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Static Ising model

The Ising model

» Introduced by Wilhelm Lenz in 1920
as a model of ferromagnetism:

Wilhelm Lenz
Sl 888-1957

> Place iron in a magnetic field: increase field to ’N
maximum , then slowly reduce it to zero.

l > There is a critical temperature T, (the Curie point)
below which the iron retains residual magnetism. .

» Magnetism caused by charged particles spinning or
moving in orbit in alignment with each other.

» How do local interactions between nearby particles
atfect the global behavior at different temperatures?

Eyal Lubetzky, Microsoft Research
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Static Ising model

The Ising model

» Gives random binary values (spins) to vertices
accounting for nearest-neighbor interactions.

» Initially thought to be over-simplified _m[ = ’Stry) l .
P

to capture ferromagnetism. (Economicd) Frrsi) O |||

» Turned out to have a crucial role in the understanding
of phase transitions and critical phenomena.

. . Google scholar alintitle: ising .
} One Of the mOSt StUdled Scholar Atticles excluding patents ~ 1985 - 2010 | ‘
mOdels n Math Phys Ordered phase of short-range .':Tf\‘gss:)[n‘-%g?g'éué e

DS Fisher, DA Huse - Physical Review Letters, 1986 - APS
more than 10,000 p apers We propose a new pcctun_e of the Ising-spin-glass phase, based
on an Ansatz for the scaling of
low-lying large-scale-droplet excitations. We find behavior very
over the laSt 25 yeaI‘S oo different from the infinite-range
model. The truncated spatial correlations decay as a power of
b. - ————distance, the ac nonlinear ...
Ing ising model Cited by 375 - Related articles - All 3 versions

ALL RESULTS 1-1b of 150,000 results -

Ising model - Wikipedia, the free encyclopedia

Definition - General discussion - Historical significance - Applications

The Ising model is a mathematical model of ferromagnetism in statistical mechanics
consists of discrete variables called spins that can be in one of two states.

Eyal Lubetzky, Microsoft Research
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Static Ising model 4

Definition: the classical Ising model
» Underlying geometry: A = finite 2D grid.

» Set of possible configurations
=11}

A : g
given by the Gibbs distribution:

(each site receives a plus/minus spin)
» Probability of a configuration o€
1 -
(u(a) (ﬁz (z)o y)

2(8) ) o
Inverse Zero
Partltlon
function temperature external
=0 field

Eyal Lubetzky, Microsoft Research
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Static Ising model 5

The classical Ising model

> (M(U ) o exp (52 O(x)v(y)) for o € Q) = {il}Aj

T~y

> Larger 3 favors configurations with ﬁ
aligned spins at neighboring sites. .

> Spin interactions ~ local, justitied
by the rapid decay of magnetic force
with distance.

» The magnetization is the ( normahzed) sum of spins:

M(o) = ‘A‘ Z o(x
z€EA
> Distinguishes between disorder (M ~ 0) and order.

Eyal Lubetzky, Microsoft Research
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Static Ising model 6

The magnetization (sum of spins)

» Naturally corresponds to quantities
exhibiting phase-transitions in various systems, e.g.:

> Binary alloys (spins denote the molecule type) ﬁ
> Lattice-gas (spins denote matter/holes). g

» By symmetry E[M(o)] = 0 [recall @(a) x exp (ﬁz a(x)a(y)] B

» What if we break the symmetry by forcing some @'’s?
How do we then calculate the expected M(o) ?

> Even for a tiny 10 x10 lattice the normalizer Z(3) is
already a sum over 2/A=2!% terms...

Eyal Lubetzky, Microsoft Research
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Static Ising model

The Ising phase-transition

» Ferromagnetism in this setting: [recall M(0) = 1) "o(z)]
A

» Condition on the boundary sites
all having plus spins.

> Let the system size |A| tend — o

(~ a magnetic field with effect — 0).
» What is the typical M(o) for large |A| ?
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Static Ising model 8

The Ising phase-transition (cd.)

» Ferromagnetism in this setting: [recall M (o) = ﬁz(;(x)]
> Condition on the boundary sites ™ e |
all having plus spins. | .

|

> Let the system size |A| tend — oo 1
4 N

» Expect: phase-transition at some critical 3, :
gaﬁ%ﬁkw

( 0 if 3<0,) ;@11%

AR

lim E"[M(o)] = ;
Fire >0 if 3>73)

all-plus w\[ spontaneous]
boundary magnetization

Eyal Lubetzky, Microsoft Research
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Static Ising model 9

The Ising phase-transition (cd.)

» The magnetization 151 |
phase-transition at 3, : /'
S B |
» Replace magnetization «~ price to find diagram in i .

: “Why Stock Markets Crash” / D. Sornette (2001)
| [Chapter 5 “Modeling bubbles and crashes”|

o T
.‘t';.l’ J . e

» Such applications of the Ising Model poti ?"6
emphasize a missing dimension of time:

B D Sonette
> How does the system evolve?

» From a given starting state, how long does it take
for certain configurations to appear?

Eyal Lubetzky, Microsoft Research
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Static vs. stochastic Ising

» Expected behavior for rate of convergence of dynamics:

8 < B, B 8> B,

law

J

Y
[ constant pOWEL @ exponentially slow (Free b.c. )
)

> Symmetry breaking: @ power law

» More on this later.. )

Eyal Lubetzky, Microsoft Research
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Static Ising model

The 1D Ising model

» Ph.D. in Physics in 1924 from U. Hamburg
under the supervision of Lenz.

» Studied the 1D model of Lenz in his thesis:
= . . ,

E Ising - Zeitschrift fir Physik A Hadrons and Nuclei, 1925 - Springer
Cited by 1043

“rnst Ising
1900-1998

> Gave an exact solution for the 1D model.
» Unfortunately: no phase-transition...

» Gave heuristic arguments why there would not be a
phase-transition in higher dimensions either (calling
for more sophisticated models of ferromagnetism).

Eyal Lubetzky, Microsoft Research
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The 1D Ising

Static Ising model 12

» Setting: A = vertices along a line. Q@9 QCE00O

» An instance of the

Ising model can be generated by

running a 2-state Markov chain:

e €

e ¢*
» K oc| g ;

indexed by the states {+-1}.

— (N

» Intuition for absence of a phase-transition: No
consideration for history beyond last seen vertex, e.g.

COOOOOO

©) similar to @O OO OO ©).

» lim E"[M(0)] =0 forany g > 0.

e

Eyal Lubetzky, Microsoft Research
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Static Ising model 13

After solving the 1D model
» Ising [letter to S. Brush in 1967]:

”...1 discussed the result of my paper widely

with Prof. Lenz and with Dr. Wolfgang Pauli, who
_ at that time was teaching in Hamburg. There was
' some disappointment that the linear model did not
show the expected ferromagnetic properties...”

» Left research after a few years at the German General | =
Electric Co. and turned to teaching in public schools.

» Survived WW2 in Luxembourg isolated from scientific
life. Came to the US in 1947 and only then »...qdiqa 1

learn that the idea had been expanded.”

Eyal Lubetzky, Microsoft Research
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Meanwhile, on 2D Ising

» Heisenberg (1928) proposed his own theory of
ferromagnetism, with Ising’s negative result as
a motivation for the more sophisticated model.

» Followed by other models attempting to
explain order/disorder in metallic alloys.

» In 1936 Rudolf Peierls published the paper

- Onlsing's model of ferromagnetism
R Peierls - Mathematical Proceedings of the Cambridge ..., 1936
Ising® discussed the following model of a ferromagnetic body: /
of moment yn to be arranged in a regular lattice; each of them is ¢
orientations, which we call positive and negative. Assume further t
. Cited by 327 - Related articles - All 3 versions

arguing that the 2D and 3D Ising models do have

W. Heisenberg §
1901-1976 | i

R. Peierls
1907-1995

spontaneous magnetization at low enough temperature

(contrary to Ising’s prediction).

Eyal Lubetzky, Microsoft Research
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Static Ising model 15

Peierls’ phase transition argument

» Peierls’ combinatorial argument is simple and robust.

» Key idea: represent Ising configurations as contours in
the dual gmph the edges are dual to disagreeing edges.
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Peierls’ phase transition argument

» When all boundary spins are @ ‘s the Peierls contours
are all closed [marking “islands” containing of e’s l.

QCQC..QQ.QQQQQOO

* : * # % * ok % ? * * R
.‘ ‘ 2 \‘ ‘ : ‘ ‘ '8 O . ‘ ‘ ....... ' ‘ ‘ @ H
e & i H i ; H

oo oo o ojo e e o ele o ole s

R ’ﬁt"‘:“‘iﬁ\:“* ®

o 0 0 o o o | R 0\ oo o o o -

* * * % -4 * * * 4

00000.00.000000.

» The proof will follow a first moment argument on the
number of sites inside such a @) component.

Eyal Lubetzky, Microsoft Research
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Static Ising model 17

Peierls’ phase transition argument

» Setting: A C Z? is an nxn box with all-plus boundary.

» Fix a contour C of length (.
» For each o containing O flip all the spins of C and its

interior to arrive at a unique o’ :
® -0 @& 0 @ @& -0 0 @ | G Ghel Aue Cade i s Siie o H
(@) QTQ @ QLQﬁC*.*C @] .‘A. Q:j. @ QﬁQ
o o ¢ 0-0*[0'0*0*0 bijection ® .‘. .'.?";‘?. .*. N
Q*.*Q*. ® @ @ Q*Q .#QﬁO*Q}-;-*Q*-;"#QQQ
I o e oo e D
L AN, AN, AN, A, AS. A, S S ® & @ 0 0 0 @& 0 0
: N+(U):Z_1€B_’B£ u(o!) = 7—1pB+0¢

» = P(C belongs to configuration contours) < e27 .

Eyal Lubetzky, Microsoft Research
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Static Ising model 18

Peierls’ phase transition argument

» For a fixed contour C' of length ¢ :
> P(C belongs to contours) < e?0¢,

> C can contain at most (2 sites (isoperimetric). ]!*'

» Atmost 4N-3"" possible such contours, where B
N = n? is the total number of sites. |

» Summing we get:
Bl#{i:0()=—1}] <IN £?(Be™) <eN

where <Y for a suitably large 3. |

Eyal Lubetzky, Microsoft Research
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Static Ising model

Exact solution of 2D Ising

» Critical point candidate S, = %log(l + \/Z) ~ 0.44
found by Kramers and Wannier in 1941 via duality.

=

| » 2D Ising model was exactly solved in 1944
| in the seminal work of Lars Onsager
(Nobel in Chemistry 1968)

» Proof used the transfer matrix method. gt o1
> For the 2D lattice the transfer matrix (2"x2")
was analyzed using the theory of Lie algebras.

Eyal Lubetzky, Microsoft Research
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Static Ising model 20

Magnetization at low temperature

» What is the spontaneous magnetization at low temp?

> Onsager wrote the solution on the blackboard at |
Cornell in 1948: ‘,;

1 - (sinh(28)) ] 4

Appeared later in print as a remark without proof. | |

> In 1952, C.N. Yang (Nobel in Physics 1957)
succeeded in re-deriving Onsager’s formula.

C.N. Yang

» What happens when g — 3, from above?

» The spontaneous magnetizationis = (08— 3)"° .
This is an example of a critical exponent.

Eyal Lubetzky, Microsoft Research
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Static Ising model 21

Universality and critical exponents

» Despite simplitied description, physicists believe
(supported by many experiments) that the Ising model
shares many critical phenomena with various other |
(far more complex) systems: a universality class.

» Some properties (e.g. the value of ) can certainly
depend on the model, e.g. the underlying lattice type:

4%y |z
> lattice: % % %“O |
; —log(l + \/_) —log(3) %log(Z + \/§)

wh11e scahng limit and critical exponents are the same.

Eyal Lubetzky, Microsoft Research
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Static Ising model 22

Example: critical Ising interfaces

» Understanding of limiting geometry boosted
by the advent of SLE [Schramm "00], CLE and
tools to study conformally invariant systems.

O. Schramm

» Recent breakthrough results due to 1961-2008
Stas Smirnov describe the full scaling
limit of the 2D Ising cluster interfaces.

> Fields medal citation read: “for the proof

of conformal invariance of percolation and
the planar Ising model in statistical physics”.

» Intertaces between the +/- components
have a conformally invariant limit: SLE(3)
(regardless of the 2D lattice type).

» Static Ising properties are a prerequisite

for understanding its dynamics.
i : Eyal Lubetzky, Microsoft Research
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Stochastic Ising model 23

Glauber dynamics / Stochastic Ising

» Glauber dynamics for the Ising model

(also known as the Stochastic Ising model)
introduced in 1963 by Roy J. Glauber
(Nobel in Physics 2005).

> tinite ergodic Markov chain on € = {il}A RJ. Glauber

> moves between states by flipping a single site.

> converges to the stationary Ising measure p.
» Intensively studied over the last 30 years:

> Natural etficient sampler for the Ising model.

> Captures its stochastic evolution.

Eyal Lubetzky, Microsoft Research
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Stochastic Ising model 24

Glauber dynamics for Ising

» One of the most commonly used MC samplers for the

Ising distribution fx :
> Update sites via iid Poisson(1) clocks
> FEach update replaces a spin at u € V
by a new spin ~ p conditioned
on all remaining spins at V' \{u}.

» The above is the heat-bath version. Other versions of
the dynamics include e.g. Metropolis.

» To sample from the Ising model, start at an arbitrary
state (e.g. all-plus) run the chain.

» How long does it take it to converge to j ?

Eyal Lubetzky, Microsoft Research
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Example: Glauber dynamics for
critical Ising on the square lattice

[ »256 x 320 square lattice \
w. boundary conditions: | “. i A
(+) at bottom WA s
(-) elsewhere. i3 ﬁ
»Frame after 22 steps, i.e. | 2 SRaER. _
~100 updates per site. E
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Notions of convergence to equilibrium

» Spectral gap in the spectrum of the generator:
gap = smallest positive eigenvalue of the
heat-kernel H, of the dynamics.

» Mixing time : (according to a given metric).
» Standard choice: L' (total-variation) mixing time
to within ¢ is defined as

b (€] =1k {t : max HHt (0,")— ,uHTV & 5} .

o(4) (4]

i, =

v ACQ

Eyal Lubetzky, Microsoft Research
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Stochastic Ising model 5

Believed picture for Ising on Z4

» For some critical inverse-temperature f3.:

gap = O(1)
t = O(logn)

mix

To 172

> E.g., gap 'is | = = n [X eXp[ GRSV
» Analogous picture verified for:

» Regular tree [Berger, Kenyon, Mossel, Peres ‘05] (high T/low T)
[Ding, L., Peres "10] (critical T)

» Potts model on complete graph
[Cuff, Ding, L., Louidor, Peres, Sly]

Eyal Lubetzky, Microsoft Research
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Critical slowdown

» (Intuition: low temperature|

> Exponential mixing due
to a bottleneck between

the “mostly-plus” and
the “mostly-minus” states |

b [Intuition: high temperature] STy magRezaon L B
> At 8 = 0 there is complete independence.

» For very small 3 > 0 a spin is likely to choose the
same update given 2 very ditferent neighborhoods

(weak “communication” between sites).
> States can be coupled quickly, hence rapid mixing.
» |Intuition: critical power-law |
» Doubling the box incurs a constant factor in mixing...

Eyal Lubetzky, Microsoft Research
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Mixing for Ising on the 2D lattice

» Fast mixing at high temperatures:
= [Aizenman, Holley "84]
= [Dobrushin, Shlosman "87]
= [Holley, Stroock 87, "89] |
= [Holley "91]
1 = [Stroock, Zegarlinski "92a, "92b, "92c] ‘.
= [Zegarlinski "90, "92]
= [Lu, Yau '93] -
= [Martinelli, Olivieri "94a, “94b]
= [Martinelli, Olivieri, Schonmann "94]
» Slow mixing at low temperatures:
= [Schonmann '87]
= [Chayes, Chayes, Schonmann "87]
= [Martinelli "94]
= [Cesi, Guadagni, Martinelli, Schonmann "96].

Eyal Lubetzky, Microsoft Research
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Picture on Z*
» High & low temperatures fully settled for free b.c.:

I O ST

t = exp(c(B)+o(l))n

{ gap = O(1) 1 [gapl = exp(c(B) + o(1) )n}

t = O(logn)

» Unanswered:

Critical | %
power law?| *;

Polynomial
mzxmg under

 Eyal Lubetzky, Microsoft Research
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New results: mixing at criticality o

» Prior estimates on critical mixing:

> Numerical experiments: universal exponent of ~ 2.17
[Ito 93], [Wang et al "95], [Grassberger’95], [Nightingale, Blote’96], [Wang, Hu'97],...

> [Holley ‘91]: Mixing is at least polynomial. R
> No sub-exponential upper bounds known. -

¥ = I
T
~ SN

There 3 exists an absolute ¢ > 0 so that the mixing time of
Glauber dynamics for the critical Ising model on an n X n

4 box with arbitrary boundary conditions is at most n°.

» COROLLARY: Perfect simulation (zero error approximation) for |

the 2D critical Ising model with arbitrary boundary conditions.

Eyal Lubetzky, Microsoft Research
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New results: mixing under all-plus
» Previous milestones: Beelom 1
> [Fisher, Huse "87]: conjectured mixing for Ising on an 5 i
n X n box with @plus®.e)) is = n? (Lifshitz’s law (‘62)).
> [Martinelli "94]: . \
mixing < exp(n!/2*°W) for large enough g.

» [Martinelli, Toninelli "10]:
tmix < €xp(n®) for any € > 0 and large enough g.

» THEOREM: ([L., Martinelli, Toninelli, Sly “12+]:

For any > 3. there 3 c() > 0 so that the mixing time of
Glauber dynamics for Ising on an nxn box with all-plus

kboundary conditions is at most n¢ %8

1

~ Eyal Lubetzky, Microsoft Research
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Crucial equilibrium estimates

» Analysis of mixing at criticality
used SLE behavior of Ising interfaces
(RSW-type crossing-probability estimates
for FK-Ising by [Chelkak-Smirnov “09],
[Camia-Newman ‘09], [Duminil- Copm—Hongler—Nohn 09]
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» Analysis of mixing under all-plus b.c.
at low temperatures relied on new
quantitative estimates of convergence ; :
of Ising interfaces to Brownian bridges :
(refining [H1guch1 ‘791, [Hrynlv 98] [Greenberg-loffe ‘05]) |

........................................ 132233923332323933323:
oo
5 |

2980000600 ——

Eyal Lubetzky, Microsoft Research
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Glauber dynamics on 72

» Best known bounds on mixing;:

o
<5, Y
5 t —=2A_logn + O(loglogn)
-
n7/4 = gap_l = tmix < nc}

gap ' = exp(c(B) + o(1))n
t—exple(d)rollln

D nO(logn) ]

Eyal Lubetzky, Microsoft Research
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Open problems

» Calculate the precise dynamical critical exponent.

» Establish power-law behavior on the lattice in 3D.

» Show the Glauber dynamics is polynomial at low |
temperatures under all-plus boundary conditions.

Eyal Lubetzky, Microsoft Research
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