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Abstract. We consider some very simple examples of SL(2, R)-cocycles and

prove that they have positive Lyapunov exponents. These cocycles form an open

set in the C1 topology.

Let f : (X, m) 	 be a measure preserving transformation of a probability

space, and let A : X → SL(2, R). With a slight abuse of language we call A

an SL(2, R)-cocycle over the dynamical system (f, m). Let λ1 ≥ λ2 denote the

Lyapunov exponents of (f, m; A). We are interested in whether or not (f, m; A)

has nonzero Lyapunov exponents, or equivalently, whether or not λ1 > 0 a.e.

Because norms of matrices are sub-multiplicative, the problem of estimating λ1

from below is in general a rather difficult one.

This note is an attempt to add to the existing pool of techniques for proving

positive exponents. We consider some very simple cocycles defined over z 7→
zN , z ∈ S1, or automorphisms of the 2-torus, and give a positive lower bound

for λ1. These examples can be made Cr for any r ≤ ω. If C1(X, SL(2, R))

denotes the space of C1 maps from S1 or T
2 to SL(2, R) endowed with the C1

topology, then our examples fill up an open set in C1(X, SL(2, R)) – although

none of them is uniformly hyperbolic.

This openness part of our assertion should probably be contrasted with a

theorem of Mañé [M], in which he proves that away from Anosov components,

the generic C1 area-preserving diffeomorphism of a compact 2-dimensional sur-

face has zero exponents a.e. Since x 7→ Dfx is a C0 cocycle if f is C1, Mañé’s

methods suggest that in our setting, the set of non-uniformly hyperbolic A’s

form a first category set in C0(X, SL(2, R)).
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Other known examples of nonuniformly hyperbolic cocycles include iid se-

quences of random matrices (see [F]), matrices arising from Schrödinger oper-

ators (see e.g. [S]), examples of Herman [H] (see also [K] and [SS]), derivative

cocycles of systems with invariant cones (see e.g. [W]), and derivative cocycles

of mappings such as the Hénon mappings (see [BC] and [BY]), etc. Our meth-

ods in this paper have some similarity with those in [LY], where we show that

Lyapunov exponents are robust under certain stochastic perturbations.

§1 Description of cocycles and statements of results

Perhaps the simplest dynamical system over which to carry out our construc-

tion is an expanding map of the circle, so let us first discuss that case. We

identify S1 ∼= R/Z. Let f : S1 	 be defined by fx = Nx mod 1 where N is a

fixed integer ≥ 2, and let m denote the Lebesgue measure on S1.

We fix λ ≥
√

N + 1, and let β = β(λ) be a small positive number to be

specified later. For ε > 0 we define a cocycle Aε : S1 → SL(2, R) as follows: Let

Jε ⊂ S1 be an interval, and let ϕε : S1 → R/2πR be a C1 function such that

(1) ϕε ≡ 0 outside of Jε;

(2) on Jε, ϕε increases monotonically from 0 to 2π;

and (3) on ϕ−1
ε [β, 2π − β], ϕ′

ε ≥ 1
ε
.

Our cocyle Aε is then defined to be

Aε(x) =

(

λ 0
0 1

λ

)

◦ Rϕε(x)

where Rθ denotes rotation by angle θ.

We claim that for sufficiently small ε > 0, (f, m; Aε) has a positive Lyapunov

exponent m-a.e. We further claim that for each sufficiently small ε, there is a

neighborhood Nε of Aε in C1(S1, SL(2, R)) s.t. for all B ∈ Nε, (f, m; B) also

has a positive Lyapunov exponent. These claims will be proved in section 2. It
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will be clear from our estimates that there is in fact a uniform lower bound for

the positive exponents of all the cocycles in each Nε.

It remains for us to argue that our cocycles can be chosen to be not uni-

formly hyperbolic. Let us define what “uniformly hyperbolic” means, for this

is not completely standard for non-invertible maps. For A : S1 → SL(2, R),

write An(x) = A(fn−1x) · · ·A(x), and define sn(x) := min|v|=1 |An(x)v| for

n = 1, 2, . . . . We say that (f, A) is uniformly hyperbolic if there is C > 0 and

τ ∈ (0, 1) s.t. ∀x ∈ S1, sn(x) ≤ Cτn ∀n ∈ Z
+.

We mention two different ways to guarantee that our cocycles in Nε are not

uniformly hyperbolic. One is to arrange for B(0) to have a complex eigenvalue

for all B ∈ Nε. (Note that 0 ∈ S1 is a fixed point of f .) For given λ this is

easily done by choosing ϕε(0) sufficiently near π
2 .

One could also ensure nonuniform hyperbolicity by a global argument. Ob-

serve first that if a cocycle (f, A) is uniformly hyperbolic, then at each x there

is a 1-dimensional subspace Es(x) ⊂ R
2 with the property that x 7→ Es(x)

is continuous and A(x)Es(x) = Es(fx). To see this let Es
n(x) be the 1-d

subspace of R
2 most contracted by An(x). Then x 7→ Es

n(x) is continuous

and Es
n converges uniformly to some Es as n → ∞. (See e.g. Ruelle’s proof

of Oseledec’s Theorem [R]). The invariance of Es follows from the fact that

∠(A(x)Es
n(x), Es

n−1(fx)) → 0.

Returning now to our example Aε, let Fε : S1×P
1 	 be the projectivization of

the second coordinate of the map (x, v) 7→ (fx, Aε(x)v). If (f, Aε) is uniformly

hyperbolic, let αε be the curve in S1 × P
1 corresponding to x 7→ Es(x), and let

k be the number of times αε winds around P
1. Since Fε(αε) = N ·αε, it follows

that k + 2 = Nk, which is impossible if N is chosen > 3.

§2 Proofs of Main Results

We assume in this section that ε > 0 is sufficiently small and is fixed through-
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out, and that B : S1 → SL(2, R) is sufficiently near Aε in the C1 metric – how

small ε has to be and how near B must be to Aε will be determined along the

way. The goal of this section is to show that (f, m; B) has a positive Lyapunov

exponent.

2.1 Preliminaries

We view B as B0 ◦ Rϕε
, where B0 : S1 → SL(2, R) is defined by

B0(x) := B(x) ◦ R−ϕε(x).

Let A0 ≡
(

λ 0
0 1

λ

)

be the constant cocycle over (f, m). Since Aε(x)◦R−ϕε(x) =

A0, B0 is C1 very near A0.

We fix some notation that will be used throughout. The 1-dimensional pro-

jective space P
1 is identified with R/πR, with 0 corresponding to the horizon-

tal direction. For v ∈ R
2, let v̄ ∈ P

1 denote the projectivization of v. For

A ∈ SL(2, R), let Ā : P
1 	 be the projectivization of A. Note that if DĀ de-

notes the derivative of Ā, then |DĀ(v̄)| =
(

|Av|
|v|

)−2

. Define FB : S1 × P
1 	

by

FB(x, θ) = (fx, B(x)θ),

and think of FB = F0◦Φε where Φε(x, θ) = (x, θ+ϕε(x) mod π) and F0(x, θ) =

(fx, B0(x)θ). For v ∈ R
2 or T(x,θ)S

1 × P
1, let s(v) denote the slope of v.

Lemma 1. The cocycle (f, B0) has an invariant “contractive direction”

Es
0(x) at every x ∈ S1. More precisely, at every x ∈ S1, there is Es

0(x) ∈ P
1 s.t.

B0(x)Es
0(x) = Es

0(fx),(1)

if v ∈ R
2 is s.t. v̄ ∈ Es

0(x), then |B0(x)v| ≈ 1

λ
|v|.(2)

Moreover, the mapping x 7→ Es
0(x) is Lipschitz, with Lip const < some pre-

assigned small number γ0 > 0 if B is C1 sufficiently near Aε.
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Proof. We assume B0 is sufficiently near A0 that there is a small δ > 0

s.t. (2) holds for all v with |v̄ − π
2 | < δ and B0(x)(π

2 − δ, π
2 + δ) ⊃ (π

2 −
δ, π

2
+ δ) ∀x ∈ S1. Then Es

0(x) := ∩n≥0(Bn
0 (x))−1(

π

2
− δ,

π

2
+ δ). The

Lipschitzness of x 7→ Es
0(x) follows from our assumption that λ >

√
N . More

precisely, since for θ ∈ (π
2 −δ, π

2 +δ), (x, θ) 7→ (fx, Ā0θ) stretches more in the θ-

direction than it does in the x-direction, ∃γ0 > 0 s.t. for v ∈ T(x,θ)S
1 × P

1 with

|s(v)| > γ0, |s(DF k0

0 v)| ≥ γ0 and the component of DF k
0 v in the θ-direction

grows exponentially – provided that the second coordinate of F j
0 (x, θ) stays

within δ of π
2 ∀0 ≤ j < k. Thus if it happens that |Es

0(x1)−Es
0(x2)| > γ0|x1−x2|

for two nearby points x1, x2, |Es
0(f

nx1) − Es
0(f

nx2)| will increase indefinitely

until one of Es
0(f

nx1) or Es
0(f

nx2) gets outside of the δ-neighborhood of π
2 ,

which is impossible. �

2.2 Estimating the Lyapunov exponents of (f, m; B)

Let λ1 ≥ λ2 denote the Lyapunov exponents of (f, m; B). By Oseledec’s

Theorem,

λ1 ≥ lim
n→∞

1

n

∫ n−1
∑

i=0

log

∣

∣

∣

∣

Bi(x)

(

1
0

)
∣

∣

∣

∣

m(dx).

The integrand above will be estimated as follows: For x ∈ S1, let v0(x) =
(

1
0

)

, v̂n(x) = Rϕε(fnx)vn(x), and vn+1(x) = B0(f
nx)v̂n(x). Let vn = vs

n + vu
n

and v̂n = v̂s
n + v̂u

n be the decompositions of vn and v̂n with respect to the basis

Es
0(f

nx) ⊕ Es
0(f

nx)⊥. Let θn be the P
1-coordinate of v̂n.

By the B0-invariance of Es
0 and the fact that both B0(f

nx)v̂u
n and Es

0(f
n+1x)⊥

are roughly horizontal, we have

|vu
n+1| ≥

99

100
|B0(f

nx)v̂u
n|.
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This gives

|vn+1| ≥ |vu
n+1| ≥

99

100
|B0(f

nx)v̂u
n|

≥ 98

100
λ|v̂u

n|

=
98

100
λ| sin(θn − Es

0(f
nx))| · |vn|.

Inductively we obtain

|vn| ≥
(

98

100
λ

)

n

n−1
∏

i=0

∣

∣sin(θi − Es
0(f

ix))
∣

∣

for all n. Hence

λ1 ≥ log
98

100
λ + lim

n→∞

1

n

∫ n−1
∑

i=0

log
2

π
|θi(x) − Es

0(f
ix)|m(dx).

2.3 Analysis of θn

To prove λ1 > 0 then, we must estimate the average distance of θn from Es
0 ,

where θn is as defined in the last paragraph. To do that, we divide P
1 into

zones on which B̄0 behaves differently. Let a, b, c be the projectivizations of
(

1
λ2

λ

)

,

(

1
λ

1

)

and

(

1
1
λ

)

respectively. Note that Ā0a = b, Ā0b = c, DĀ0(a) ≈
λ2 (which we assume to be > N), and DĀ0(b) = 1. We assume that |Es

0(x) −
π
2
| << |a − π

2
| ∀x ∈ S1. Let β = β(λ) be a very small positive number. (This is

the β mentioned at the beginning of section 1.) Let b̂ ≈ b be s.t. B0(x)a + β <

b̂ < a ∀x ∈ S1, and let ĉ ≈ c be s.t. B0(x)b̂ + β < ĉ < b̂. We require

also that B0(x) (π − a) − β > π − b̂ and B0(x) (π − b̂) − β > π − ĉ. Let

Z(a) := [a, π − a], Z(b) := [b̂, π − b̂] and Z(c) := [ĉ, π − ĉ].

Sometimes it is convenient to work with a lift of FB . Let F̃B = F̃0 ◦ Φ̃ε : R
2 	

be a lift of FB. Let p : R
2 → S1 × P

1, p1 : R → S1 and p2 : R → P
1 be the

natural projections. Let Z̃(a) = p−1
2 Z(a), Z̃(b) = p−1

2 Z(b), Z̃(c) = p−1
2 Z(c).

For definiteness, assume F̃B([0, 1] × R) = [0, N ] × R. We observe that the

derivative of F̃0 has the following properties:
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(1) If θ ∈ Z̃(a) and v ∈ R
2 has s(v) ≥ 1, then s((DF̃0)(x,θ)v) ≥ s(v). (This is

because B̄0 stretches by ≈ λ2 in this region, f stretches by N , and λ2 > N).

(2) If θ ∈ Z̃(b) and s(v) ≥ 1, then s((DF̃0)(x,θ)v) ≥ 1
2N

s(v). (Reason: B̄0

stretches by % 1 in this region.)

(3) ∃ γ1 > 0, γ1 small and depending on dist(A0, B0), s.t. for all θ /∈ Z̃(b), |s(v)| ≤
γ1 ⇒ |s((DF̃0)(x,θ)v)| ≤ γ1. (These invariant cones are due to the fact that

B̄0 contracts or nearly contracts in this region whereas f expands by N).

Observe also that s((DΦ̃ε)(x,θ)v) = s(v) + ϕ′
ε(p1x).

For n = 0, 1, 2, . . . , we introduce functions θ̃n : [0, Nn] → R as follows: Start

with θ̃0(x) := ϕε(p1x), where ϕε(·) is regarded as increasing monotonically from

0 to 2π. For n ≥ 1, define θ̃n by

graph (θ̃n) = Φ̃ε ◦ F̃0(graph (θ̃n−1)).

Note that for x ∈ [0, Nn], p2θ̃n(x) = θn(p1x), where θn is as defined in section

2.3.

As we shall see, our analysis rests on the near-monotonicity of θ̃n as a function

of x. This in turn is a consequence of the monotonicity of x 7→ ϕε(x).

Lemma 2. The following hold for all n:

(1) if θ̃n ∈ Z̃(b), then dθ̃n

dx
≥ 1

2ε
;

(2) if θ̃n ∈ Z̃(c), then dθ̃n

dx
≥ 1

4Nε
;

(3) dθ̃n

dx
≥ −γ1 everywhere.

Proof. Let un be a tangent vector to the graph of θ̃n, and use the notation

DΦ̃ε ◦ DF̃0 (un−1) = un. Assuming that β is sufficiently small, (1)-(3) clearly

hold for θ̃0. We now assume that (1)-(3) have been proved for θ̃n−1. To prove

(1) for θ̃n, consider the following two possibilities:

Case 1. θ̃n−1 ∈ Z̃(a). Then s(un−1) ≥ 1
2ε

by assumption, and from our

discussion above, s(un) ≥ s(DF̃0un−1) ≥ s(un−1) ≥ 1
2ε

.
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Case 2. θ̃n−1 /∈ Z̃(a). Then in order for θ̃n to be in Z̃(b), we must have

|ϕε − πZ| > β. (See the definition of Z̃(b)). Our condition on ϕε guarantees

that ϕ′
ε ≥ 1

ε
, so that s(un) ≥ s(DF̃0un−1) + 1

ε
≥ 1

2ε
.

The proof of (2) is similar. For θ̃n ∈ Z̃(c), if θ̃n−1 ∈ Z̃(b), then s(un) ≥
s(DF0un−1) ≥ 1

2ε
· 1

2N
; and if θ̃n−1 /∈ Z̃(b), then ϕ′

ε ≥ 1
ε

as above.

To prove (3), dθ̃n

dx
≥ 0 if θ̃n−1 ∈ Z̃(b). If θ̃n−1 /∈ Z̃(b), use the invariant cone

property of DF̃0 and the fact that s(DΦ̃εv) ≥ s(v). �

2.4 Completing the argument

Let α be the image of the curve x 7→ Es
0(x) in S1 × P

1, and let Uδ(α) :=

{(x, θ) : |θ − Es
0(x)| < δ}. Note that p−1α is the disjoint union of a countable

number of curves α̃k, k ∈ Z, so that each α̃k is C0 near θ ≡ (k + 1
2)π and

is the graph of a Lipschitz function with Lip constant < some small γ0. Let

Ũδ(α) = p−1Uδ(α).

Lemma 3. ∃ C1 = C1(N, λ) s.t. ∀δ > 0 with Uδ(α) ⊂ S1 × Z(c), we have

m{x ∈ S1 : (fnx, θn(x)) ∈ Uδ(α)} < C1εδ

for all n ≥ 0.

Proof. Since the action of FB : S1 ×P
1 ∼= T

2 	 with respect to the two usual

generators is given by the matrix

(

N 0
2 1

)

, ∃ C0 s.t. ∀n ≥ 0, θ̃n(Nn)−θ̃n(0) ≤

C0N
n. Now whenever θ̃n crosses a component of Ũδ(α), it does so monotonically

with derivative ≥ 1
4Nε

. So θ̃n crosses at most C0N
n components of Ũδ(α). Thus

m{x ∈ S1 : (fnx, θn(x)) ∈ Uδ(α)}

=
1

Nn
· m{x ∈ [0, Nn] : (x, θ̃n(x)) ∈ Ũδ(α)}

≤ 1

Nn
· C0N

n · 3δ · (4εN) := C1εδ. �

Lemma 4. For λ ≥ 2 and ε sufficiently small, ∃σ = σ(λ, ε) > 0 s.t. ∀n ∈ Z
+,

log
98

100
λ +

∫

log
2

π
|θn(x) − Es

0(f
nx)|m(dx) ≥ σ.
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Proof. Let δ = π
2 − ĉ, and assume in the following calculation that |Es

0 − π
2 |

is negligible. Then

∫

{|θn(x)−Es

0
(fnx)|<δ}

log
2

π
|θn(x) − Es

0(f
nx)|m(dx)

=
∞
∑

k=0

∫

{ δ

2k+1
≤|·|< δ

2k
}

log
2

π
| · |

≥
∑

k≥0

(

log
2

π

δ

2k+1

)

· C1
δ

2k
· ε by Lemma 3

:= C2ε.

Also
∫

{|·|>δ}

log
2

π
| · | ≥ log

2

π
δ,

which is & log(1 − 2
π

1
λ
) since π

2 − δ . 1
λ
. For λ large, it is clear that log 98

100λ +

log(1 − 2
π

1
λ
) > 0. It is easy to check that λ ≥ 2 is more than sufficient. �

§3. Nonuniformly hyperbolic cocycles over toral automorphisms

Let T
2 ∼= R

2/Z
2 ∼= S1×S1 be the 2-torus, and consider T : T

2 	 induced from

T̃ ∈ SL(2, Z) with eigenvalues µ, µ−1 satisfying 0 < µ−1 < 1 < µ. (Everyone’s

favorite example is

(

2 1
1 1

)

). Let m denote the Lebesgue measure on T
2. In

this section we show that cocycles similar to those considered in sections 1 and

2 can be defined over (T, m). Other generalizations are clearly possible, but we

leave them to the reader.

Let (T, m) be as above, and let Wu denote the unstable manifolds of T .

We can fix an orientation on the leaves of Wu. Since µ > 0, T preserves this

orientation. (For definiteness, say the eigen-direction of T̃ pointed into the first

quadrant is positively oriented). Here µ will play the role of N , so we must

assume that λ ≥ √
µ + 1. Let Jε ⊂ S1, and let ϕε : T

2 → R/2πR be a C1

function such that
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(1) ϕε ≡ 0 outside of Jε × S1;

(2) on Jε × S1, ϕε increases monotonically from 0 to 2π along the leaves of Wu;

and

(3) on ϕ−1
ε [β, 2π−β], the directional derivatives of ϕε along the leaves of Wu are

≥ 1
ε
.

(“Along the leaves of Wu” means as one moves in the positive direction).

Aε is defined as before, and the claim is that for all sufficiently small ε, there

is a neighborhood Nε of Aε in C1(T2, SL(2, R)) s.t. ∀B ∈ Nε, (T, m; B) has a

positive Lyapunov exponent. The same methods as before guarantee that these

cocycles are not uniformly hyperbolic.

To prove that (T, m; B) has a positive exponent, we will show that on every

compact piece of Wu-leaf W ,

∫

lim
n→∞

1

n
log

∣

∣

∣

∣

Bi(z)

(

1
0

)
∣

∣

∣

∣

mW (dz) > 0

where mW denotes Lebesgue measure on W . The proof (including Lemma 3)

proceeds mutatis mutandis as in section 2, with dθ̃n

dx
replaced by the directional

derivative of θ̃n along Wu.
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