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LYAPUNOV EXPONENTS, PERIODIC ORBITS,

AND HORSESHOES FOR SEMIFLOWS ON HILBERT SPACES

ZENG LIAN AND LAI-SANG YOUNG

Context and motivation. This work can be seen as a small step in a program
to build an ergodic theory for infinite dimensional dynamical systems, a theory
the domain of applicability of which will include systems defined by evolutionary
PDEs. To reduce the scope, we focus on the ergodic theory of chaotic systems,
on nonuniform hyperbolic theory, to be even more specific. In finite dimensions, a
basic nonuniform hyperbolic theory already exists (see e.g. [8], [9], [11], [10], [2]
and [4]). This body of results taken together provides a fairly good foundation
for understanding chaotic phenomena on a qualitative, theoretical level. While
an infinite dimensional theory is likely to be richer and more complex, there is no
reason to reinvent all material from scratch. It is thus logical to start by determining
which parts of finite dimensional hyperbolic theory can be extended to infinite
dimensions. Our paper is an early step (though not the first step) in this effort.
With an eye toward applications to systems defined by PDEs, emphasis will be
given to continuous-time systems or semiflows. Furthermore, it is natural to first
consider settings compatible with dissipative parabolic PDEs, for these systems
have a finite dimensional flavor (see e.g. [14], [13], and [1]).

We mention some previously known results for infinite dimensional systems that
form the backdrop to the present work: On the infinitesimal level, i.e. on the
level of Lyapunov exponents, generalizations of Oseledets’s Multiplicative Ergodic
Theorem [8] to operators of Hilbert and Banach spaces have been known for some
time ([12], [7], [15] and [5]). Taking nonlinearity into consideration, local results,
referring to results that pertain to behavior along one orbit at a time, such as the
existence of local stable and unstable manifolds, have also been proved (see e.g.
[12] and [5]). This paper is among the first (see also [15]) to discuss a result of a
more “global” nature.

Summary of results. In this paper, we consider a specific set of results from finite
dimensional hyperbolic theory and show that they can be extended (with suitable
modifications) to semiflows on Hilbert spaces. The finite dimensional results in
question are due to A. Katok [2]. They assert, roughly speaking, the following:
Let f be a C2 diffeomorphism of a compact Riemannian manifold, and let μ be an
f -invariant Borel probability measure. Assume that (f, μ) has nonzero Lyapunov
exponents and positive metric entropy. Then horseshoes are present, and that
implies, among other things, an abundance of hyperbolic periodic points.
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Katok’s results were proved for diffeomorphisms of compact manifolds. As an
intermediate step, we extended these results to mappings of Hilbert spaces [6]. Here
we go one step further, proving analogous results for semiflows on Hilbert spaces
satisfying conditions consistent with those in the program outlined above. The no-
zero-exponent condition central to the results in [2] and [6] is replaced by a condition
in which we permit one of the Lyapunov exponents to be zero, for semiflows always
have at least one zero Lyapunov exponent. The main results of our paper are
stated as Theorems A–D in Section 1.1. While we have focused mostly on infinite
dimensions, our proofs are equally valid for flows on finite dimensional manifolds,
where some of the technical difficulties do not appear. To our knowledge, Theorems
A–D are new even in the context of flows generated by ODEs.

Our reasons for selecting this particular set of results for generalization are
twofold. One is their importance: they relate two asymptotic quantities (Lyapunov
exponents and metric entropy) that lie at the heart of smooth ergodic theory to
concrete geometric structures in the phase space. The second is that the relative
simplicity of their proofs provides us with a good setting to address systemati-
cally certain foundational issues regarding nonuniformly hyperbolic semiflows (see
below).

Remarks on techniques of proof. Discrete-time systems are technically simpler,
and many results for flows and semiflows can be deduced from corresponding results
for their time-t maps. This is the case with the multiplicative ergodic theorem and
with theorems on local stable and unstable manifolds. The results of the present
paper, on the other hand, depend crucially on the continuous-time nature of the
system; that is to say, they do not follow from properties of their time-1 maps. We
must work directly, therefore, with continuous time, and we take the opportunity
to formalize certain basic techniques that we hope will be generally useful.

We propose to view the semiflow via compositions of special section maps (Sec-
tion 2.2), which are Poincaré maps between local sections to the semiflow placed
approximately a unit distance apart, and we introduce Lyapunov coordinates along
suitable sequences of such maps (Section 3.1). As with Lyapunov coordinates in
discrete time (see [9], [4] and [6]), these are point-dependent coordinate changes
which put our special section maps in a convenient form, reflecting in a single step
the values of Lyapunov exponents of the system.

We mention three differences of note between our setting and that in [2] that
pervade the technical arguments in this paper: (1) The lack of local compactness
of the phase space, and the noninvertibility, or absence of inverse images for some
points, of the time-t map. (2) The presence of shear, i.e. the sliding of some orbits
past other nearby orbits due to the slightly different speeds at which they travel.
This continuous-time phenomenon occurs in finite as well as infinite dimensions; it
is discussed in Sections 5 and 6. (3) To accommodate systems defined by PDEs,
we cannot assume the existence of a “vector field” or time derivative d

dt |t=0 of the
semiflow at arbitrary points in the phase space, resulting in yet another departure
from finite dimensions on the technical level.

Remarks on applications to PDEs. Having alluded to the potential applicabil-
ity of our results to systems defined by certain types of PDEs, we must now clarify
the nature of this application: Theorems A–D are dynamical systems results. As
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with much of nonuniform hyperbolic theory, these results offer no concrete esti-
mates for specific PDEs or specific solutions of any PDE, for dynamical systems
conditions are generally hard to check. On the other hand, they offer a different
view of the system: a qualitative, geometric picture not generally accessible by
purely analytical methods, a picture that we hope will add to one’s conceptual
understanding of the system.

1. Setting and results

As discussed in the Introduction, we have in mind the following two settings:
flows, equivalently ODEs, on finite dimensional Riemannian manifolds, and semi-
flows on Hilbert spaces with potential applications to certain classes of evolutionary
PDEs. Statements of results for the infinite dimensional case, including the precise
conditions under which they hold, are given in full in Section 1.1. Results for ODEs,
which are entirely analogous, are discussed in Section 1.2.

1.1. Results for semiflows on Hilbert spaces.

Setting. Let H be a separable Hilbert space. We consider a continuous semiflow
on H, i.e. a continuous mapping

F : [0,∞)×H → H

with the properties

F (s+ t, x) = F (t, F (s, x)) ∀s, t ≥ 0 and F (0, x) = x.

We let f t denote its time-t map, i.e. f t(x) = F (t, x), and write f = f1. Conditions
(C1)–(C4) below are assumed throughout:

(C1) f t is injective for each t > 0;
(C2) F |(0,∞)×H is C2.

The following notation is used: derivatives with respect to t and x at (t, x) are
denoted by ∂tF(t,x) and ∂xF(t,x) respectively; we also write Df t

x = ∂xF(t,x).

(C3) There is a compact f t-invariant set A ⊂ H on which the following hold:
(i) Df t

x is injective for every t > 0;
(ii) Df t

x is compact for t ≥ t0 for some t0 > 0;
(iii) supt∈[0,2],x∈A ‖Df t

x‖ ≤ M1 for some M1 < ∞.

(C4) μ is an f t-invariant ergodic Borel probability measure on A.

All of our results are in fact valid with (C3)(ii) replaced by:

(C3) (ii′) For all x ∈ A,

κ(x) := lim
t→∞

1

t
log κ0(Df t

x) < 0,

where for an operator T , κ0(T ) is the Kuratowski measure
of noncompactness of T .

Recall that κ0(T ) is defined as follows: Let B be the unit ball. Then κ0(T ) is the
infimum of the set of numbers r > 0 where T (B) can be covered by a finite number
of balls of radius r. Since κ0(T1 ◦ T2) ≤ κ0(T1)κ0(T2), the limit in the definition
of κ(x) is well defined by subadditivity. The system (F, μ) being ergodic, κ(x) = κ̄
for μ-a.e. x.

We remark that (C1)–(C4) hold for large classes of dissipative parabolic PDEs.
The compact invariant set A is often a global attractor, and (C4) is there only
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to fix notation; it is not an additional assumption once A exists. The two main
conditions are regularity ((C2) and (C3)(iii)), and injectivity of f t and Df t

x, ((C1)
and (C3)(i)). Existence, uniqueness and regularity of solutions for a large class
of semi-linear parabolic equations are proved in [1], Chapter 3. Injectivity of the
type needed translates into backward uniqueness and is discussed in [1], Chapter 7.
Concrete examples that fit the setting of (C1)–(C4) include the 2D Navier-Stokes
equations with periodic boundary conditions and more generally equations of the
type ut = Δu+ g(x, u,∇u), where g is sufficiently smooth.

Results. Under Condition (C3)(ii′), all positive and zero Lyapunov exponents for
(F, μ) are well defined, as are all negative Lyapunov exponents > κ̄. As will be
shown in Lemma 2, when μ is not supported on a stationary point, (F, μ) has at
least one zero Lyapunov exponent, namely the exponent in “the flow direction”. In
addition to (C1)–(C4), we impose the following conditions on (F, μ):

Standing assumptions for Theorems A–D:
(i) μ is not supported on a stationary point;
(ii) (F, μ) has at most one zero Lyapunov exponent.

Definitions. We say that the orbit starting from x ∈ H is periodic with period p
if F (p + t, x) = F (t, x) for all t ≥ 0. By a stable periodic orbit, we mean linear
stability in a strict sense, i.e., except for a simple eigenvalue at 1 (corresponding to
the flow direction), the spectrum of Dfp

x is contained in {|z| < 1}. Likewise, by an
unstable periodic orbit, we refer to one that is linearly unstable in a strict sense,
meaning that the spectrum of Dfp

x meets {|z| > 1}.
Theorem A. If (F, μ) has no strictly positive Lyapunov exponents, then μ is sup-
ported on a stable periodic orbit.

Theorem B. In general, either

(a) μ is supported on a periodic orbit, or
(b) F has infinitely many unstable periodic orbits, the closure of the union of

which contains the support of μ.

The next two theorems provide further information on scenario (b) above under
the additional condition of positive entropy. The metric (or measure-theoretic)
entropy of the semiflow F with respect to μ is defined to be the entropy of its
time-one map f and is written hμ(f).

For s ∈ R
+, let N(s) denote the number of distinct periodic orbits of F with

period ≤ s.

Theorem C. Suppose hμ(f) > 0. Then

lim sup
s→∞

1

s
logN(s) ≥ hμ(f) .

Our final result concerns the existence of horseshoes. We first give the statement.
Precise definitions of the terminologies used will follow.

Theorem D. Suppose hμ(f) > 0. Then F has forward-invariant and bi-invariant
horseshoes. In fact, given γ > 0, there is a return map T : D → D with a bi-
invariant horseshoe Ω ⊂ D such that

htop(f |Ω̂) > hμ(f)− γ, Ω̂ =
⋃
t∈R

f t(Ω) .
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Definitions related to horseshoes.
1. Let D1 and D2 be embedded codimension 1 disks in H. We call T a local section
map from D1 to D2 if for some open subset U ⊂ D1, T : U → D2 is a continuous
mapping with the property that for every x ∈ U ,

(i) T (x) = fτ(x)(x) ∈ D2 for some τ : U → R
+, and

(ii) the trajectory t �→ F (t, x) intersects D2 transversally at t = τ (x), i.e.
∂tF(τ(x),x) is not tangent to D2.

If D1 = D2 = D, then we call T a return map. As a shorthand, we will sometimes
write T : D → D even when T is not defined on all of D.
2. Let k ∈ Z

+. We say that σ :
∏∞

−∞{1, · · · , k} →
∏∞

−∞{1, · · · , k} is a two-

sided full shift on k symbols if for a = (ai) ∈
∏∞

−∞{1, · · · , k}, σ(a) = (bi), where
bi = ai+1. Let T : D → D be a return map. We say that T has a horseshoe
(or bi-invariant horseshoe) with k symbols if there is a continuous embedding Ψ :∏∞

−∞{1, · · · , k} → D such that if Ω = Ψ(
∏∞

−∞{1, · · · , k}), then
(i) T |Ω is a bijection, and is conjugate to σ;
(ii) T |Ω is uniformly hyperbolic (see item 3 below).

We sometimes refer to the set Ω as a “horseshoe”.
3. By the uniform hyperbolicity of T |Ω, we refer to the fact that there is a splitting
of the tangent space of x ∈ Ω into Eu(x) ⊕ Es(x) such that Eu(x) and Es(x)
vary continuously with x, DTx(E

u(x)) = Eu(Tx), DTx(E
s(x)) ⊂ Es(Tx), and

there exist N ∈ Z
+ and χ > 1 such that for all x ∈ Ω, ‖DTN

x |Es(x)‖ ≤ χ−1 and

|DTN
x (v)| ≥ χ|v| for all v ∈ Eu(x).

4. For dynamical systems defined by noninvertible maps, it is, in some sense, more
natural to have a notion of horseshoes that involves only forward iterates. Let
σ :

∏∞
0 {1, · · · , k} →

∏∞
0 {1, · · · , k} be a one-sided full shift on k symbols, let D1

be the unit disk in a separable Hilbert space, and let Emb1(D1,H) denote the space
of C1-embeddings of D1 into H. We say that f has a forward-invariant horseshoe
with k symbols if there is a continuous map Ψ+ :

∏∞
0 {1, · · · , k} → Emb1(D1,H)

such that for a+ ∈
∏∞

0 {1, · · · , k},
(i) Ψ+(a+)(D1) is a stable manifold of finite codimension;
(ii) f(Ψ+(a+)(D1)) ⊂ Ψ+(σ(a+))(D1).

5. We say that the semiflow F has a horseshoe, forward-invariant or bi-invariant,
if it has a return map T : D → D which has such a horseshoe. Let Ω ⊂ D be a
bi-invariant horseshoe. Then on Ω, f t is defined for all t ∈ R, and Ω̂ :=

⋃
t∈R

f t(Ω)
is f t-invariant for all t. The flow f t|Ω̂ is sometimes called the suspension of T over
Ω. A similar construction can be made for forward-invariant horseshoes using only
t ≥ 0.
6. The topological entropy of F or f on Λ is denoted by htop(f |Λ). Since we use
the definition of topological entropy on compact sets only, our statements regard-
ing topological entropy below are limited to bi-invariant horseshoes. Notice that
htop(σ) = log k if σ is the full shift on k symbols.

The definitions needed for Theorem D are now in place. Notice that Standing
Assumption (i) above is redundant in Theorems C and D as it is implied by the
positive entropy condition.

1.2. Results for flows on finite dimensional manifolds. The setting here is
that of a C2 flow f t on a compact Riemannian manifold M without boundary, and
μ is an f t-invariant ergodic Borel probability measure on M .
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All objects and notation are as defined in Section 1.1.

Theorems A′–D′. The results in Theorems A–D hold in this setting.

Note. In the sections to follow, detailed proofs are given for the infinite dimen-
sional case, which is technically more involved. These proofs are easily adapted to
give Theorems A′–D′. The only additional step required is the use of exponential
maps to go from the manifold to local Euclidean coordinates, and that is entirely
standard.

2. Preliminaries

The purpose of this section is to (1) recall some known results on Lyapunov
exponents and (2) establish some elementary facts about section maps of semiflows.

2.1. Lyapunov exponents and related results. The following version of the
Multiplicative Ergodic Theorem is used in this paper. For a reference, see e.g. [12],
[5].

Theorem 1. Let (F, μ) be as in Section 1. Then there is a Borel subset Γ ⊂ A
with μ(Γ) = 1 and a number λ0 > 0 such that for every x ∈ Γ, there is a splitting
of the tangent space Hx at x into

Hx = Eu(x)⊕ Ec(x)⊕ Es(x)

(some of these factors may be trivial) with the following properties:

1. (a) for σ = u, c, s, x �→ Eσ(x) is Borel;
(b) dimEσ(x) < ∞ for σ = u, c;
(c) for all t > 0, Df t

xE
σ(x) = Eσ(f tx) for σ = u, c, and

Df t
xE

s(x) ⊂ Es(f tx).
2. For u ∈ Eσ(x), σ = u, c, and t > 0, there is a unique v ∈ Eσ(f−tx),

denoted Df−t
x u, such that Df t

f−txv = u.1

(a) For u ∈ Eu(x) \ {0}, limt→±∞
1
t log |Df t

xu| ≥ λ0.

(b) For u ∈ Ec(x) \ {0}, limt→±∞
1
t log |Df t

xu| = 0.

(c) lim supt→∞
1
t log ‖Df t

x|Es(x)‖ ≤ −λ0.

Writing v = vu + vc + cs, vσ ∈ Eσ(x), for v ∈ Hx, we define the projections
πσ
x : Hx → Eσ(x) to be πσ

x (v) = vσ; and for closed subspaces E,F ⊂ H, define

�(E,F ) = inf

{
|u ∧ v|
|u||v|

}
u∈E\{0},v∈F\{0}

.

3. (a) The projections πu
x , π

c
x, π

s
x are Borel, and

(b) for (E,F ) = (Eu, Ec), (Ec, Es), (Eu, Ec ⊕ Es) and (Eu ⊕ Ec, Es), we
have limt→±∞

1
t log�(E(f t(x)), F (f t(x))) = 0.

Remark 1. 1. That the decomposition into Eu ⊕ Ec ⊕ Es makes sense relies on
(C2)(ii′) and the invertibility of f t|A. (C2)(ii′), in particular, is used to ensure that
dim(Eu), dim(Ec) < ∞.
2. Under the condition

sup
t∈[0,1],x∈A

max{‖Df t
x‖, ‖Df1−t

ftx ‖} ≤ M1,

1Throughout this paper, “u” is used both to denote the unstable direction, as in Eu, and as
the generic name for a vector in H. We apologize for the abuse of notation but do not think it
will lead to confusion.
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which follows immediately from (C3)(iii), (F, μ) and the discrete-time system (f, μ)
defined by its time-1 map have the same Lyapunov exponents and associated sub-
spaces; see e.g. [5]. Notice that (f, μ) need not be ergodic when (F, μ) is, but by
the result just cited, its Lyapunov exponents are constant μ-a.e.

The invertibility of f t|A allows us to define the following “vector field” on A:

vx := ∂tF(0,x) = ∂tF(1,f−1x) ∈ Hx , x ∈ A .

Note that (i) the definition above may not make sense for x ∈ H \A, and (ii) on A,
vx varies continuously with x by the continuity of ∂tF and f−1.

Lemma 2. Assume that μ is not supported on a stationary point. Then vx ∈ Ec(x)
for μ-a.e. x.

Proof. Write vx = vux + vcx + vsx, where vσx = πσ
x (vx), σ = u, c, s.

First we show that vux = 0. By Theorem 1, item 2,

lim
t→∞

1

t
log |Df t

x(v
u
x)| ≥ λ0

and

lim sup
t→∞

1

t
log |Df t

x(v
c
x + vsx)| ≤ 0.

This implies that |Df t
x(vx)| → ∞ unless vux = 0, and |Df t

x(vx)| clearly �→ ∞ since

Df t
x(vx) = vftx, t ∈ R .

A similar argument modified as follows gives a contradiction unless vsx = 0.
Since both Df−t

x (vx) and Df−t
x (vcx) are defined for every t > 0, there is a vector

u−t ∈ Es(f−tx) such that Df t
f−tx(u−t) = vsx. Fix K ⊂ Γ on which (i) |vy| is

uniformly bounded and (ii) the convergences in Theorem 1, items 2(b) and (c), are
uniform. Now f−nx ∈ K infinitely often, and (i) and (ii) contradict each other for
large enough n. �
The time-one map f . We recall below two sets of results from [6] that apply to
the discrete-time system (f, μ).2

A. Lyapunov charts. Let λ0 > 0 be given by Theorem 1. We fix orthogonal
subspaces Ẽu, Ẽc and Ẽs of H such that dim Ẽu = dimEu, dim Ẽc = dimEc and
codim Ẽs = codim Es, where Eu, Ec and Es are the Df -invariant subspaces of
(f, μ). For r > 0, we let B̃(0, r) = B̃u(0, r)× B̃c(0, r)× B̃s(0, r), where B̃σ(0, r) is

the ball of radius r centered at 0 in Ẽσ.
The following proposition asserts the existence of a family of point-dependent

coordinate changes (called Lyapunov charts) and summarizes the properties of these
charts.

Proposition 3 ([6], Section 2.2). Let δ0, δ > 0 be given with δ0 < 1
100λ0. Then

there is a measurable function l : Γ → [1,+∞) with

e−δl(x) ≤ l(f(x)) ≤ eδl(x)

and a family of maps {Φx, μ−a.e. x} of the form

Φx : B̃(0, δl(x)−1) → H, Φx(u) = Expx(L
−1
x (u)),

2Ergodicity of (f, μ), which is assumed in [6], is not relevant for the results cited here, but we
do assume that f has the same set of Lyapunov exponents μ-a.e.
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where Lx : Hx → H are linear maps varying measurably with x and having the
property that Lx(E

σ(x)) = Ẽσ for σ = u, c and s. These charts are designed to

have the following properties. Let f̃x denote the map that connects the chart at x
to that at f(x), i.e.

B̃(0, δl(x)−1) → H, f̃x = Φ−1
fx ◦ f ◦ Φx .

Then:

(a) For all y, y′ ∈ B(0, δl(x)−1),

l(x)−1|y − y′| ≤ |Φx(y)− Φx(y
′)| ≤

√
3|y − y′|.

(b) D(f̃x)0 maps each Ẽσ, σ = u, c, s, into itself, with

|D(f̃x)0u| ≥ eλ0−2δ0 |u|, e−2δ0 |w| ≤ |D(f̃x)0w| ≤ e2δ0 |w|

and |D(f̃x)0v| ≤ e−(λ0−2δ0)|v|

for u ∈ Ẽu, w ∈ Ẽc and v ∈ Ẽs.
(c) The following hold on B(0, δl(x)−1):

(i) Lip(f̃x −D(f̃x)0) < δ;

(ii) Lip(Df̃x) ≤ l(x).

B. Sets with uniform estimates. Let l be the function above. For l0 > 1, we
let Γl0 = {x ∈ Γ : l(x)≤l0}. These are sets on which the subspaces Eu, Ec and Es

are uniformly separated, growth properties of Dfn in each subspace have uniform
bounds, and charts have uniform estimates. The sets Γl0 are generally noninvariant;
their μ-measures tend to 1 as l0 → ∞.

For x, y ∈ Γl0 and σ, σ′ = u, s, c, we define Jσ,σ′

x,y to be the linear map Jσ,σ′

x,y =

πσ′
(LyL

−1
x )|Ẽσ ∈ L(Ẽσ, Eσ′

). In this definition, every Hx is viewed as a copy of H
and identified with it in a natural way, and πσ (without the subscript) is projection

onto Ẽσ in Lyapunov charts. The following proposition summarizes some useful
facts:

Proposition 4 ([6], Section 5.2). Assume δ0, δ, l and {Φx} have been fixed, and let
l0 > 1. Then the following hold on Γl0 :

(a) the subspaces Eu(x), Ec(x) and Es(x) vary continuously with x, as do the
corresponding projections;

(b) given ε > 0, there exists Δ (depending on l0 and ε) such that for σ, σ′ = u, s

or c, if |x− y| < Δ, then for v ∈ Ẽσ,
i) (1− ε)|v| < |Jσ,σ

x,y v| ≤ (1 + ε)|v|;
ii) |Jσ,σ′

x,y v| < ε|v| if σ′ �= σ.

The meaning of (b) is as follows: For two nearby points x, y ∈ Γl0 , although we
cannot quite say that Lx and Ly are nearly identical (with more work one may be
able to arrange that), we have that LyL

−1
x is close to an isometry which carries the

subspaces Ẽσ to themselves.

2.2. Special section maps. Section maps are as defined in Section 1. Their
differentiability is an immediate consequence of the Implicit Function Theorem [3].
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We state for the record:

Lemma 5. Let D ⊂ H be an embedded codimension 1 disk, and let y0 ∈ H and
τ0 > 0 be such that fτ0(y0) = x0 ∈ D. Assume that ∂tF(τ0,y0) is a transversal to
D at x0. Then there is a small neighborhood U of y0 and a continuous function
τ : U → R

+ with τ (y0) = τ0 such that g(y) := fτ(y)(y) ∈ D for all y ∈ U . The
mappings τ and g are C2, with

Dgy = ∂tF(τ(y),y) ·Dτy + ∂yF(τ(y),y) .

We assume in the rest of this paper that dim(Ec) = 1. Most of the section
maps we consider are of the following type. For x ∈ Γ, let

Σx = Expx(E
u(x)⊕ Es(x)),

where Expx : Hx → H is the exponential map (the usual identification of the
tangent space Hx at x with {x}+H). We consider

Ty,x : Uy → Σx,

where y is very near f−1(x), Uy ⊂ Σy is a small neighborhood of y, and Ty,x is the
local section map from Uy to Σx introduced in Section 1 (following the statement
of Theorem D) with Ty,x(y) = x. Lemma 5 tells us that Ty,x is well defined and
smooth. In the case where f(y) = x, we write Ty,x = Ty.

We record below some a priori estimates on domain sizes and derivative bounds
for these special section maps.

Sublemma 1. There exist M2 and d0 > 0 such that

sup
t∈[ 12 ,2],x∈Ad0

‖D2F(t,x)‖ ≤ M2,

where Ad0
= {x ∈ H | dist(x,A) ≤ d0}.

Proof. By (C1) together with compactness, there exists M ′
2 such that ‖D2F(t,x)‖ ≤

M ′
2 for all t ∈ [ 12 , 2] and x ∈ A. Now for each such t and x, there exists, by continuity,

ε(t, x) > 0 such that for all (s, y) with |t−s|, |x−y| < ε(t, x), ‖D2F(s,y)‖ ≤ M ′
2+1 =

M2. We cover [ 12 , 2]× A by 1
2ε(t, x)-balls, take a finite subcover, and let d0 be the

radius of the smallest ball in this finite subcover. �
Sublemma 1 allows us to extend certain bounds on A to Ad0

, such as

sup
t∈[ 12 ,2],x∈Ad0

‖Df t
x‖ ≤ M1 +M2d0

and
sup

t∈[ 12 ,2],x∈Ad0

‖∂tF(t,x)‖ ≤ sup
x∈A

|∂tF(0,x)|+M2d0 < ∞.

To simplify notation, we will, from here on, use M1 to bound the following first
derivative norms:

sup
x∈A

|∂tF(0,x)| , sup
t∈[0,2],x∈A

‖Df t
x‖ ,

sup
t∈[ 12 ,2],x∈Ad0

|∂tF(t,x)| and sup
t∈[ 12 ,2],x∈Ad0

‖Df t
x‖ .

We will also assume that M1 and M2 are ≥ 1.
Recall that for x ∈ Γ, πus

x and πc
x are the projections associated to the splitting

Hx = (Eu(x) ⊕ Es(x)) ⊕ Ec and vx := ∂tF(0,x) = ∂tF(1,f−1x) ∈ Hx. Let B(y, ρ)
denote the ball of radius ρ centered at y.
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Lemma 6. Given x ∈ Γ, there exist ρ = ρ(x) and a C2 mapping

Ť : B(f−1(x), ρ) → Σx given by Ť (y) = F (τ (y), y),

where ρ = min{(66M2
1M2)

−1‖πc
x‖−2|vx|2, d0}, and

τ : B(f−1(y), ρ) → ( 12 ,
3
2 ) is a C2 function with τ (f−1(x)) = 1.

Moreover, the following hold on B(f−1(x), ρ):

(I) (i) |τ (y)− 1| ≤ 11
10 |vx|−1 ·M1‖πc

x‖|y − f−1(x)|;
(ii) ‖Dτ‖ ≤ 11

10 |vx|−1 ·M1‖πc
x‖;

(II) (i) DŤf−1(x) = πus
x ∂yF(1,f−1(x));

(ii) ‖D2Ť‖ ≤ 32M2M
3
1 ‖πc

x‖3|vx|−3.

Proof. First we show that Ť is defined as claimed. To do this, we seek ρ and Δs > 0
such that the following hold for all y ∈ B(f−1(x), ρ):

(a) |πc
x(∂tF(s,y) − vx)| ≤ 1

11 |vx| for all s ∈ (1−Δs, 1 + Δs);
(b) πc

xF (1−Δs, y) = c′vx for some c′ < 0, and πc
xF (1+Δs, y) = c′′vx for some

c′′ > 0.

(a) says that for all the (s, y) in question, the “vector field” at F (s, y) is roughly
parallel to vx, and (b) says that the two points F (1−Δs, y) and F (1 + Δs, y) fall
on opposite sides of Σx. These two properties together ensure that for each y, the
piece of flowline {F (s, y), s ∈ [1−Δs, 1 + Δs]} meets Σx transversally at a unique
point; call it F (s1, y). This is our Ť (y), and τ (y) = s1. The C

2 properties of Ť and
τ follow from Lemma 5 for all y ∈ B(f−1x, ρ) once (a) and (b) are established.

The quantity on the left side of (a) is bounded above by

‖πc
x‖|∂tF(s,y) − vx| ≤ ‖πc

x‖M2(|y − f−1(x)|+ |s− 1|) ,
so to ensure (a), it suffices to impose on ρ and Δs the conditions

(1) ρ ≤ (2M2‖πc
x‖)−1 · 1

11
|vx| and Δs ≤ (2M2‖πc

x‖)−1 · 1

11
|vx|.

Next we take the liberty to identify u ∈ Hx with u+x, so that πc
x(z) is well defined

for z ∈ H. Then (b) is equivalent to

(2) |πc
x(F (1±Δs, y)− x)− (±Δsvx)| < |Δsvx|.

The left side of (2) can be estimated by

|πc
x(F (s, y)− x)− (s− 1)vx| ≤ ‖πc

x‖ · |F (s, y)− F (1, f−1x)− (s− 1)vx|

≤ ‖πc
x‖(M1|y − f−1(x)|+ 1

2
M2|s− 1|2).

Substituting in s = 1 ± Δs and requiring each of the two terms above to be ≤
1
3 |Δsvx|, we obtain the conditions

(3) ρ ≤ 1

3M1
Δs‖πc

x‖−1|vx| and Δs ≤
2

3M2
‖πc

x‖−1|vx|.

In addition to (1) and (3), we also require Δs ≤ 1
2 . We may incorporate this into

(3) by requiring Δs ≤ 1
2M1M2

‖πc
x‖−1|vx| since |vx| ≤ M1. It is easy to check that

(4) ρ =
1

66M2
1M2

‖πc
x‖−2|vx|2 and Δs =

1

22M1M2
‖πc

x‖−1|vx|

satisfy all of these conditions.
This completes the proof of the first part of this lemma.
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The bounds in (I) and (II) are straightforward. Using (a) to estimate how long
it takes f(y), flowing forwards or backwards, to reach Σx, we obtain

|τ (y)− 1| ≤ |πc
x(F (1, y)− x)|

mins∈(1−Δs,1+Δs){|πc
x∂tF(s,y)|}

≤ M1‖πc
x‖|y − f−1(x)|

10
11 |vx|

.

To bound ‖Dτy‖ and ‖D2τy‖, we take ∂y of both sides of equation πc
xF (τ (y), y) = 0

to obtain

(5) πc
x∂tF(τ(y),y)Dτy + πc

x∂yF(τ(y),y) = 0.

(I)(ii) follows from this and (a). Taking ∂y again, we get

πc
x

[
∂tFD2τ (·, ·) + ∂ttF (Dτ (·), Dτ (·)) + 2∂ytF (Dτ (·), ·) + ∂yyF (·, ·)

]
= 0.

By (I)(ii) and (a), we get

(6) ‖D2τ (y)‖ ≤ M2‖πc
x‖

10
11 |vx|

(
M1‖πc

x‖
10
11 |vx|

+ 1

)2

≤ 8M2M
2
1 ‖πc

x‖3|vx|−3.

Differentiating Ť twice and applying (6), we obtain

(7) ‖D2Ť‖ ≤ 32M2M
3
1 ‖πc

x‖3|vx|−3.

It remains to prove (II)(i). Here we have

DŤf−1x = ∂tF(1,f−1(x))Dτf−1(x) + ∂yF(1,f−1(x))

= πus
x ∂tF(1,f−1(x))Dτf−1(x) + πus

x ∂yF(1,f−1(x))

= πus
x ∂yF(1,f−1(x)),

since πus
x ∂tF(1,f−1(x)) = 0. �

3. Lyapunov coordinates and proof of Theorem A

3.1. Lyapunov coordinates for section maps. As with discrete-time systems,
it is useful to view certain section maps of the semiflow F in Lyapunov coordinates.
Instead of developing these coordinates from scratch, we will make use of what has
already been done in the discrete-time case and go on from there.

Consider the discrete-time system (f, μ), where f is the time-one map of the
semiflow F . Suppose δ0 and δ in Proposition 3 have been chosen, and a system of
charts {Φx} including a slowly varying function l have been fixed. Let x1, x2 ∈ Γ

be such that Tx1,x2
: Ux1

→ Σx2
is defined (see Section 2.2). We write Ũx1

:=

Φ−1
x1

(Ux1
), and let π̃us be the projection from H onto Ẽus = Ẽu⊕ Ẽs, which is also

Φ−1
x2

(Σx2
). By Lyapunov coordinates for section maps, we refer to mappings of the

form T̃x1,x2
: Ũx1

→ Ẽus defined by

T̃x1,x2
= π̃us ◦ Φ−1

x2
◦ Tx1,x2

◦ Φx1
|Ẽus .

Accordingly, the flowtime function in these coordinates is denoted τ̃x1,x2
(y) =

τ (Φx1
(y)). As before, in the case where f(x1) = x2, we write T̃x1

, omitting the x2

in T̃x1,x2
.

In analogy with the discrete-time case, we introduce the idea of sets with uniform
estimates. From Lemma 6, we see that in addition to the function l, the lengths
of the vectors vx also enter in bounds for special section maps. For x ∈ Γ, let
c(x) = min{|Lx(vx)|, 1}. We use the lengths of Lx(vx) instead of vx because we
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would like c(x) to vary slowly along orbits: since D(f̃x)0(Lx(vx)) = Lfx(vfx), we
have, by Proposition 3, c(x)e−2δ0 ≤ c(fx) ≤ c(x)e2δ0 . For l0, c0 > 0, define

Γl0,c0 := {x ∈ Γ : l(x) ≤ l0 and c(x) ≥ c0} .

Clearly, μ(Γl0,c0) → 1 as l0 → ∞ and c0 → 0.
In the rest of this paper, it will be assumed implicitly that all special sections

considered and the flowlines between them lie well inside Ad0
. This is made possible

by the following sublemma, the proof of which we leave to the reader.

Sublemma 2. There exists d′0 > 0 such that F (t, y) ∈ A 1
2d0

for all y ∈ Ad′
0
and

t ∈ [0, 2].

The following is a reformulation of Lemma 6 in Lyapunov coordinates. To avoid
getting distracted by constants that have little significance, we will, from here on,
use M to denote a “generic constant”: M incorporates various numerical constants
but is otherwise allowed to depend on M1 and M2 only. Its value may be increased
a finite number of times from lemma to lemma as we go along.

Assume δ0, δ and {Φx} have been fixed, and l0, c0 chosen.

Lemma 7. Given ε > 0, there exists Δ̃ depending only on l0, c0, ε and δ such that
for any x2 such that x2, f

−1(x2) ∈ Γl0,c0 and any x1 ∈ Γl0,c0 ∩B(f−1(x2), Δ̃), T̃ =

T̃x1,x2
is defined on B̃u(0, ρ̃)× B̃s(0, ρ̃) for ρ̃ ≤ min{M−1l−4

0 c20, δl
−1
0 }. Moreover:

(1) (a) |τ̃(y)− 1| ≤ Mc−1
0 l20 · |Φx1

(y)− f−1(x2)|≤ 1
2 ,

(b) ‖Dτ̃‖ ≤ Mc−1
0 l20;

(2) (a) |T̃ (0)| ≤ Ml20 · |x1 − f−1(x2)|,
(b) (i) D(T̃f−1(x2))0 = π̃usD(f̃f−1(x2))0|Ẽus ,

(ii) ‖D(T̃ )0‖ ≤ (1 + ε)‖D(T̃f−1(x2))0‖+ ε ;

(c) ‖D2T̃‖ ≤ Ml70c
−3
0 .

Proof. To show that T̃ is defined on the domain indicated, we check that with Δ̃
small enough, Φx1

(B̃u(0, ρ̃) × B̃s(0, ρ̃)) ⊂ B(f−1(x2), ρ), where ρ is as in Lemma
6. The assertion follows since ‖πc

x2
‖ ≤ l0, |vx2

| ≥ l−1
0 c0, and by Proposition 3,

‖DΦx1
‖ ≤

√
3.

Using the same bounds, we obtain (1)(a),(b) and (2)(c) immediately from items
(I)(i)(ii) and (II)(ii) in Lemma 6.

To prove (2)(a), we have |T̃ (0)| ≤ l0|T (x1)− x2| and
(8) |T (x1)− x2| ≤ |T (x1)− πus

x2
(f(x1))|+ |πus

x2
(f(x1))− x2| .

The second term on the right side of (8) is ≤ ‖πus
x2
‖|f(x1)−x2| ≤ l0M1|x1−f−1(x2)|.

To estimate the first term, recall from Lemma 6 that for y ∈ B(f−1(x2), ρ) and
s ∈ [1−Δs, 1 + Δs],

|πc
x2
∂tF(s,y)| ≥

10

11
|vx| and |πus

x2
∂tF(s,y)| ≤

1

10
|vx|.

Thus |T (x1)− πus
x2
(f(x1))| ≤ 1

10 |πc
x2
(f(x1))− x2| ≤ 1

10 l0M1|x1 − f−1(x2)|.
The assertion in (2)(b)(i) is clear. (2)(b)(ii) follows immediately from Proposi-

tion 4 and Lemma 6, II(ii), provided we take Δ̃ small enough.

To see that Δ̃ can be chosen to depend only on the asserted quantities, notice
that the smallness of Δ̃ is used in exactly two places: to ensure that everything
takes place inside B(f−1(x2), ρ), where ρ is as in Lemma 6, and in the proof of



LYAPUNOV EXPONENTS, PERIODIC ORBITS, AND HILBERT SPACES 13

(2)(b)(ii) of Lemma 7. Quantities on which these estimates depend are explicitly
known. �

Lemma 7 contains general bounds for special section maps in Lyapunov coordi-
nates. We will show that these maps are in fact uniformly hyperbolic, beginning
with the case Eu = {0} in the next subsection.

3.2. Proof of Theorem A. By the hypotheses of Theorem A, Eu = {0}, dim(Ec)
= 1, and μ is not supported on a stationary point. We seek to prove that under
these conditions, μ is supported on an attractive periodic orbit.

First we choose δ = 2δ0 to be a small number with the property that e−λ0+2δ +
20δ < 1, where λ0 is from Theorem 1, and fix a chart system for the time-one
map f (as in Section 2.1 A) using these values of δ and δ0. (Taking δ = 2δ0 is
purely to simplify notation.) We then choose a point x in the support of μ with
the property that for some n > 0, x and fn(x) are in Γl0,c0 for some l0, c0, and
|fn(x) − x| < ι, where ι = ι(l0, c0) is a small number that we will specify later.
Such orbit segments clearly exist by Poincaré recurrence. Having fixed x and n, we
consider T = Tn−1 ◦ · · · ◦ T1 ◦ T0, where

T0 = Tfn(x),f(x) and Ti = Tfix for 1 ≤ i ≤ n− 1 .

That is to say, T is a return map from the section Σfnx to itself and it is a concate-
nation of a sequence of special section maps. It simplifies the exposition slightly to
extend the sequence {Ti} periodically by letting Tn+i = Ti for all i ∈ Z

+.
Passing to the Lyapunov coordinates for section maps introduced in Section 3.1,

we will show that there are numbers ri > 0 with rn+i = ri and a < 1 such that

(i) T̃i(B̃
s(0, ri)) ⊂ B̃s(0, ri+1), and

(ii) for all z ∈ B̃s(0, ri), ‖D(T̃i)z‖ ≤ a.

These two assertions together will imply that T̃ , the counterpart of T in Lyapunov
coordinates, is a contraction mapping of B̃s(0, r0) into itself. Hence T has a fixed
point z0.

To prove (i) and (ii), consider first Ti for i = 1, · · · , n − 1, the case of i = 0
being a little different. By Lemma 7(2)(b)(i) together with Theorem 1, we have

‖D(T̃i)0‖ ≤ e−λ0+δ. To prove (ii), then, the relevant quantities are D2T̃i and ri,
bounds for both of which are given in Lemma 7 ((2)(c) and the estimate for ρ̃) and
are expressed in terms of the functions l(·) and c(·). Since x ∈ Γl0,c0 , we have, for
i = 1, · · · , n−1, l(f ix) ≤ l0e

iδ and c(f ix) ≥ c0e
−iδ by Proposition 3. This prompts

us to try

ri = M−1δ(l0e
(i+1)δ)−7(c0e

−(i+1)δ)3 .

We verify that this is a viable choice: Let i ∈ {1, · · · , n− 1} be fixed. In order

to apply Lemma 7 to T̃i, we must have ri ≤ ρ̃, where l0 and c0 in the bound for ρ̃
are replaced by l0e

(i+1)δ and c0e
−(i+1)δ (since f i(x), f i+1(x) ∈ Γl0e(i+1)δ,c0e−(i+1)δ).

With l0 ≥ 1 and c0 ≤ 1, this inequality is clearly satisfied. By Lemma 7(2)(c), we
then have

‖D(T̃i)z‖ ≤ e−λ0+δ + ‖D2T̃i‖ri ≤ e−λ0+δ + δ,

which is guaranteed to be < 1− 19δ, proving (ii). To prove (i), we need

‖DT̃i‖ · ri < ri+1 .

Since ri+1/ri ≥ e−10δ, the inequality above is valid as e−10δ ≈ 1− 10δ.
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For T0, notice that there is some room in the arguments above. Since x, f(x) and
fn(x) are all in Γl0eδ,c0e−δ , we are in the setting of Lemma 7 with x1 �= f−1(x2).

Taking ι < Δ̃, we have |T̃0(0)| ≤ M(l0e
δ)2ι by (2)(a), and (2)(b)(ii) says we can

make ‖D(T̃0)0‖ < e−λ0+2δ by shrinking ι further.
This completes the proofs of (i) and (ii) above.
Returning to the main argument, we have proved that F (p, z0) = z0, where

z0 is the fixed point of T found earlier and p =
∑n−1

i=0 τi, where τi ≈ 1 is the
time it takes for the orbit of z0 to travel between the successive sections. Let
O(z0) := {F (t, z0), t ≥ 0}. We have, in fact, proved that every orbit of the semiflow

starting from Φfnx(B̃
s(0, r0)) will converge to O(z0). It remains to argue that μ is

supported on O(z0), and that this is a stable periodic orbit.
Since x is a density point of μ, there is a small neighborhood U of x in H such

that μ(U ∩ Γ) > 0 and all orbits of the semiflow starting from U will eventually

reach ΦfnxB̃
s(0, r0). Hence they converge to O(z0) as t → ∞. Poincaré recurrence

then implies that μ(U \ O(z0)) = 0, and ergodicity on top of that implies that μ is
supported on O(z0). Since by hypothesis Eu = {0} and dim(Ec) = 1, all but one
of the eigenvalues of Dfp

z0 must have modulus < 1. �

4. Hyperbolicity of section maps and proof of Theorem B

In the case where Eu and Ec are both nontrivial, generalized local stable and
unstable manifolds for suitable concatenations, special section maps are needed to
produce the periodic orbits asserted in Theorem B (as well as the objects asserted in
Theorems C and D). Some abstractly formulated results for sequences of hyperbolic
maps are recalled in Section 4.1. A connection to the present situation is made in
Section 4.2, and Theorem B is proved in Section 4.3.

4.1. Time-dependent hyperbolic maps (review).
The setting and notation of this subsection is independent of that of the rest of

this paper, although some of the same symbols are used (to denote objects with
similar meaning). For example, we will continue to use H to denote a separable
Hilbert space, Eu and Es to denote expanding and contracting subspaces, etc. For
linear spaces X and Y , L(X,Y ) denotes the set of all bounded linear maps from X
to Y . The following results are taken from [6], Section 4.1.

Setting. Let λ1 > 0 be fixed, and let δ1 and δ2 > 0 be as small as necessary
depending on λ1. We assume there is a splitting of H into orthogonal subspaces
H = Eu ⊕ Es with dim(Eu) < ∞. For i ∈ Z, let ri be positive numbers such that
ri+1e

−δ1 < ri < ri+1e
δ1 for all i, and let Bi = Bu

i ×Bs
i , where Bτ

i = Bτ (0, ri), τ =
u, s. We consider a sequence of differentiable maps

gi : Bi → H, i = · · · ,−1, 0, 1, 2, · · · ,
such that for each i, gi = Λi +Gi, where Λi and Gi are as follows:

(I) Λi ∈ L(H,H) and splits into Λi = Λu
i ⊕ Λs

i , where Λu
i ∈ L(Eu, Eu), Λs

i ∈
L(Es, Es), and ‖(Λu

i )
−1‖, ‖Λs

i‖ ≤ e−λ1 ;
(II) |Gi(0)| < δ2ri+1, and ‖DGi(x)‖ < δ2 for all x ∈ Bi.

For slightly stronger results, we assume also

(III) there are positive numbers �i with �i+1e
−δ1 < �i < �i+1e

δ1 such that
Lip(DGi) < �i.
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Orthogonal projections from H to Eu and Es are denoted by πu and πs respectively.
Propositions 8, 9 and 10 below are Propositions 5,6 and 8 respectively in Section

4.1 of [6].

Proposition 8 (Local unstable manifolds). Assume (I) and (II), and let δ1 and δ2
(depending only on λ1) be sufficiently small. Then for each i there is a differentiable
function hu

i : Bu
i → Bs

i depending only on {gj , j < i}, with
(i) |hu(0)| < 1

2ri and

(ii) ‖Dhu
i ‖ ≤ 1

10
such that if Wu

i =graph(hu
i ), then

(a) gi(W
u
i ) ⊃ Wu

i+1;
(b) for x, y ∈ Wu

i such that gix, giy ∈ Bi+1,

|πu(gix)− πu(giy)| > (eλ1 − 2δ2)|πux− πuy|.
If (III) holds additionally, then hu

i ∈ C1+Lip with Lip(Dhu
i ) < const·�i.

Proposition 9 (Local stable manifolds). Assume (I) and (II), and let δ1 and δ2
(depending only on λ1) be sufficiently small. Then for each i there is a differentiable
function hs

i : B
s
i → Bu

i depending only on {gj , j ≥ i}, with
(i) |hs

i (0)| < 1
2ri and

(ii) ‖Dhs
i‖ ≤ 1

10
such that if W s

i =graph(hs
i ), then

(a) giW
s
i ⊂ W s

i+1;

(b) for x, y ∈ W s
i , |πs(gix)− πs(giy)| < (e−λ1 + 2δ2)|πsx− πsy|.

If (III) holds additionally, then hs
i ∈ C1+Lip with Lip(Dhs

i ) < const·�i.

We remark that (i) δ1 and δ2 do not depend on ri or �i, and (ii) the C1+Lip

property of hu
i and hs

i in Propositions 8 and 9 can be replaced by C1+α with the
Lip(DGi) condition in (III) replaced by one on the Cα-norm of DGi.

The following result tells us how hs
0 and hu

0 vary in the C1-topology with {gi}
in the setting at the beginning of this subsection.

Proposition 10. Let λ1, δ1 and δ2 be as in Proposition 9, and let r0 and �0 be
fixed. Given ε > 0, there exists N = N(ε) such that if {gi} and {ĝi} are two
sequences of maps satisfying Conditions (I)–(III) and gi = ĝi for all 0 ≤ i ≤ N ,

then ‖hs
0 − ĥs

0‖C1 < ε, where hs
0 and ĥs

0 are as in Proposition 9 for {gi} and {ĝi}
respectively.

Analogous results hold for hu
0 provided gi = ĝi for −N < i < 0 for large enough

N .

4.2. Hyperbolicity of special section maps. Returning to the setting of Section
1, we assume here that Eu, Es �= {0}, and record the following hyperbolic estimates
for special section maps in Lyapunov coordinates.

We fix a system of charts (with no particular conditions on δ0 or δ for the
moment), and let x1 and x2 be such that x1 is near f−1(x2). To put the maps

T̃x1,x2
into the setting of Section 4.1, we define, for σ = u, s,

Λσ = D(f̃f−1(x2))0J
σ,σ
x1,f−1(x2)

|Ẽσ ,

where Jσ,σ
x,y is as defined in Section 2.1 B, so that Λσ ∈ L(Ẽσ, Ẽσ). Let

Λ = Λu ⊕ Λs and G = T̃x1,x2
− Λ .
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Lemma 11. Assume that both x2 and f−1(x2) belong to Γl0,c0 . Then given δ̄ > 0,

there exists Δ̃1 depending on δ̄, δ, δ0, l0 and c0 only such that for any x1 ∈ Γl0,c0 ∩
B(f−1(x2), Δ̃1), T̃x1,x2

is defined on B̃u(0, ρ̃1)× B̃s(0, ρ̃1) for

ρ̃1 = min{1
2
M−1δ̄l−7

0 c30, δl
−1
0 }.

Moreover:

(1) ‖(Λu)−1‖, ‖Λs‖ ≤ e−λ0+3δ0 ;
(2) |G(0)| ≤ Ml20 · |x2 − f(x1)|;
(3) ‖DG‖ < δ̄;
(4) Lip(DG) ≤ Ml70c

−3
0 .

Proof. If we take Δ̃1 ≤ Δ̃ and ρ̃1 ≤ ρ̃, where Δ̃ and ρ̃ are from Lemma 7, then (2)
and (4) are immediate.

To prove (1), we apply Proposition 4 with ε < min{eδ0 − 1, 1− e−δ0} by taking

f(x1) close enough to x2, i.e. by requiring Δ̃1 < Δ, where Δ is as in Proposition 4.
The error e−3δ0 in eλ0−3δ0 comes from two sources: e−2δ0 is from the chart system
and e−δ0 is from Jσ,σ

x1,f−1(x2)
.

To prove (3), once we show that ‖DG0‖ can be made ≤ 1
2 δ̄, by taking Δ̃1 small

enough, the result will follow, for the ρ̃1 specified, from the Lipschitz constant in
(4). That ‖DG0‖ can be made arbitrarily small is quite obvious. In detail: Let Ť
be as in Lemma 6 and use x2 as x. Then

D(T̃x1,x2
)0 = Lx2

(DŤx1
)L−1

x1
|Ẽus

= Lx2
DŤf−1(x2)L

−1
x1

|Ẽus + Lx2
(DŤf−1(x2) −DŤx1

)L−1
x1

|Ẽus

=
⊕
σ=u,s

Lx2
Dff−1(x2)L

−1
f−1(x2)

Jσ,σ
x1,f−1(x2)

|Ẽσ

+
⊕
σ �=σ′

Lx2
Dff−1(x2)L

−1
f−1(x2)

Jσ,σ′

x1,f−1(x2)
|Ẽσ

+ Lx2
(DŤf−1(x2) −DŤx1

)L−1
x1

|Ẽus .

Since the
⊕

σ=u,s term is precisely Λ, DG0 is the sum of the last two lines in the
displayed formulas, and that can clearly be made as small as we wish by Proposition
4 and (II)(ii) of Lemma 6, provided that Δ̃1 is taken small enough. �

4.3. Proof of Theorem B. When (F, μ) has only one zero Lyapunov exponent,
Theorem B asserts the following dichotomy: either (1) μ is supported on a periodic
orbit, or (2) there are infinitely many unstable periodic orbits accumulating on all
parts of the support of μ. We assume that (1) does not hold. Let x0 be an arbitrary
point in the support of μ, and let ε0 > 0 be given. The aim of this subsection is to
produce a periodic orbit which meets B(x0, ε0), the ball of radius ε0 and center x0,
and to show that this periodic orbit is linearly unstable.

Existence of periodic orbits: The proof below follows closely that of Theorem
A; adaptations are made where necessary to deal with the additional complexity of
a nontrivial Eu, and also to make the periodic orbit pass through B(x0, ε0).

Let λ1 = 99
100λ0, where λ0 is from Theorem 1, and let δ1 and δ2 > 0 be given by

Propositions 8 and 9 for this value of λ1. We fix a chart system with δ = 2δ0 ≤
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min{ 1
10δ1,

1
200λ0}. Let l0 and c0 be such that μ(Γc0,l0 ∩ B(x0,

1
2ε0)) > 0. We seek

an orbit segment x, f(x), · · · , fn(x) with the properties that
(i) x, fn(x) ∈ Γc0,l0 ∩B(x0,

1
2ε0), and

(ii) |x− fn(x)| < ι for some ι = ι(l0, c0) to be specified.
Such an orbit segment clearly exists by Poincaré recurrence. As in the proof of
Theorem A, we consider the return map

T := Tfn−1x ◦ · · · ◦ Tfx ◦ Tfnx,fx

from Σfnx to itself, and seek to produce z0 ∈ Σfnx∩B(x0, ε0) such that T (z0) = z0.

For each i, let B̃us
i := B̃u(0, ri) × B̃s(0, ri) where the ri are to be specified.

Following the notation in Section 4.1, to which we will appeal momentarily, we let
gi : B̃

us
i → Ẽus be given by

g0 = T̃fnx,fx and gi = T̃fix for i = 1, 2, · · · , n− 1 ,

and extend this sequence periodically to all i ∈ Z by setting gn+i = gi and rn+i = ri.
Our main task is to show that ri can be chosen so that {gi} satisfies the conditions
of Section 4.1. Once that is done, we will have, by Proposition 9, a local stable
manifold W s

i ⊂ B̃us
i for each i. By Proposition 9(a),(b), gi(W

s
i ) ⊂ W s

i+1 and

(gi)|W s
i
is a contraction. This means that g(n) := gn−1 ◦ · · · ◦ g0 maps W s

0 into itself
and is a contraction. Hence it has a fixed point z̃0 ∈ W s

i .
We now try to put gi into the setting of Section 4.1. Section 4.2 tells us how to

represent each gi as

gi = Λi +Gi = Λu
i ⊕ Λs

i +Gi,

namely that for σ = u, s,

Λσ
i = D(gi)0|Ẽσ = D(f̃fix)0|Ẽσ , i = 1, · · · , n− 1 ,

Λσ
0 = D(f̃x)0J

σ,σ
fn(x),x|Ẽσ .

By Lemma 11 and the fact that λ0 − 3δ0 > λ1, Λi satisfies Condition (I) in Section
4.1 for ι small enough.

As for the choice of ri, we cannot take them to be monotonically decreasing
from r0 to rn−1 as was done in the proof of Theorem A, because this may result

in rn−1 � rn = r0 and we need each gi to map B̃us
i completely across B̃us

i+1 in the

u-direction. It is natural to use quantities related to l(f ix) and c(f ix) for gi, but
notice that x, fn(x) ∈ Γl0,c0 does not imply l(x) ≈ l(fnx) or c(x) ≈ c(fnx). This
prompts us to try the following: Let li = max{l0, l(f ix)} and ci = min{c0, c(f ix)}.
Notice that this does not change previous definitions of l0 and c0, and that ln = l0
and cn = c0. Define

r′i = min{δ2, δ} ·M−1(lie
δ)−7(cie

−δ)3 for i = 0, 1, · · · , n− 1 .

Since l(f i+1x) = l(f ix)e±δ and c(f i+1x) = c(x)e±δ, it follows that

e−δ1 ≤ e−10δ ≤
r′i+1

r′i
≤ e10δ ≤ eδ1 .

We seek to apply Lemma 11 to gi with δ̄ = 1
2δ2 and with lie

δ and cie
−δ in the

place of l0 and c0. This is because for i �= 0, f ix, f i+1x ∈ Γlieδ,cie−δ , and fnx, x
and fx are all in Γl0eδ,c0e−δ . Note that r′i ≤ ρ̃1 (where ρ̃1 is as in Lemma 11) by our
choice of r′i. With regard to Condition (II) in Section 4.1: for i �= 0, Gi(0) = 0, and
|G0(0)| can clearly be made < δ2r

′
1 by taking ι small enough. To bound ‖DGi‖, it
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suffices to show that ‖D2Gi‖r′i < 1
2δ2, which is also true by design. (III) is evident

as well with �i = M(lie
δ)7(cie

−δ)−3.
This completes the verification that permits the application of Proposition 9. To

ensure that the fixed point z0 of T lies in B(x0, ε0), it suffices to take

ri = min{ 1

2
√
3
ε0, r

′
i} .

That z0 gives rise to a periodic orbit of the semiflow is obvious. �

Linear instability of periodic orbits: Let p be the period of the orbit of the
semiflow through z0. We will produce an embedded disk γu passing through z0
such that (i) f−p(γu) ⊂ γu, and (ii) there exist λ, c > 0 such that for all z ∈ γu,
|f−tz − f−tz0| < ce−λt for all t > 0.

Proposition 8 applied to {gi} gives in each B̃us
i a local unstable manifold Wu

i ,
and γ = Φfnx(W

u
0 ) is a local unstable manifold at z0 for the mapping T . The disk

γ is, however, not necessarily invariant under fp. Our candidate for γu is ψ(γ),
where for z ∈ γ, ψ(z) := limi→∞ f ip(T −i(z)) if this limit exists.

We first verify that ψ : γ → H is a well-defined C1 mapping. Proposition 8(a),(b)
tell us that restricted to γ, T −1 is a well-defined contraction which maps γ into
itself. This implies that for z ∈ γ, F (t, z) is defined for all t ∈ (−∞,∞). For z ∈ γ,
define Δi(z) to be the unique number with

f ip(T −i(z)) = fΔi(z)(z) .

Letting τ̂ be the return time function given by T (z) = F (τ̂(z), z), this is equivalent
to

(9) Δi+1(z)−Δi(z) = p− τ̂ (T −(i+1)(z)) = τ̂(z0)− τ̂(T −(i+1)(z)) .

To see that Δi → Δ for some Δ, observe that the rightmost quantity in (9) tends to
0 exponentially with i: ‖Dτ̂‖ is bounded on γ (continuity of Dτ̂ and compactness
of γ) and T −i(z) → z0 exponentially. To prove that Δ is C1, we need to show that
as a function on γ, the derivatives of Δi+1 − Δi decay exponentially to 0 with i;
that is evident as ‖D(T |γ)−i‖ is exponentially small. Thus ψ(z) = fΔ(z)(z) is C1

on γ.
It suffices to show that ψ is an embedding in a neighborhood of z0. This is

true because the mapping Ψ(t, z) = F (τ̂(z) + t, z) = F (t, T z) from R × γ to H

has rank dim(Eu) + 1 at (0, z0); it is therefore an embedding when restricted to
a neighborhood of (0, z0) in R × γ. Since Δ(T z) → 0 as z → z0, the mapping
z �→ ψ(T z) = Ψ(Δ(T z), z) is also an embedding from a neighborhood of z0 in
γ into H. Since T |γ is a local diffeomorphism at z0, we have in fact shown that
z �→ ψ(z) is an embedding near z0.

Finally, let γu = ψ(γ). It is straightforward to check that f−pψ = ψT −1,
implying f−p(γu) ⊂ γu. Finally, for y = ψ(z),

|f−ip(y)− z0| = |ψ(T −i(z))− ψ(z0)| .

Condition (ii) in the first paragraph of the proof is met as ‖Dψ‖ is bounded and
T −i(z) → z0 exponentially and uniformly on γ. �
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5. Proofs of Theorems C and D

We begin by focusing on the following version of Theorem D:

Theorem D*. Suppose hμ(f) > 0, and let γ > 0 be given. Then the semiflow F
has a section D, a return map T : D → D and m,n ∈ Z

+ such that

(1) T has a (bi-invariant) horseshoe Ω ⊂ D with m symbols;
(2) for x ∈ Ω, T (x) = fτ(x)(x) for some τ (x) ≤ n+ 1;
(3) 1

n+1 logm > hμ(f)− γ.

Section 5.2 contains a complete proof of Theorem D* modulo a few precisely
formulated technical estimates, the proofs of which we postpone to Section 6. Proofs
of Theorems C and D are deduced from Theorem D* in Section 5.

5.1. Idea of proof and discussion of issues.

Outline of Proof. Here we discuss informally the main ingredients of the proof,
leaving precise formulations to the next subsection.
(a) First we fix a set U ⊂ Γl0,c0 such that (i) μ(U) > 0 and (ii) U is small enough
that we can pass from Σx to Σy for x, y ∈ U without issue, meaning special section
maps of the form Tx,f(y) and Tf−1(x),y are admissible in the sense of Lemma 11.
(b) Let α > 0 be such that most of hμ(f) is captured by the growth rate of (n, α)-
separated sets (for the time-one map f), and fix an (n, α)-separated set E such
that

(i) E, fn(E) ⊂ U ;
(ii) 1

n+1 log |E| > hμ(f)− γ,

where |E| denotes the cardinality of E.
(c) We fix a codimension 1 disk D roughly parallel to Σx, x ∈ U , with D somewhat
larger than U and having U located near its center. Then through each y ∈ E passes
an orbit segment of the semiflow which starts from ŷ ∈ D, ŷ ≈ y, and ends in T (ŷ) =
fτ(ŷ)(ŷ) ∈ D with τ (ŷ) ≈ n. We follow the orbits near this segment via a sequence
of special section maps, the intermediate sections being centered at approximately
f(y), f2(y), · · · , fn−1(y). Slowly varying domains (as in the proof of Theorem B)
are fixed in each section and are called, for now, Di(y), i = 1, 2, · · · , n − 1. To
repeat: following the orbit of each y ∈ E are n special section maps for which D is
both the domain of the first and the range of the last.
(d) For each y ∈ E, let V (y) = {z ∈ D : the F -orbit of z passes through Di(y) for
i = 1, · · · , n− 1 and returns to D}. By the hyperbolicity of section maps (Lemma
11), we know that V (y) is very small in the Eu-direction and runs the full size of D
in the Es-direction. We call it a stable cylinder and will argue that for every pair
x, y ∈ E, T (V (y)) crosses completely V (x) in the u-direction, thereby producing a
horseshoe.

Conceptual issues. A difference between hyperbolic maps and semiflows is that in
the latter, separation of nearby orbits need not be due to expansion in the Eu-
direction: Nearby points move with slightly different speeds, the cumulative effect
of which may cause some points to slide ahead of others in the flow direction, in a
phenomenon we call shear. Thus it is possible to have V (x)∩V (y) �= ∅ for x, y ∈ E
with x �= y, posing problems in the horseshoe construction.

One can attempt to deal with shear in various ways. One possibility is to shrink
the domains D and Di(y) while keeping α fixed, in the hope that no α-separation
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due to shear can occur in time τ ≈ n on the smaller stable cylinders V (y). This
can be done, but it will necessitate shrinking U , as T (V (y)) must cross V (x) for
every x, y ∈ E ⊂ U . Shrinking the set from which orbits used to capture entropy
begin and end may, a priori, force us to work with a smaller α, and will almost for
certain increase τ . Decreasing α may again permit α-separations due to shear, and
increasing τ may in principle increase the effects of shear as we give it more time
to act.
The bottom line. The proof outlined above works, because (i) one can replace U by
arbitrarily small subsets of it without changing α, and (ii) for hyperbolic semiflows,
the magnitude of the shear on stable cylinders is determined by the sizes of the Di

at the beginning and the end, and not on the length of the orbit.

5.2. Proof of Theorem D* modulo technical lemmas. For conceptual clarity,
we have divided the proof into six main steps, each embodying a different set of
ideas.

A. Setting up. We begin by fixing a chart system for f and the approximate
location of the section D. As in the proof of Theorem B, let λ1 = 99

100λ0 where
λ0 is from Theorem 1, let δ1, δ2 � λ1 be given by Section 4.1, choose 2δ0 = δ ≤
min{ 1

10δ1,
1

200λ0}, and fix a chart system {Φx} with these values of δ and δ0. The
location of D is quite arbitrary and can be chosen as follows: Since the entropy
result in Lemma 12 is for ergodic measures, we replace μ by an ergodic component
μ̂ if (f, μ) is not ergodic. Notice that hμ̂(f) = hμ(f) as all ergodic components are
f t-images of one another. Let l0 and c0 be such that μ̂(Γl0,c0) > 0. We fix a point
x0 in the support of μ̂|Γl0,c0

and let U = B(x0, ε0) ∩ Γl0,c0 , where ε0 > 0 is a small

number (which is not important since U will be subdivided momentarily).
Let γ > 0 be as in the statement of Theorem D* and assume it is fixed through-

out.

B. Capturing entropy. For α > 0 and n ∈ Z
+, we say that x, y ∈ H are (n, α)-

separated under f if there exists k ∈ {0, 1, · · · , n−1} such that |fk(x)−fk(y)| > α.
The following lemma, which is largely borrowed from [2], makes precise the meaning
of (i) at the end of the last subsection.

Lemma 12. There exists α > 0 such that for any ε > 0, there exist n ∈ N, Û ⊂ U
and E ⊂ Û such that the following hold:

(1) diam(Û) ≤ ε;

(2) E, fn(E) ⊂ Û and E is an (n, α)-separated set of f ;
(3) 1

n+1 ln |E| ≥ hμ(f)− γ.

Notice that α depends on f, γ and U , but is independent of ε or Û . A proof of
Lemma 12 is included in Section 6.1.

C. Controlling shear. We state here two results on the effect of shear. For z ∈ Γ
and i = 0, 1, 2, · · · , let T̃i = T̃fiz be section maps in Lyapunov coordinates, and

write T̃ (k) = T̃k−1 ◦ · · · ◦ T̃0. Let r̂i be such that (i) r̂ie
−δ1 ≤ r̂i+1 ≤ r̂ie

δ1 and (ii)
r̂i < ρ̃1, where ρ̃1 is as in Lemma 11 with l0 and c0 replaced by l(f iz) and c(f iz)

respectively. Let B̃us
i = B̃u(0, r̂i)× B̃s(0, r̂i) and define

Ṽn = {y ∈ B̃u(0, r̂0)× B̃s(0,
1

2
r̂0) | T̃ (i)(y) ∈ B̃us

i ∀ 1 ≤ i ≤ n} .
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(The initial box is smaller in the s-direction to ensure that all points not in Ṽn

leave B̃us
i because their u-coordinates become too large.) For y ∈ Ṽn and j < n, let

τ̃j(y) be the flow time of Φfjz(y) from Σfjz to Σfj+1z, i.e. F (τ̃j(y),Φfjz(T̃
(j)y)) =

Φfj+1z(T̃
(j+1)y), and write τ̃ (i) =

∑i−1
j=0 τ̃j .

Lemma 13. There exists a constant M4 depending on M1, M2, δ, δ0, δ2 and λ1

only such that for any z and r̂i as above and any n ∈ Z
+,

max
0≤i≤n−1

sup
y1,y2∈Ṽn

|τ (i)(y1)− τ (i)(y2)| ≤ M4

(
l(z)2

c(z)
r̂0 +

l(fnz)2

c(fnz)
r̂n

)
.

Lemma 14. Given l0, c0 and α1 > 0, there exists θ1 > 0 independent of n such
that for any z and r̂i as above, if z, fn(z) ∈ Γl0,c0 and r̂0, r̂n < θ1, then

(10) max
0≤i≤n

sup
y∈Ṽn

|f i(z)− f i(Φzy)| ≤ α1 .

Notice that both the bound in Lemma 13 and θ1 in Lemma 14 involve information
on the first and last points of the orbit segment but not its length. These two
lemmas are proved in Section 6.3.

D. Definition of return map. Let {Φx}, γ, l0, c0 and U ⊂ Γl0,c0 be fixed as
was done in Paragraph A. We let α be admissible with respect to Lemma 12 and
� d0, where d0 is as in Section 2.2. Two numbers, θ and ε, are specified next. We
go forward with the definition of T : D → D assuming these numbers have been
chosen, postponing the discussion of their choices to Paragraph E (where it will

make more sense). We apply Lemma 12 to get Û ⊂ U with diam(Û) ≤ ε and an

(n, α)-separated set E ⊂ Û with the property that 1
n+1 log |E| ≥ hμ(f)− γ.

Let E = {z1, · · · , zm}. We fix an arbitrary point z̄ ∈ Û , fix j ∈ {1, 2, · · · ,m},
and consider the return dynamics to Σz̄ following the orbit of one zj at a time. The
return map Tj from a subset of Σz̄ to Σz̄ is defined by the concatenation of special
section maps

(11) Tj := Tfn−1(zj),z̄ ◦ Tfn−2(zj) ◦ · · · ◦ Tf(zj) ◦ Tz̄,f(zj) .

In Lyapunov coordinates, the domains of these n special section maps are chosen as
follows: First we consider the sequence T̃fn−1(zj)◦· · ·◦ T̃f(zj)◦ T̃zj (which is different
than the sequence in (11) in the first and last maps), and let r′j,i, 0 ≤ i ≤ n− 1, be
chosen the same way that the sequence r′i is chosen in the proof of Theorem B. We

then let rj,i = θr′j,i, and define B̃us
j,i = B̃u(0, rj,i) × B̃s(0, rj,i), i = 0, 1, · · · , n − 1,

with the sections now centered at z̄, f(zj), · · · , fn−1(zj). Sometimes we will work

with section maps with larger domains; let 2B̃us
j,i denote domains with radius 2rj,i.

The constants θ and ε are chosen so that the maps in (11) on these two sets of
domains are viable in the sense of Lemma 11. Notice that r′j,0 does not depend on

j, so we may write r0 = θr′0 = θr′j,0 and B̃us
0 = B̃us

j,0. Define D = Φz̄(B̃
us
0 ) and

2D = Φz̄(2B̃
us
0 ).

Stable cylinders corresponding to zj are defined as follows. In Lyapunov coor-

dinates, Ṽ j = Ṽ j
n is defined as in Paragraph C, using 2rj,i in the place of r̂i and

letting B̃us
n = B̃us

0 . Then V j := Φz̄(Ṽ
j), and {V j , 1 ≤ j ≤ m} are the stable

cylinders we referred to in part (d) in the outline of the proof in Section 5.1. We
will explain momentarily how our choices of θ and ε have ensured that these sets
are pairwise disjoint.
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The return map T : 2D → 2D is given by T |V j = Tj . Notice that in spite of the
notation, T is in fact defined only on

⋃
j V

j .

Conditions on θ and ε and some consequences. A finite number of conditions
is imposed on θ and ε, with θ chosen before ε. We state below the nature of these
conditions, all of which are upper bounds. It is crucial that these conditions do not
depend on z̄, E or n, which are chosen after θ and ε.

The following conditions are imposed on θ: As declared in Section 2.2, all sections
considered must lie well inside Ad0

, so that certain derivative bounds apply. This
condition is implicit in our choice of θ. Additionally, we require:
(a)(i) 2θr′0 < θ1, where θ1 is given by Lemma 14 with α1 = 1

10α; and
(a)(ii) 2θr′0 < θ2, where θ2 = θ2(c0, l0,M1,M2,M4) is small enough that

(12) 2max{M4,M}e2(δ+δ0)(l20/c0)θ2 < min

{
α

5M1
,

c0
10M1M2l20

}

and M4 is as in Lemma 13.
The number ε appears as an upper bound on the diameter of Û . It must be

small enough to ensure the following:
(b)(i) The “switchings of charts” at z̄ (involving Tfn−1(zj),z̄ and Tz̄,f(zj)) meet the
conditions of Lemma 11.
(b)(ii) For each zj ∈ E, there exists ẑj ∈ Φz̄(B̃

us
0 ) with the property that Tz̄,f(zj)(ẑj)

= f(zj) and |τ (ẑj)− n| < c0
10M2l20

.

(b)(iii) We assume also that ε is small enough that the results of Lemmas 13 and
14 can be applied, with slightly relaxed constants, to compositions of section maps
defined by sequences of the form · · · ◦ Tj3 ◦ Tj2 ◦ Tj1 .

Even though z̄, elements of E and n are mentioned explicitly in (b)(i)–(b)(iii)
above, we stress that the conditions imposed depend only on l0 and c0. That such
an ε exists with the properties in (b)(i) and (b)(ii) is by now routine and left as
an exercise. The composition in (b)(iii) may involve arbitrarily many jumps (or
“switching of charts”). The same argument as in the proof of Lemma 13 shows
that errors do not accumulate once the hyperbolicity conditions in Lemma 11 are
met; see Remark 3 following the proof of Lemma 14.

Some additional conditions are imposed on ε in Lemma 19. They are too detailed
to be discussed here.

Consequences of our choices of θ and ε include:
1. V j ∩ V j′ = ∅ for j �= j′: Since zj and zj′ are (n, α)-separated, there exists
i ∈ {0, · · · , n− 1} such that |f i(zj)− f i(zj′)| > α. At the same time, every y ∈ V j

has the property |f i(y)−f i(zj)| < 1
9α and a similar statement holds for V j′ . These

last assertions follow from requirement (a)(i) and a modified version of Lemma 14
made possible by our choice of ε. Proving the disjointness of these stable cylinders
was, as we recall, one of the issues discussed in Section 5.1.
2. For the sequence of section maps defined by any concatenation of the form
Tjk ◦ · · · ◦ Tj2 ◦ Tj1 , we may assume the quantity in our modified version of Lemma
13 is < min{ α

4M1
, c0
8M2l20

}. This follows from requirement (a)(ii) on θ and our choice

of ε.
3. τ |∪jV j < n + 1: condition (b)(ii) gives a bound on |τ (ẑj) − n| for all j, and

Lemma 13 (modified) gives a bound on |τ (ẑj)− τ (y)| for y ∈ V j .
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F. Construction of horseshoes. We prove here that T : D → D has a horse-
shoe with m symbols, where m = |E|. Since it is a geometric construction, it is
convenient to work in Lyapunov coordinates. We write

(13) gj,i =

⎧⎪⎨
⎪⎩
T̃z̄,f(zj), i = 0,

T̃fi(zj), i = 1, · · · , n− 2

T̃fn−1(zj),z̄, i = n− 1

,

and let g
(i)
j = gj,i−1 ◦ · · · ◦ gj,1 ◦ gj,0. The domain of gj,i is B̃

us
j,i .

(a) Forward-invariant horseshoes. Let a+ = (ai)
∞
i=0 ∈

∏∞
0 {1, · · · ,m} be given.

We assign to a+ a local stable manifold Ψ̃+(a+) in B̃us
0 as follows: Consider the

composition · · · g2 ◦ g1 ◦ g0 given by

(14) gkn+p = gak,p for k ≥ 0 and 0 ≤ p < n .

By Proposition 9 in Section 4.1, there is, for each i = kn+p, a local stable manifold
W̃ s

i in B̃us
ak,p

with the property that gi(W̃
s
i ) ⊂ W̃ s

i+1. Define Ψ̃+(a+) = W̃ s
0 and

Ψ+(a+) = Φz̄(Ψ̃
+(a+)).

Since the manifolds W̃ s
i in Proposition 9 are unique, it follows that T̃ (Ψ̃+(a+)) ⊂

Ψ̃+(σ(a+)), where T̃ is T in Lyapunov coordinates and σ is the shift on symbol se-

quences. We claim that Ψ̃+(a+)∩Ψ̃+(b+) = ∅ for a+ �= b+: Suppose y ∈ Ψ̃+(a+)∩
Ψ̃+(b+) and ai �= bi for some i ≥ 0. Then T̃ i(y) ∈ Ψ̃+(σi(a+))∩Ψ̃+(σi(b+)). That

is impossible since by definition, Ψ̃+(σi(a+)) ⊂ V ai and Ψ̃+(σi(b+)) ⊂ V bi , and

we have shown that Ṽ ai ∩ Ṽ bi = ∅. Finally, as embedded disks, Ψ̃+(a+) and hence
Ψ+(a+) vary continuously with a+ by Proposition 10, fulfilling our definition of a
forward-invariant horseshoe.
(b) Bi-invariant horseshoes. Here we need to produce a continuous one-to-one

mapping Ψ̃ :
∏∞

−∞{1, · · · ,m} → B̃us
0 that conjugates the action of T̃ on Ψ̃(

∏∞
−∞{1,

· · · ,m}) with the shift σ. Let a = (ai)
∞
i=−∞ be given. We define the maps gi as

in (14) except that we now take k ∈ Z, and let Ψ̃(a) be the unique point in⋂
i≥0 T̃ i(W̃ s

−ni): since T̃ i|W̃ s
−ni

is a contraction, T̃ i(W̃ s
−ni) is a decreasing sequence

in W̃ s
0 the diameters of which go to zero. An alternate characterization of Ψ̃(a) is

that it is the unique point in W̃ s
0 ∩ W̃u

0 , where the W̃
u
i are local unstable manifolds

(Proposition 8): That Ψ̃(a) ∈ W̃ s
0 ∩ W̃u

0 follows from the construction of W̃u
0 ; it is

the the unique point in this intersection because no two points in W̃u
0 can remain

in the specified sequence of charts in all future times. Finally, let Ψ(a) = Φz̄(Ψ̃(a)).
As before, we have T (Ψ(a)) = Ψ(σ(a)) by construction, and Proposition 10

tells us that Ψ(a) varies continuously with a, proving that Ψ is at least a semi-
conjugacy between σ and T . It remains to prove that Ψ is one-to-one. Let a = (ai)
and b = (bi) be such that a �= b. If ai �= bi for some i ≥ 0, then the argument is as
in the forward-invariant case. The case where ai = bi for all i ≥ 0 but a−k �= b−k

for some k > 0 is more subtle: We know that Ψ(σ−ka) �= Ψ(σ−kb) because they
lie in different stable cylinders, but we need to show that the T k-images of these
two points are distinct. This is done by applying the following lemma k times:

Let Ω = Ψ(
∏∞

−∞{1, · · · ,m}).

Lemma 15. T |Ω is one-to-one.
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Lemma 15 is proved in Section 6.3. Finally, the uniform hyperbolicity of T |Ω
follows from that of T̃ , and the latter is deduced easily from the results stated in
Section 4.1.

Modulo the technical lemmas whose proofs are postponed to the next section,
the proof of Theorem D* is now complete. �
Remark 2. 1. We have assumed in the construction above that for all z ∈

⋃
j V

j ,

f t(z) ∈ A 1
2d0

for all t ∈ [0, τ (z)], where τ is the return time to 2D. See Sublemma
2.

2. Lemma 15 uses the injectivity of f t in a neighborhood of A (see (C1) in
Section 1.1). Still, the injectivity of T |∪V j appears not to follow immediately from
the injectivity of f t due to technical issues related to backward continuations of
orbits. That is why Lemma 15 asserts only the injectivity of T on the horseshoe Ω.

5.3. Proofs of Theorems C and D.

Proof of Theorem C. For k ∈ Z
+, let Pk = {x ∈ Ω : T k(x) = x}. Then the

cardinality of Pk is mk, and each x ∈ Pk gives rise to a periodic orbit of period
≤ k(n + 1), where m and n are as in Theorem D*. If it were the case that each
such orbit returns to Ω only k times, we would have

(15)
1

k(n+ 1)
logN(k(n+ 1)) ≥ 1

k(n+ 1)
log

mk

k
> hμ(f)− γ

for k large, proving the assertion. The assumption of at most k returns, however,
has no basis: for y ∈ Ω, there is nothing in our construction that forbids the orbit
segment {F (t, y), t ∈ [0, τ (y))} to meet Ω multiple times. Instead we prove:

Lemma 16. There exists t0 > 0 such that for all y ∈ Ω, f t(y) �∈ Ω for all t ∈ (0, t0).

Lemma 16 is proved in Section 6.3 along with Lemma 15. Replacing mk/k in
(15) by t0m

k/k(n+ 1) does not alter the large-k limit. �
Completing the proof of Theorem D. We have shown that each a ∈

∏∞
−∞{1,

· · · ,m} gives rise to an F -orbit corresponding to z0 = Ψ(a). To see that F (t, z0)
is defined for all t ∈ R, notice that for every i ∈ Z

+, f ti(Ψ(σ−i(a)) = z0 for some
ti > 0. This proves that F (t, z0) is defined for all t ∈ [−ti,∞), and ti → ∞ as

i → ∞. Let Ω̂ :=
⋃

t∈R
f t(Ω) =

⋃
t≥0 f

t(Ω) be the suspension of the horseshoe.

Injectivity of f t together with the existence of backward continuations says that
restricted to Ω̂, f t is a flow.

Extending the definition in Paragraph D of Section 5.2, we define the stable
cylinder of length k corresponding to (a0, a1, · · · , ak−1), ai ∈ {1, 2, · · · ,m}, to be

V (a0, a1, · · · , ak−1) := V a0 ∩ T −1(V a1) ∩ · · · ∩ T −k+1(V ak−1) .

To prove htop(f |Ω̂) > hμ(f) − γ, it suffices to produce a suitable number α̂ > 0
such that for every k ∈ Z

+, any two points x and y in two distinct stable cylinders
of length k are (k(n + 1), α̂)-separated. (For k = 1, this was proved in the last
subsection with α̂ = α.) Assume for definiteness that x and y lie in the same
(q − 1)-cylinder of Ω but distinct q-cylinders for some q ≤ k.

For points in a q-cylinder and i ≤ nq, let τ (i) denote the total flow time corre-
sponding to the first i section maps. Suppose τ (n(q−1))(x) = t for some t ∈ R

+,

τ (n(q−1))(y) = t + σ for some σ > 0, f t(x) ∈ V j , and f t+σ(y) ∈ V j′ for some
j �= j′. Paragraph E in Section 5.2 says that |f i(f tx) − f i(f t+σy)| > 1

2α for
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some integer i ≤ n. Now assume σ < α/(4M1) � 1, and let p ∈ Z
+ be such that

t+i, t+σ+i ∈ [p+ 1
2 , p+2]. We claim that we must have |fp(x)−fp(y)| > α/(4M1);

otherwise

|f t+i(x)− f t+σ+i(y)|
≤ |f t+i−p(fpx)− f t+i−p(fpy)|+ |f t+i−p(fpy)− f t+σ+i−p(fpy)|

≤ M1(|fp(x)− fp(y)|+ σ) ≤ 1

2
α ,

which contradicts our earlier finding. To go from line 2 to line 3 in the displayed
formulas above, we have used established derivative bounds on Ad0

(Section 2.2)
together with the following facts: For the second term, fp(y) ∈ A 1

2d0
(Remark 2,

end of Section 5.2) is used. For the first, α/(4M1) <
1
2d0 (beginning of Paragraph

D) is used, so fp(x) ∈ B(fp(y), α/(4M1)) ⊂ Ad0
if |fp(x)− fp(y)| ≤ α/(4M1).

Let α̂ = α/(4M1). We have shown that x and y are guaranteed to be (q(n+1), α̂)-
separated provided |τ (i)(x) − τ (i)(y)| < α/(4M1) for all i ≤ nq. The bound on
|τ (i)(x)− τ (i)(y)| follows from (b)(iii) in the consequences listed in Paragraph E.

The proof of Theorem D is now complete. �

6. Technical proofs

Section 6.1 contains a proof of an abstract result on entropy that we need; this
result is essentially in [2] and is included for completeness. Section 6.2 discusses
the control of shear, a phenomenon that occurs in continuous but not in discrete
time; it is a factor to contend with in both finite and infinite dimensions. Section
6.3 treats a technical issue that arises when our semiflow is not a flow.

6.1. Capturing entropy. The notation and setting in this subsection is separate
from that in the rest of this paper. Let T : X → X be a continuous map of a
compact metric space with metric d(·, ·), and let ν be an ergodic T -invariant Borel
probability measure on X. For n ∈ Z

+, recall that the dTn -metric on X is defined
by

dTn (x, y) = max
0≤i≤n

d(T i(x), T i(y)).

Balls in this metric are denoted by BdT
n
(·, ·). For α, β > 0, let N(n, α;β) denote

the minimum number of α-balls in the dTn -metric needed to cover a set of measure
≥ β in X. Then for any β ∈ (0, 1),

(16) hν(T ) = lim
α→0

lim inf
n→∞

1

n
lnN(n, α;β) .

The following lemma is essentially taken from [2].

Lemma 17. Assume hν(T ) > 0. Given γ > 0 and β ∈ (0, 1
2 ), there exists α0 > 0

such that the following holds for all α ≤ α0: Let S ⊂ X be a Borel subset with
ν(S) ≥ 2β, and let ξ be a finite measurable partition of S. Then given any n0 ∈ Z

+,

there exist Ĉ ∈ ξ, n > n0 and an (n, α)-separated set E such that

(a) E, T n(E) ⊂ Ĉ,
(b) 1

n ln |E| ≥ hν(T )− γ.

Proof. Let h = hν(T ). Given γ and β, we choose α0 so that for all α < α0,

lim inf
k→∞

1

k
logN(k, α;β) > h− 1

2
γ .
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We then fix α < α0, and let S, ξ and n0 be given. The argument below will produce
Ĉ ∈ ξ, n > n0, and an (n, α)-separated set E with properties (a) and (b).

Let χC denote the indicator function of C ⊂ X, and let ε̂ > 0 be a small number
to be specified. For k ∈ Z

+, define

Ck =

{
x ∈ C :

∣∣∣∣∣1k
k−1∑
i=0

χC(T i(x))− ν(C)

∣∣∣∣∣ ≤ 1

3
ε̂ν(C)

}
.

Notice that (1) for each x ∈ Ck ∩ C(1+ε̂)k, there exists m(x) ∈ (k, (1 + ε̂)k] such

that T m(x)(x) ∈ C, and (2) it follows from Birkhoff’s Ergodic Theorem that for
k large enough, we have ν(Ck ∩ C(1+ε̂)k) > 1

2ν(C). Let k1 = k1(ε̂) be such that
(2) holds for all k ≥ k1 for every C ∈ ξ, and let Sk =

⋃
C∈ξ(Ck ∩ C(1+ε̂)k). Then

ν(Sk) ≥ 1
2ν(S).

Next let k2 = k2(ε̂) ≥ max{k1, n0} be such that N(k, α;β) > ek(h−
3
4γ) for all

k ≥ k2. For each such k, let E′
k ⊂ Sk be a maximal (k, α)-separated set with

the property that Sk ⊂
⋃

x∈E′
k
BdT

k
(x, α). It follows that |E′

k| ≥ N(k, α;β). Let

Ĉ ∈ ξ be such that |Ĉ ∩ E′
k| ≥ |E′

k|/|ξ|, and let n ∈ (k, (1 + ε̂)k] be such that

E := {x ∈ Ĉ ∩ E′
k : T n(x) ∈ Ĉ} has the largest cardinality. By (1) in the last

paragraph, |E| ≥ |Ĉ ∩ E′
k|/(ε̂k).

Putting these estimates together, we have

1

n
ln |E| ≥ 1

(1 + ε̂)k
ln

(
1

ε̂k|ξ|N(k, α; β)

)
>

(
1

(1 + ε̂)k
ln

1

ε̂k|ξ|

)
+

(
h− 3

4
γ

1 + ε̂

)
.

The requirements on ε̂ and k are now clear: ε̂ should be chosen small enough that
the last term above is > h − 7

8γ, and k ≥ k2(ε̂) large enough that the second to

last term is > − 1
8γ. The E and n obtained from these values of ε̂ and k have been

shown to satisfy assertion (b). �

Lemma 12 follows immediately from Lemma 18 by letting ξ be a finite partition
of U into sets with diameter ≤ ε (which is possible since A is compact).

6.2. Control of shear. The notation is as in Section 5.2.

Proof of Lemma 13. We begin with the following preliminary bounds on T̃ j(Ṽn),

j ≤ n. Let P = B̃u(0, r̂0)×{c} for some c ∈ B̃s(0, 12 r̂0), and let P1 = T̃z(P )∩ B̃us
1 .

Arguments similar to those used in the proof of Proposition 8 tell us that P1 is the
graph of a function from B̃u(0, r̂1) to B̃s(0, r̂1) with slope < 1

10 , and for x, x′ ∈ P ,

(17) |πuT̃z(x)− πuT̃z(x
′)| ≥ (eλ1 − 2δ2)|πu(x)− πu(x′)| .

Inductively, we obtain analogous results for i = 1, · · · , n−1; i.e., Pi+1 := T̃fi(z)(Pi)∩
B̃u,s

i+1 is the graph of a function from B̃u(0, r̂i+1) to B̃s(0, r̂i+1) with slope < 1
10 ,

and the mapping from Pi to Pi+1 projected in the u-direction has the minimum

expansion in (17). It follows that T̃ (n−1)(P ∩ Ṽn) = Pn, and the diameter of

T̃ (n−i)(P ∩ Ṽn) is ≤ 11
10e

−(i−1)λ′
r̂n, where e−λ′

= (eλ1 − 2δ2)
−1.

Next we fix y ∈ Ṽn and estimate |τ̃i(y) − 1| for 0 ≤ i ≤ n − 1. Let P be as

above and passing through y, and let y′ be the unique point in P ∩ W̃ s where
W̃ s is the local stable manifold in B̃us

0 passing through 0 (Proposition 9). Then
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|T̃ (i)(y′)| ≤ 11
10e

−iλ′′
r̂0, where e−λ′′

= e−λ1 + 2δ2, and

|T (i)(Φz(y))− f i(z)| = |Φfi(z)T̃
(i)(y)− Φfi(z)(0)|

≤
√
3(|T̃ (i)(y′)|+ |T̃ (i)(y)− T̃ (i)(y′)|)

≤ 11

10

√
3(e−iλ′′

r̂0 + e−(n−i−1)λ′
r̂n).

(18)

Here we have used ‖Φfiz‖ ≤
√
3 (Proposition 3). It follows from Lemma 7(1)(a)

that

(19) |τ̃i(y)− 1| ≤ M · e2δl(f i(z))2

e−2δ0c(f i(z))
· (e−iλ′′

r̂0 + e−(n−i−1)λ′
r̂n) .

To complete the proof, we need to sum terms of the type above. As l(·) and c(·)
vary slowly along orbits, we have

l(f i(z)) ≤ min{eiδl(z), e(n−i)δl(fn(z))},
c(f i(z)) ≥ max{e−2iδ0c(z), e−2(n−i)δ0c(fn(z))} .

This together with (19) gives

(20) |τ̃ (i)(y)− i| ≤ M ′
4

(
l(z)2

c(z)
r̂0 +

l(fn(z))2

c(fn(z))
r̂n

)

for some M ′
4 = M ′

4(M1,M2, δ, δ0, δ2, λ1). Take M4 = 2M ′
4. �

Proof of Lemma 14. For y ∈ Ṽn and k ∈ {1, · · · , n}, we have

|fk(Φz(y))− fk(z)| ≤ |T (k)(Φz(y))− fk(Φz(y))|+ |T (k)(Φz(y))− fk(z)| .
The second term is estimated in (18), and tends to 0 as r̂0, r̂n → 0. The first term

= |f τ̃k(y)(Φz(y))− fk(Φz(y))| ≤ M1|τ̃ (k)(y)− k|

provided |τ̃ (k)(y)− k| ≤ 1
2 ; ri ≤ d′0 is used in the last inequality (see Sublemma 2).

A bound for |τ̃ (k)(y)− k| is given in (20). With z, fn(z) ∈ Γl0,c0 , the right side of

(20) is ≤ M ′
4l

2
0c

−1
0 (r̂0 + r̂n). Taking θ1 =

min{1,α1}l−2
0 c0

10M1M4
clearly suffices. �

Remark 3. This remark pertains to condition (b)(ii) in Paragraph E of Section 5.2.
We observe that the proofs of Lemmas 13 and 14 go through in spite of the fact
that an arbitrarily large number of “jumps” may be involved: Since the special
section maps in question satisfy the hyperbolicity conditions in Lemma 11 and the
estimates in Lemma 7, we have that for any two points y1, y2 in a stable cylinder,
|τ̃i(y1)− τ̃i(y2)| is less than the right-hand side of (19) by Lemma 7(1)(b).

6.3. Minimum return time and injectivity of section maps. We have worked
with vx := ∂tF (0, x) for x ∈ A. Observe that the vector vx is in fact defined for
all x ∈ H for which f−t(x) is defined for some t > 0. We begin with the following
preliminary bounds.

Let Ad0
and M2 be as in Sublemma 1 (Section 2.2).

Lemma 18. Let x ∈ Γ, and let y ∈ Σx be such that f t0(y) ∈ Σx for some t0 >
0. Then t0 ≥ min{1, 1

2 |vx|‖πc
x‖−1M−1

2 } provided f−1(y) is defined and |f−1(y) −
f−1(x)| ≤ min{d0, 1

2 |vx|‖πc
x‖−1M−1

2 }.
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Proof. Recall that πc
x : Hx → Ec(x) is the projection associated with the splitting

Hx = (Eu
x ⊕ Es

x) ⊕ Ec
x. We will name a time interval [0, s0) such that for all

s ∈ (0, s0), π
c
x∂tF (s, y) = c(s)vx for some c(s) > 0, equivalently |πc

x∂tF (s, y)−vx| <
max{|vx|, |πc

x∂tF (s, y)|}. This will imply t0 > s0. By assumption, we have, for
s ∈ [0, 1],

|∂tF (1 + s, f−1(y))− vx|
≤ |∂tF (1 + s, f−1(y))− ∂tF (1 + s, f−1(x))|+ |∂tF (1 + s, f−1(x))− vx|
≤ M2(|f−1(y)− f−1(x)|+ s) .

It follows that

|πc
x∂tF (s, y)− vx| ≤ ‖πc

x‖M2(|f−1(y)− f−1(x)|+ s),

the right side of which is < |vx| for s < s0 = min{1, 1
2 |vx|‖πc

x‖−1M−1
2 }. �

Lemma 19. With ε small enough and θ satisfying condition (a)(ii) in Paragraph
E, we have that y ∈ Ω satisfies

|f−1(y)− f−1(z̄)| ≤ 1

2
c0l

−2
0 M−1

2 .

Proof. As noted earlier, f−1(y) is defined for all y ∈ Ω, since there exists w ∈ D
such that T (w) = y. Suppose w ∈ V j and write wi = T (i)(w), where T (i), i =
1, 2, · · · , n, are the section maps following the orbit of zj , and suppose f t1(wn−2) =
f−1(y). Then

|f−1(z̄)− f−1(y)| ≤ |f−1(z̄)− fn−1(zj)|+ |f(fn−2(zj))− f t1(wn−2)|.
The first term above can be made arbitrarily small by choosing ε small, since
z̄, fn(zj) ∈ Û and f−1|Γl0,c0

is uniformly continuous. The second term is ≤ M1 ·
(|fn−2(zj) − wn−2| + |t1 − 1|). To get the desired bound, we appeal to condition
(a)(ii) on θ in Paragraph E to limit the size of the section at fn−2(zj) and fn−1(zj),

and note that |t1 − 1| ≤ 1
10c0l

−2
0 M−1

2 M−1
1 provided ε is small enough. �

Proofs of Lemmas 15 and 16. First we prove Lemma 16. Suppose there exist y, y′

∈ Ω and t0 > 0 such that y = f t0(y′). A lower bound on t0 is given by Lemma
18 once we verify the conditions in this lemma with z̄ and y′ playing the roles of x
and y respectively. This was done in Lemma 19, as |vz̄| ≥ c0l

−1
0 and ‖πc

z̄‖−1 ≥ l−1
0 .

Next we turn to Lemma 15. Suppose, to derive a contradiction, that T (y) =
T (y′) for some y, y′ ∈ Ω with y �= y′. Since f t is one-to-one, τ (y) �= τ (y′), where
T (·) = F (τ (·), ·). Without loss of generality, assume τ (y′) = τ (y) + t0 for some
t0 > 0. Using again the injectivity of f t, we deduce that y = f t0(y′). Lemmas
18 and 19 give a lower bound on t0 as before. To derive a contradiction, we now
produce an upper bound for |τ (y)− τ (y′)| that is strictly smaller than this value of

t0. Suppose y ∈ V j and y′ ∈ V j′ . Then Paragraph E shows that

|τ (y)− τ (y′)| ≤ |τ (y)− τ (ẑj)|+ |τ (ẑj)− τ (ẑj′)|+ |τ (ẑj′)− τ (y′)| < 1

2

c0
l20M2

,

which is what we want. �
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Abstract. Two settings are considered: flows on finite dimensional Riemann-
ian manifolds, and semiflows on Hilbert spaces with conditions consistent with
those in systems defined by dissipative parabolic PDEs. Under certain assump-
tions on Lyapunov exponents and entropy, we prove the existence of geometric
structures called horseshoes; this implies in particular the presence of infinitely
many periodic solutions. For diffeomorphisms of compact manifolds, analogous
results are due to A. Katok. Here we extend Katok’s results to (i) continuous
time and (ii) infinite dimensions.
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