume that the small segmentations are representative for the labels, i.e. the
likelihood P for a label y and a given feature vector x was assumed to be the same in the complete
and the small segmentation. Only the likelihoods for given feature vectors were assumed to be
different:


PSmall(y | x) = PComplete(y | x)
PSmall(x) 6= PComplete(x) .


We therefore assumed a covariate shift within the training data and corrected it by weighting all
samples as suggested by Shimodaira [10] with


w(x) =


(
PComplete(x)


PSmall(x)


)λ
.


There are several ways to estimate the correction factor w. Since the tissue appearance is learned
voxel-wise the training-base is rather large. A single 3D-MR scan contains usually more than
100.000 voxels. We decided to use a logistic regression classifier (LRC) to calculate w because
it was previously successfully used [11] and we found that it works fast on large data sets. We
trained a LRC that predicts if a voxel is in the complete or the small segmentation. According to
Sugiyama and Kawanabe [12] w can be estimated with the trained LRC-parameters θ(x) by


w(x) = (c · exp (θ(x)))λ .


We calculated the voxel-weights for each image separately instead for all images at once. This is
important since the tissue appearance differs greatly between different MR images. Consequently
we set c = 1. The sum of all weights for a single image match the number of voxels instead of
the number of voxels from the small segmentation as it would be if we used c from [12]. This is


2







important in order to ensure that size of the small segmentation does not influence the importance
of an image during training. We set λ = 1 as we found this to give the best result.


For the classifier we chose random forests since they have previously shown good performance in
brain tumor segmentation [3, 4]. The noise sensitivity was reduced by limiting the tree depth as
suggested in [13] and the weights were incorporated by extending the Gini Impurity. Instead of
estimating the label probability by the number of elements with this label the sum of all weights
corresponding to this label is used:


I(V ) = 1−
∑
yc∈Y


 1∑
wi
·
∑
yj=yc


wj


2


.


3 Experiments and Results


The evaluation of the proposed method was carried out using 19 patients with malignant gliomas.
Each patient had 16 different MR images, including T1 with contrast enhancement, T2, T2 Flair,
and MR-Diffusion-tensor-imaging derived maps. The feature vector of a voxel contains the intensity
of the 16 images at the corresponding positions after a MR histogram normalization step.


Trained experts created both, a complete tumor segmentation with two classes (healthy and tumor-
ous) and small segmentations with 5 classes (fluid, healthy brain, edema, active tumor, and necrosis).
They performed multiple refinement steps for the full segmentation to increase the quality of these
segmentations. To compare the results we fused the 5 labels of the small segmentations into two
labels which match those of the full segmentations.


Contrary to a complete segmentation for which all slices (usually between 40 and 50) of an image
are labeled, the small segmentations are usually located only in a single slice. (The labeled regions
within these slices is small.) The small regions were drawn in locations that the expert evaluated as
being representative. Figure 1 shows an example of both a complete- and a set of small segmenta-
tions.


Using these segmentations, we ran leave-one-out experiments. Excluding one patient from the train-
ing base we trained 3 different classifiers using the remaining 18 patients. The first two classifiers
are based on the small segmentations - one with and one without domain adaptation. The third clas-
sifier is based on 0.5% random samples from the complete segmentations which is roughly the area
covered by the small segmentations.


3.1 Timing analysis


The time required for the different steps is listed Table 1. It shows a significant reduction of the time
necessary for the creation of the training base. Since it takes less than 5 minutes to generate the
labels for a single patient it is possible to label all patients within 2 hours. Thus, a radiologist may
label patients prospectively during daily routine. This allows for a continuous growth of the training
base and fast adaptation to changes in the imaging protocol.


Table 1: Durations of different tasks


Method Labeling Training Prediction


Small Seg. < 5 min 12.4± 1.1 sec 45.7± 4.3 sec
Small Seg. with DA < 5 min 63.8± 14.4 sec 74.4± 8.3 sec
Complete > 240 min 46.9± 1.1 sec 149.3.4± 16.3 sec


The training time is minimal if small segmentations are used and no DA is performed during the
training. Due to the estimation of w, the training takes significantly longer if DA is used. Since the
training is fully automated this is usually not a problem. It is also worth noting that the prediction
times for the small segmentation based classifiers are only half of those of the complete segmentation
based classifiers. This is important for interactive applications where a fast response is important.
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3.2 Quality analysis


The evaluation of the produced predictions is based on the DICE-score [14]. The prediction for
each patient is compared to the manually created complete segmentation and the results are given
in Fig. 2. Compared to a complete segmentation trained classifier the small segmentation trained
classifier shows a significant1 (p = .008) drop in the segmentation quality. We think that there are
two reasons for this drop. First the small segmentations contain less information than the complete
segmentation, therefore the classifier is less general. A second reason for this drop is the sampling
bias within the training data.
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Figure 2: Leave-one-out results of the classifier trained on 3 different training bases. The DICE
score is calculated against the manually created complete segmentation.


As expected the correction of the sampling bias improves the results. A classifier with DA gives sig-
nificantly (p = .015) better results than one trained without domain adaptation. The DA results are
comparable to the results obtained from a classifier trained on the whole segmentation. There is no
significant (p = .10) difference between the two results although the complete segmentation-trained
classifier seems to have a better generalization. This difference could be reduced by adding more
patients to the training base, which is now much easier than extending the complete segmentation
training base.


4 Conclusion


We showed that domain adaptation allows training classifiers for tumor segmentation on partially
labeled data. It reduces the sampling error made during the creation of the training base and the
so-trained classifiers perform similar to classifier trained with complete segmentations. This is an
important step towards including automatic brain tumor segmentation in clinical routine since it
allows creating a custom training base in reasonable time. Further research needs to evaluate the
choice of the weight estimation algorithm and to validate the effect of an extended training base on
small segmentation-trained classifier.
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