
What are SRB measures,
and which dynamical systems have them?

To David and Yasha

Lai-Sang Young1

This is a slightly expanded version of the text of a lecture I gave in a conference
at Rutgers University in honor of David Ruelle and Yasha Sinai. In this lecture
I reported on some of the main results surrounding an invariant measure introduced
by Sinai, Ruelle and Bowen in the 1970s. SRB measures, as these objects are called,
play an important role in the ergodic theory of dissipative dynamical systems with
chaotic behavior. Roughly speaking,

• SRB measures are the invariant measures most compatible with volume when
volume is not preserved;

• they provide a mechanism for explaining how local instability on attractors can
produce coherent statistics for orbits starting from large sets in the basin.

An outline of this paper is as follows.

The original work of Sinai, Ruelle and Bowen was carried out in the context of
Anosov and Axiom A systems. For these dynamical systems they identified and
constructed an invariant measure which is uniquely important from several different
points of view. These pioneering works are reviewed in Section 1.

Subsequently, a nonuniform, almost-everywhere notion of hyperbolicity expressed
in terms of Lyapunov exponents was developed. This notion provided a new frame-
work for the ideas in the last paragraph. While not all of the previous characteriza-
tions are equivalent in this broader setting, the central ideas have remained intact,
leading to a more general notion of SRB measures. This is discussed in Section 2.

The extension above opened the door to the possibility that the dynamics on many
attractors are described by SRB measures. Determining if this is (or is not) the case,
however, let alone proving it, has turned out to be very challenging. No genuinely
nonuniformly hyperbolic examples were known until the early 1990s, when SRB
measures were constructed for certain Hénon maps. Today we still do not have a
good understanding of which dynamical systems admit SRB measures, but some
progress has been made; a sample of it is reported in Section 3.
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It is now clear that away from Axiom A systems, the dynamical picture is neces-
sarily very complex. This and other observations form my concluding remarks.

Finally, I close the introduction by stating the obvious, namely that this short
note is in no way intended to be a complete treatment of SRB measures. A number
of topics have been omitted. I mention in particular [PS2], [SW], [D2] and [R4], which
contain promising ideas.

1 SRB measures for Axiom A attractors

We introduce the setting in which SRB measures were first conceived.

Definition 1.1 (a) Let f : M → M be a diffeomorphism of a compact Riemannian
manifold onto itself. We say f is an Anosov diffeomorphism if the tangent space
at every x ∈ M is split into Eu(x) ⊕ Es(x) where Eu and Es are Df -invariant
subspaces, Df |Eu is uniformly expanding and Df |Es is uniformly contracting.

(b) A compact f -invariant set Λ ⊂ M is called an attractor if there is a neigh-
borhood U of Λ called its basin such that f nx → Λ for every x ∈ U . Λ is called an
Axiom A attractor if the tangent bundle over Λ is split into Eu ⊕ Es as above.

To be precise, by the uniform expanding property of Df |Eu, we mean there is a
constant λ > 1 such that ||Df(v)|| ≥ λ||v|| for every v ∈ Eu. Anosov diffeomorphims
can be viewed as special cases of Axiom A attractors with Λ = U = M . In the
discussion to follow, we will assume that Eu is nontrivial for the attractors in question,
so that there is sensitive dependence on initial conditions or chaos. We will also
assume that the attractor is irreducible, meaning Λ cannot be written as the union of
two disjoint attractors. The main results on SRB measures for Axiom A attractors
can be summarized as follows:

Theorem 1 ([S2], [R1], [R2], [B2], [K1]) Let f be a C2 diffeomorphism with an
Axiom A attractor Λ. Then there is a unique f -invariant Borel probability measure
µ on Λ that is characterized by each of the following (equivalent) conditions:

(i) µ has absolutely continuous conditional measures on unstable manifolds;

(ii)

hµ(f) =

∫

| det(Df |Eu)|dµ

where hµ(f) is the metric entropy of f ;

(iii) there is a set V ⊂ U having full Lebesgue measure such that for every continuous
observable ϕ : U → R, we have, for every x ∈ V ,

1

n

n−1
∑

i=0

ϕ(f ix) →

∫

ϕdµ ;
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(iv) µ is the zero-noise limit of small random perturbations of f .

The invariant measure µ in Theorem 1 is called the Sinai-Ruelle-Bowen mea-
sure or SRB measure of f . There are analogous results for flows but for simplicity
we will limit our exposition to the discrete-time case. We wish now to explain infor-
mally the meanings of (i)–(iv), postponing technical definitions to Section 2 where a
broader class of dynamical systems is treated. More detailed attributions are given
after these explanations.

In a neighborhood of an attractor, the defining map is often volume decreasing,
ruling out the possibility of an invariant measure equivalent to volume. The meaning
of (i) is that every Axiom A attractor admits an invariant measure with a density in
the unstable direction. (In the stable direction, this measure is usually singular with
respect to Lebesgue measure.)

(ii) expresses the following variational principle: Metric entropy or Kolmogorov-
Sinai entropy is a measure of dynamical complexity for measure-preserving transfor-
mations. For differentiable maps, there is another measure of dynamical complexity,
namely the expanding part of the derivative. For Axiom A attractors it was shown
that the first of these quantities is always dominated by the second, and µ is the
unique invariant measure for which these two quantities coincide.

If one adopts the view that positive Lebesgue measure sets correspond to observ-
able events, then (iii) expresses the fact that µ can be “observed”, for it governs
the asymptotic distributions of orbits starting from Lebesgue-a.e. initial condition.
This property does not follow from the Birkhoff Ergodic Theorem: The support of
µ is contained in Λ, which for a genuinely volume decreasing attractor has Lebesgue
measure zero, yet it controls the behavior of orbits starting from an open set.

Here is what we mean by “zero-noise limit”: Let P ε(·|·), ε > 0, be a family
of Markov chains whose transition probabilities have densities with some regularity
properties and which satisfy P ε(·|x) → δfx, the Dirac measure at fx, as ε → 0. (iv)
says that the stationary measures for P ε converge to µ as ε → 0. If one accepts
that the world is intrinsically a little noisy, then zero-noise limits are the observable
invariant measures.

SRB measures have their origins in statistical mechanics. Here is a very brief
account of how (i)–(iv) came about. In 1968, Sinai constructed for Anosov diffeomor-
phisms certain partitions called Markov partitions [S1]. These partitions enabled him
to identify points in the phase space with configurations in one-dimensional lattice
systems. In [S2], he developed for Anosov systems a Gibbs theory analogous to that
in statistical mechanics. SRB measures are special cases of Gibbs measures. They are
defined by the potential − log | det(Df |Eu)| or, equivalently, by the fact that they have
smooth conditional measures on unstable manifolds. This point of view is reflected in
(i). At about the same time, Bowen extended the construction of Markov partitions
to Axiom A attractors [B1]. Ruelle brought earlier works in statistical mechanics to
bear on Axiom A theory, notably the variational principle and the notion of equilib-
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rium states [R1]. He also emphasized the connection of SRB measures to Lebesgue
measure on the ambient manifold [R2], [BR]. These points of view are reflected in
(ii) and (iii); see also [B2] for an exposition. The idea that zero-noise limits represent
measures that are truly physically observable was expressed by Kolmogorov. That
this property is equivalent to (i) is proved formally by Kifer [Ki]; see also [Y1].

2 A more general notion of SRB measures

In this section we discuss extensions of the four properties in Theorem 1 to more
general dynamical systems. As before, we will limit ourselves to the discrete-time
case. Also, to avoid technicalities, we consider only diffeomorphisms, i.e. differen-
tiable maps with differentiable inverses, leaving aside noninvertible maps, maps with
singularities etc. for which some versions of the results discussed also hold. Through-
out this section, let f : M → M be a C2 diffeomorphism of a compact Riemannian
manifold to itself.

2.1 Conditional measures on W u and the entropy formula

Recall the definition of Lyapunov exponents: For x ∈ M and v ∈ TxM , let

λ(x, v) = lim
n→±∞

1

n
log ‖DT n

x (v)‖

if these limits exist and coincide. A theorem due to Oseledec [O] states that if µ is an
f -invariant probability on M , then there exist measurable functions λi such that at
µ-a.e. x, the tangent space TxM = ⊕Ei(x) where λ(x, v) = λi(x) for v ∈ Ei(x). The
λi are called the Lyapunov exponents of (f, µ). We remark that since Df(Ei(x)) =
Ei(fx), the functions x 7→ λi(x) and dimEi(x) are constant µ-a.e. if (f, µ) is ergodic.

Suppose now that (f, µ) has a positive (respectively negative) Lyapunov exponent
a.e. Then unstable (resp. stable) manifolds are well defined a.e. More precisely, for
x ∈ M , let

W u(x) := {y ∈ M : lim sup
n→∞

1

n
log d(f−nx, f−ny) < 0}.

A well known fact from nonuniform hyperbolic theory [P1] states that at µ-a.e. x,
W u(x) is an immersed submanifold tangent at x to ⊕λi>0Ei(x). It is called the un-
stable manifold at x. The stable manifold at x, denoted W s(x), is defined anal-
ogously with d(f−nx, f−ny) in the definition of W u replaced by d(fnx, fny). Stable
and unstable manifolds are invariant, i.e. f(W u(x)) = W u(fx), f(W s(x)) = W s(fx).

A measurable partition ζ of M is said to be subordinate to W u if for µ-a.e. x,
ζ(x), the element of ζ containing x, is contained in W u(x). We focus on the following
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two families of measures on the elements of ζ: {µζ
x}, the conditional measures of µ,

and mζ
x, the restriction of the Riemannian measure on W u(x) to ζ(x).

Definition 2.1 An f -invariant Borel probability measure µ is said to have abso-
lutely continuous conditional measures on unstable manifolds if (f, µ) has
a positive Lyapunov exponents a.e., and for every measurable partition ζ subordinate
to W u, we have µζ

x << mζ
x at µ-a.e. x.

As in Section 1, let hµ(f) denote the metric entropy of f with respect to µ.
Theorem 2 states that properties (i) and (ii) in Theorem 1 are, in fact, equivalent
under very general conditions. (Unlike Theorem 1, however, it does not assert the
existence of a measure with these properties.)

Theorem 2 ([R3], [P2], [LS], [LY1]) Let f be an arbitrary diffeomorphism and µ an
f -invariant Borel probability measure with a positive Lyapunov exponent a.e.. Then
µ has absolutely continuous conditional measures on W u if and only if

hµ(f) =

∫

∑

λi>0

λi dim Ei dµ .

Without the absolute continuity assumption on µ, “=” above is replaced by “≤”.

This result has the following interpretation: It suggests that entropy is created
by the exponential divergence of nearby orbits. A strict inequality results when some
of the expansion is “wasted” due to leakage or dissipation from the system under
forward iterations; by the same token equality holds when no leakage takes place.
Thus measures with absolutely continuous conditional measures on W u can be seen
as the counterpart of Lebesgue or Liouville measure in systems that are “conservative
in positive time”. (Note that in the presence of an attractor, the direction of time is
never ambiguous: if time is reversed, the attractor becomes a repellor.)

Theorem 2 is a summary of results from several papers combined together:

(1) The general inequality is due to Ruelle [R3], and is valid for all C1 maps.

(2) For µ equivalent to Lebesgue, the displayed equality is proved by Pesin [P2];
this result is extended to the case of measures having absolutely continuous
conditional measures on W u by Ledrappier and Strelcyn [LS].

(3) The reverse implication is proved by Ledrappier [L] in the case where none
of the Lyapunov exponents is zero, and is extended to complete generality by
Ledrappier and Young [LY1].

Definition 2.2 Let f be a C2 diffeomorphism of a compact Riemannian manifold.
An f -invariant Borel probability measure µ is called an SRB measure if (f, µ) has a
positive Lyapunov exponent a.e. and µ has absolutely continuous conditional measures
on unstable manifolds.

5



This terminology was first formally introduced in the review article by Eckmann
and Ruelle [ER]. The concept itself had been identified and studied a couple of years
earlier (see e.g. [LS], [L], [LY1], [Y2]).

2.2 Absolute continuity of W s and physical measures

We now explain the relation between SRB measures and property (iii) in Theorem 1.

Definition 2.3 Let f : M → M be an arbitrary map and µ an invariant probability
measure. We call µ a physical measure if there is a positive Lebesgue measure set
V ⊂ M such that for every continuous observable ϕ : M → R,

1

n

n−1
∑

i=0

ϕ(f ix) →

∫

ϕdµ

for every x ∈ V .

We say a point x ∈ M is µ-generic if the time averages of continuous observables
along the trajectory of x converge to their space averages with respect to µ. Hence a
measure is physical if its set of generic points has positive Lebesgue measure. From
the point of view of physical observations, it is not clear if this is a more or less
realistic notion of observability than zero-noise-limits (see Section 1 for a definition),
but since the latter notion already has a suggestive name, we will, following [ER], use
the definition of “physical” in the sense of Definition 2.3.

What allows us to go from Lebesgue measure on W u-leaves to Lebesgue measure
in the phase space is the following regularity property of the stable “foliation”. The
technical definition of this property is a little complicated. We give a version which
is adequate for our purposes, and refer the reader to e.g. [PS1] for more details.

Definition 2.4 Let (f, µ) be ergodic, and assume it has a negative Lyapunov expo-
nent a.e. We say its W s-foliation is absolutely continuous if the following holds: Let
Σ and Σ′ be embedded disks having complementary dimension to W s, and let {Ds

α}
be a positive µ-measure set of local stable manifolds such that each Ds

α meets both Σ
and Σ′ transversally. Let Φ : (∪Ds

α)∩Σ → Σ′ be the holomony map2, and let mΣ and
mΣ′ denote Lebesgue measure on Σ and Σ′ respectively. Then for E ⊂ (∪Ds

α) ∩ Σ,
mΣ(E) > 0 if and only if mΣ′(Φ(E)) > 0.

Theorem 3 ([P2], [KS], [PS1]) Assume (f, µ) has a negative Lyapunov exponent
a.e. Then its W s-foliation is absolutely continuous. It follows that every ergodic SRB
measure with no zero Lyapunov exponents is a physical measure.

2Φ(x) is the unique point in Ds

α
(x) ∩ Σ′ where Ds

α
(x) is the disk containing x.
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In the context of nonuniformly hyperbolic systems, this property was first proved
in the volume-preserving case by Pesin [P2], and later on by Katok and Strelcyn [KS],
who also allowed singularies; the general case is due to Pugh and Shub [PS1]. We
explain why the second assertion follows from the first. Recall that if µ is an SRB
measure, then by definition, there are W u-leaves on which Lebesgue-a.e. point is
µ-generic. In the absence of zero Lyapunov exponents, transversal to W u-leaves are
families of W s-leaves, forming a kind of local “coordinate system”. Since all points
on a W s-leaf have asymptotically the same future, one obtains, by “integrating out”
along stable manifolds and appealing to the absolute continuity of the W s-foliation,
that the set of µ-generic points has positive Lebesgue measure in the phase space.

We record below two important facts about SRB measures. The proofs of these
facts rely heavily on the structures of stable and unstable manifolds and their absolute
continuity properties.

Theorem 4 (a) [P2] In the presence of positive Lyapunov exponents, invariant
measures equivalent to Riemannian volume are special cases of SRB measures.

(b) [P2], [L] Let µ be an SRB measure with no zero Lyapunov exponents. Then

(i) µ has at most a countable number of ergodic components, and

(ii) on each ergodic component, f permutes k (k ≥ 1) disjoint sets restricted
to each one of which (f k, µ) is mixing.

The following result, due to Tsujii, gives a partial converse to Theorem 3.

Theorem 5 [T] Let f : M → M be a diffeomorphism, and suppose there is a positive
Lebesgue measure set R ⊂ M such that the following hold for every x ∈ R:

(i) 1
n

∑n−1
i=0 δf ix converges weakly to an ergodic measure which we call µx;

(ii) the Lyapunov exponents at x as n → +∞ coincide with those of µx;
(iii) µx has no zero and at least one positive Lyapunov exponent.

Then µx is an SRB measure for Lebesgue-a.e. x in R.

The conclusion of Theorem 5 is not valid if condition (ii) above is omitted. To see
this, consider the “figure-eight attractor”: Figure 1 shows a flow with a stationary
saddle point p whose stable and unstable manifolds coincide. Let f be the time-
one-map, and assume that | detDf(p)| < 1. Then every point in the basin of this
attractor is generic with respect to its unique invariant measure δp, which is not an
SRB measure.

Remarks on the relation between SRB measures and physical measures.
We have seen in Theorem 3 that ergodic SRB measures with no zero Lyapunov
exponents are physical measures. Ergodicity is needed because physical measures,
by definition, are ergodic. SRB measures with zero Lyapunov exponents may or
may not be physical. Conversely, not all physical measures are SRB. The simplest
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counterexamples are point masses on attractive fixed points and periodic orbits. The
figure-eight attractor has a physical measure with a positive Lyapunov exponent which
is not an SRB measure.

To sum up then, ergodic SRB measures with no zero Lyapunov exponents are a
special kind of physical measures: they describe chaotic behavior, are accompanied by
rich geometric and dynamical structures (see Theorems 2, 3 and 4), and carry special
meanings (such as the entropy formula). Physical measures, on the other hand, focus
on a single property. It is a very important property, but by focusing on it alone, they
carry little additional information. For example, physical measures do not distinguish
between chaotic attractors and simple equilibria.3

Fig. 1 The figure-eight attractor

2.3 Randomly perturbed dynamical systems

Turning now to zero-noise limits, it is conceivable that under suitable conditions,
SRB measures are stochastically stable, i.e. they can be realized as zero-noise limits,
but as of now there is no general result to that effect. Evidently, not all zero-noise
limits are SRB; point masses at sinks and on the figure-eight attractor, for example,
are zero-noise limits. The relation between physical measures and zero-noise limits is
also unclear.

We finish with a brief discussion of random dynamical systems. Consider a family
of small perturbations P ε defined by random diffeomorphisms, i.e. for ε > 0, let νε

be a probability measure on Diff(M), the space of diffeomorphisms of M , and let
P ε(E|x) = νε{g, g(x) ∈ E}. Not all Markov chains can be represented by random
diffeomorphisms, but some can be, including solutions to stochastic differential equa-
tions [Ku]. For this type of Markov chains, there are two kinds of invariant measures:
µε, the marginal of the stationary measure of the process, and {µε

ω}, sample mea-
sures corresponding to individual realizations. More precisely, µε =

∫

g∗µεdνε(g), and

3We caution the reader that recently some authors have chosen to call physical measures “SRB
measures”. We discourage this change in terminology, for in addition to introducing confusion into
the literature, it takes away the multifaceted meanings of SRB measures.
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associated with a.e. iid sequence ω = (gi)
∞

i=−∞ with law νε, we have a probability
measure µε

ω satisfying µε =
∫

µε
ωdνZ

ε and (g0)∗µ
ε
ω = µε

σω where σ is the shift operator.
Finally, we assume that as ε → 0, νε tends to the Dirac measure at f .

Extending slightly the ideas for a single map, Lyapunov exponents and entropy
are defined for a.e. ω and are nonrandom. (See [LY2] or [K2] for more detail.) We let
λε

i denote the Lyapunov exponents and hε the entropy of the random maps at noise
level ε. Stable and unstable manifolds make sense for individual realizations.

Theorem 6 [LY2] Assume for ε > 0 that µε has a density with respect to Lebesgue
measure. Then for a.e. ω, µε

ω has absolutely conditional measures on unstable mani-
folds and

hε =

∫

∑

λε

i
>0

λε
i dim Eε

i dµε
ω .

For obvious reasons, µε
ω with the properties above are called random SRB mea-

sures. Theorem 6 expresses the fact that in noisy systems, chaos is synonymous
with the invariant measure being SRB, lending some hope to the possibility that
zero-noise limits may, under fairly general conditions, continue to be SRB measures
(although we know this is not always true). We remark also that while the formula
above resembles that in Theorem 2, the mechanisms responsible for them are really
quite different: the one here comes not from special properties of the maps but from
randomness of the noise, which in turn is guaranteed by the densities of the transition
probabilities.

3 Which dynamical systems have SRB measures?

In Section 2 we explained how the idea of SRB measures can be generalized to ar-
bitrary diffeomorphisms. We note that the theorems there are “abstract”, meaning
they contain no assertions of existence, not to mention prevalence, and do not tell us
in general how to determine if a concrete dynamical system admits an SRB measure.
These questions are, in fact, very difficult, and the first results are only beginning to
come in.

To help conceptualize this emerging information, I find it useful to distinguish
between the following two approaches, which account for most (but not all) of the
results I know. The first, which I call the “axiomatic approach”, seeks to relax
the conditions that define Axiom A in the hope of systematically enlarging the set
of maps with SRB measures. The second approach is aimed at modeling concrete
examples of dynamical behaviors (not necessarily related to Axiom A). Here one
seeks to identify dynamical phenomena, mechanisms and underlying characteristics
conducive to having SRB measures. For lack of a better name, I will call this the
“phenomenological approach”. Samples of results from these two approaches are
presented in Sects. 3.2 and 3.3.
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3.1 Construction of SRB measures on Axiom A attractors

To better understand the recent results, we think it is instructive to first explain how
SRB measures are constructed for Axiom A attractors. The construction below was
not exactly the one used by Sinai, Ruelle or Bowen in their original works, but it is
not far from Sinai’s construction; see also [PS]. Among the proofs of existence I know,
this one generalizes most easily.

Let f : M → M be a C2 diffeomorphism of a compact Riemannian manifold, and
let Λ ⊂ M be an attractor. We pick an arbitrary piece of local unstable manifold
γ ⊂ Λ, and let mγ denote Lebesgue measure on γ. Now use f i to transport mγ

forward, and call the image measures f i
∗
(mγ), i = 1, 2, · · · . We claim that any limit

point µ of
{

1

n

n−1
∑

i=0

f i
∗
(mγ)

}

n=1,2,···

is an SRB measure. Invariance is obvious because an average is taken. Since f i|γ
expands distances uniformly with bounded distortion, f i

∗
(mγ) has a density with

respect to Lebesgue measure on f i(γ). These densities have uniform upper and lower
bounds independent of i. Since the W u-leaves are roughly parallel, these bounds are
passed on to µ. (For a formal proof, see e.g. [Y3].)

3.2 Existence of SRB measures: axiomatic approach

Three sets of results will be reported representing three different ways of relaxing
the Axiom A condition. I have chosen to organize these results in a conceptually
convenient way rather than to follow chronological order. Let f and Λ be as above.

The first set of results assumes a priori a uniform invariant dominated split-
ting everywhere on the attractor. This means that the tangent bundle is decom-
posed into Df -invariant subbundles E ⊕ F , with min{||Df(u)||/‖u‖, u ∈ E} ≥
λ max{||Df(v)||/‖v‖, v ∈ F} for some λ > 1 (abbreviated notation: Df |E > Df |F ).
In addition to having a dominated splitting, an Axiom A map is uniformly expand-
ing in E and uniformly contracting in F . Theorem 7 keeps the invariant dominated
splitting and explores several ways to relax the other two conditions.

Theorem 7 Assume in each of the results below that the tangent bundle over Λ is
decomposed into E ⊕ F with Df |E > Df |F .

(a) [PS], [BnV] If Df |E is uniformly expanding and Df |F is (nonuniformly) con-
tracting or neutral (see remark below), then f has an SRB measure.

(b) [HY] Assume dim(M) = 2, Df |F is uniformly contracting, and Df |E > 1
except at a fixed point p where Df |E(p) = 1. Then 1

n

∑n−1
i=0 δf ix → δp for

Lebesgue-a.e. x. In particular, f does not admit a (finite) SRB measure.
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(c) [ABV] Assume that the invariant splitting E ⊕ F extends to a neighborhood U
of Λ, Df |F is uniformly contracting, and there is a positive Lebesgue measure
set V ⊂ U such that ∀x ∈ V ,

lim inf
n→∞

1

n

n−1
∑

i=0

log min{||Df(f ix)u||, u ∈ E(f ix), ‖u‖ = 1} > 0 .

Then f has an SRB measure.

(d) [CY] Suppose f has a zero-noise limit µ such that µ-a.e. the Lyapunov expo-
nents λ(·, u) are ≥ 0 ∀u ∈ E and ≤ 0 ∀u ∈ F . Then µ satisfies the entropy
formula in Theorem 2. In particular, for a.e. ergodic component µe of µ, either
all the Lyapunove exponents of µe are ≤ 0 or it is an SRB measure. (This result
requires that f be C∞.)

We remark that (a) follows immediately from the construction in Sect. 3.1, since
what happens in the subbundle F is immaterial. Part (b) contains a nonexistence
result; it gives a sense of the delicateness of the existence question. Since the maps in
(b) lie on the boundary of the set of Anosov diffeomorphisms, it also shows how SRB
measures can “disappear suddenly”. See also [Hu]. Part (d) is obtained by letting
ε → 0 in Theorem 6.

Our second set of results has to do with partially hyperbolic systems. Follow-
ing [PS2], we say f |Λ is partially hyperbolic if TΛ = E⊕C⊕F where E, C and F are
Df -invariant subbundles, Df |E > Df |C > Df |F , Df |E is uniformly expanding, and
Df |F is uniformly contracting. Theorem 8 treats some situations when the behavior
in the “central subbundle” is relatively simple.

Theorem 8 (a) [CY] If dim C=1, then f has an SRB measure.

(b) [D1] Assume Λ = M . If µ is the unique invariant measure with absolutely
continuous conditional measures on the invariant manifolds tangent to E, then
it is a physical measure.

The third group of results is intended for systems which are “predominantly
hyperbolic”, a descriptive, nontechnical term I like to use to express the fact that
the system in question has a great deal of expansion and contraction on large parts
of its phase space. No global invariant splittings of the type in the two previous
theorems are assumed. Our goal here is to identify structures in the phase space
the presence of which is sufficient for the construction of SRB measures. Theorem 9
contains two such sets of sufficient conditions.

To avoid getting technical, I will give only the main ideas, referring the reader to
the cited papers for precise formulations. In part (b), for example, I will leave it to
the reader to imagine what a “generalized horseshoe” looks like, given that we think
of the standard horseshoe (due to Smale [Sm]) as having “2 branches both of which
return at time 1”.
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Theorem 9 (a) [BY1] Suppose there is a W u-leaf γ, a number δ > 0, a continuous
stack of unstable disks {Du

α}, and a sequence of times n1 < n2 < · · · for which

the following hold: for each i, there exists γ(ni) = ∪γ
(ni)
j ⊂ γ with mγ(γ

(ni)) ≥ δ

such that fni maps each γ
(ni)
j onto one of the Du

α-disks with uniformly bounded
distortion. Then f has an SRB measure.

(b) [Y4] Suppose that embedded in the attractor Λ is a “generalized horseshoe”
Ω with infinitely many branches returning at variable times. We assume also
that Ω has positive measure in the unstable direction, i.e. mγ(Ω ∩ γ) > 0
for some unstable leaf γ. Let R : Ω → Z

+ denote the return time function.
If

∫

R dmγ < ∞, then f has an SRB measure.

Theorem 9 has been used in various applications (including the ones in Theorems
11 and 12). The structures required in (a) are essentially the “minimum” needed
for the construction in Sect. 3.1 to go through. The advantage of the additional
structures in (b) is that the tail behavior of R, i.e. the rate at which mγ{R > n}
decreases, contains a great deal of information on the statistical properties of f with
respect to its SRB measure (see [Y4], [Y5]).

3.3 Analysis of a class of strange attractors

As an example of what I called the “phenomenological approach”, we focus in this
subsection on a body of work surrounding the analysis of a particular class of strange
attractors. Leaving precise definitions for later, we first give a rough description of
the maps in this class:

– The defining maps are strongly dissipative, i.e. | det(Df)| << 1;
– the attractors are chaotic with a single direction of instability, and
– some unstable curves have “folds” similar to those in the Hénon maps

(see below).

Natural examples of attractors that fit this general description will be discussed later.
We begin with the results which inspired this study.

Theorem 10 ([J], [GS], [L1], [L2]) The following hold for the logistic family
Qa(x) = 1− ax2, x ∈ [−1, 1], a ∈ [0, 2]:

(i) There is an open and dense set A in parameter space such that for all a ∈ A,
Qa has a periodic sink to which the orbit of Lebesgue-a.e. point converges.

(ii) There is a positive Lebesgue measure set of parameters B such that for a ∈ B,
Qa has an invariant measure absolutely continuous wrt Lebesgue measure.

The union of A and B has full measure in parameter space.

Part (ii) of Theorem 9 is, in many ways, the precursor to the results on SRB
measures in this subsection. This important theorem is due to Jakobson [J]. The
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density of A was first announced by Graczyk and Swiatek (see [GS] and [L1]), and
the fact that A∪ B has full Lebesgue measure is due to Lyubich [L2].

In 1977, Hénon carried out numerical studies of a family of maps and demonstrated
that for certain ranges of parameters there were chaotic attractors [He]. The Hénon
family is given by

Ta,b :

(

x
y

)

7→

(

1− ax2 + y
bx

)

Observe that when b = 0, Ta,b maps the x-axis to itself and reduces to the logistic
family. By continuity, it follows that given any a ∈ (0, 2), Ta,b maps a rectangle into
itself and has an attractor provided b is sufficiently small.

Benedicks and Carleson studied small values of b for a ≈ 2, treating Ta,b as small
perturbations of Qa. In a work that is an analytic tour de force [BC], they developed
techniques for tracking the growth of derivatives along certain crucial orbits. Building
on the analysis in [BC], Benedicks and I obtained the following result:

Theorem 11 [BY1] For every b > 0 that is sufficiently small, there is a positive
Lebesgue measure set ∆b ⊂ (2− ε, 2) such that for each a ∈ ∆b, Ta,b admits a unique
SRB measure.

To my knowledge this is the first time SRB measures were constructed for nonuni-
formly hyperbolic attractors. Theorem 9(a) is used in this proof.

A few years ago, Qiudong Wang and I began to think that (i) even though [BC]
and [BY] treated only the Hénon family, the type of analysis involved can probably
be carried out for the class of maps described at the beginning of this subsection, and
(ii) there is a number of naturally occurring attractors fitting this general description.
To achieve (i), we would have to replace the computation-based arguments in [BC] by
a more conceptual approach, and to replace the formulas of the Hénon maps (which
are used explicitly in [BC]) by qualitative, geometric conditions. If our results are to
be applicable to the situations in (ii), these conditions would have to be sufficiently
inclusive, and checkable.

The current status of this project is that we have isolated a class of attractors for
which we have developed a dynamical theory, and have begun to apply it to some
simple situations. The ultimate usefulness of this project remains to be seen. I report
below on our results thus far, focusing on the parts related to SRB measures.

To give a sense of the type of conditions used, I will state them in full although
perhaps a little tersely, referring the reader to [WY1] or [WY2] for further clarification
if necessary. Let M = N × Dm−1 where N = S1 or [0, 1] and Dm−1 is the unit
disk in R

m−1, m ≥ 2. Points in M are denoted by (x,y) where x ∈ N and y =
(y1, · · · , ym−1) ∈ Dm−1.

13



(C1) Existence of singular limits. We assume that the maps of interest can be
embedded in a 2-parameter family Ta,b : M → M , b > 0, of the form

Ta,b :

(

x
y

)

7→

(

Fa(x,y) + bu(x,y; a, b)
b v(x,y; a, b)

)

where (x, y, a) 7→ Fa(x,y), u(x,y; a, b) and v(x,y; a, b) have C3-norms bounded
above by a constant independent of b. We assume also that Ta,b is one-to-
one, and that for each (a, b), det(DTa,b) at different points in M are roughly
comparable.

The maps Fa : M → N and fa : N → N defined by fa(x) = Fa(x, 0) are called the
singular limits of Ta,b. The rest of the conditions are on these singular limits.

(C2) Existence of a map in {fa} which is sufficiently expanding. We assume there
exists a∗ such that fa∗ satisfies the Misiurewicz condition [M].4

(C3) Transversality with respect to parameters. Let C denote the critical set of fa∗ .
For c ∈ C and p = fa∗(c), let c(a) and p(a) 5 denote the smooth continuations
of c and p respectively for a near a∗. Then

d

da
fa(c(a)) 6=

d

da
p(a) at a = a∗.

(C4) Nondegeneracy at critical points. For every c ∈ C, there exists j such that

∂Fa∗(c, 0)

∂yj
6= 0.

Theorem 12 ([WY1], [WY2]) Assume (C1)– (C4). Then for every sufficiently
small b, there is a positive measure set of a for which T = Ta,b has the following
dynamical description:

(i) T admits r ergodic SRB measures where 1 ≤ r ≤ the number of critical points
of the map fa∗ in (C2). Let us call these measures µ1, · · · , µr.

(ii) The µi are physical measures, and if B(µi) denotes the set of generic points
of µi, then ∪iB(µi) has full Lebesgue measure in M .

(iii) Let ϕ : M → R be a Hölder continuous observable. Then on the mixing com-
ponents of each µi, the sequence ϕ, ϕ ◦ T, ϕ ◦ T 2, · · · , ϕ ◦ T n, · · · satisfies
the Central Limit Theorem and has exponential decay of correlations.

4This means essentially that fa
∗ has no stable or neutral periodic orbits, that all of its critical

points are nondegenerate, and the positive iterates of the critical points stay a bounded distance
away from the critical set.

5p(a) refers to the point with the same itinerary with respect to fa as p does with respect to fa
∗ .

It is not to be confused with fa(c(a)).
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The 2-dimensional case of this theorem is proved in [WY1]. The general case,
which has more complicated geometry, is treated in [WY2]. See Section 2 for some
of the definitions.

Applications of Theorem 12

(1) The Hénon family [WY1]. (C1)–(C4) hold with a∗ equal to any of the
uncountably many Misiurewicz points in the logistic family. (The case a∗ = 2
was treated earlier: building on [BC], (i) was proved in [BY1], (ii) in [BeV] and
(iii) in [BY2].)

(2) Hénon-like attractors arising from homoclinic bifurcations [WY1]. From [PT],
we know that the maps defining these attractors have the form in (C1) with
the same Fa as the Hénon maps, i.e. they have the same singular limits. Thus
(C2)–(C4), which depend only on these limits, follow immediately. (Direct
adaptations of [BC] to these settings were carried out earlier by Viana et. al.
in [MV] and [V].)

(3) A simple mechanical model with periodic forcing [WY3]. Consider a linear
second order equation describing the motion of a particle in a circle, externally
forced so that it tends to uniform motion. If attraction to the resulting limit cy-
cle is weak, then with additional periodic “kicks”, the system has, for a positive
measure set of parameters, a strange attractor with an SRB measure. (Models
of this type were studied earlier in the physics literature; see [Z].)

(4) Strange attractors emerging from Hopf bifurcations [WY4]. We show under
reasonable conditions that if a system undergoing a Hopf bifurcation is sub-
jected to certain types of periodic kick-forces, then for a positive measure set of
parameters, what comes off the newly unstable fixed point is not an invariant
circle but a strange attractor with an SRB measure.

These are the main applications that have been worked out so far. We are hopeful
there will be others.

4 Concluding remarks

The theory of finite-dimensional dynamical systems, in my opinion, has provided
excellent models or paradigms for understanding chaos. Axiom A theory, and the
idea of SRB measures in particular, were remarkable breakthroughs. The fact that
these ideas go beyond Axiom A (as we now know) makes them all the more powerful.
The purpose of this article is to report on the main developments related to SRB
measures since their original conception. With regard to the two questions in the
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title of this paper, I hope Section 2 gives at least a partial understanding of what
SRB measures are in the context of all finite-dimensional systems. I have tried, in
Section 3, to convey the directions of recent research and to report on some of the
results. I would like to attempt now to put things in perspective, and to explain why I
think we are still very much in search of an answer to the question “which dynamical
systems admit SRB measures”.

By focusing on positive results in Section 3, I may have given the impression that
we have gone far beyond Axiom A. I would like to discuss in these closing paragraphs
some of the first hurdles which stand between current techniques and “the general
dynamical picture”, whatever the latter means.

To varying degrees, some of the results from the “axiomatic approach” take for
granted a priori knowledge of the expanding and contracting directions of the map.
Various assumptions are made to the effect that these directions vary continuously
and are uniformly separated, meaning the respective subspaces are bounded away
from each other. While these properties are natural within certain classes of maps,
they are quite special among all dynamical systems. In general, almost everywhere
with respect to an invariant measure, the expected picture is that stable and unstable
directions vary measurably but not continuously, and the angles between them can
be arbitrarily small in places. 6

The description above is for (f, µ) where f is a map and µ is a known invariant
measure. If only f is given – which is the case at hand since we are looking for
our invariant measure – then we lose the benefit of statistical arguments and the
situation becomes even more dire: Along the orbits of arbitrary points, there is
no reason why a map cannot be sometimes expanding and sometimes contracting
in a given direction. In other words, the quantities 1

n
log ‖Dfn(x)v‖ may oscillate

arbitrarily and indefinitely with n. Stable and unstable directions, if and where they
are defined, are difficult to identify because that requires information on an infinite
number of iterates. These are some of the problems we face when attempting to
determine if an arbitrary dynamical system has an SRB measure.

The results in Sect. 3.3 do not presume a priori knowledge of expanding and
contracting directions. Indeed, the attractors in question have some of the properties
of full-blown nonuniformly hyperbolic systems. But the analysis there rely on other
circumstances which are, in my opinion, quite special. Let me mention two of them.

The first is the strong codimension-one contraction on most parts of the phase
space. Locally, this gives the attractor a one-dimensional character, allowing us to
borrow techniques from the theory of 1-D maps. We have a well developed theory
of 1-D endomorphisms with nonuniformly expanding properties. This cannot be said
about n-D maps for n ≥ 2; a good understanding of the geometry of n-dimensional

6Results specialized to the C1-generic picture (e.g. [BcV]) are not pertinent to this discussion.
In most of the ergodic theory of hyperbolic systems, the map is assumed to be C1+α for some α > 0.
In particular, the definition and properties of SRB measures use in a crucial way the regularity of
Df , without which even the existence of stable and unstable manifolds is not guaranteed.
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unstable manifolds is also lacking. These are some of the hurdles one probably has
to overcome to go beyond a theory with one direction of instability.

For 1-D maps with critical points, the critical set is an obvious source of non-
expansion. For the attractors in Sect. 3.3, it is shown that there are small fractal
sets (near the critical points of the corresponding 1-D maps) which play essentially
the same role, i.e. away from these sets the map is uniformly hyperbolic, and upon
approaching them, the stable and unstable directions of an orbit are confused. In
other words, the maps in question have the following special feature: they are not
uniformly hyperbolic, but all the problems are caused by certain well-defined, localized
“bad sets” or sources of nonhyperbolicity. As a first generalization of Axiom A, maps
which are predominantly hyperbolic with identifiable “bad sets” are excellent models
to consider, but I doubt that all dynamical systems have this property.

Returning to the question “which dynamical systems have SRB measures”, I hope
that the preceding paragraphs, read in conjunction with Section 3, will enable the
reader to assess more accurately the progress to date and the many challenges ahead.
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