

May 2015 SE Probability Conference Duke University

Random walks on the Random graph

Le ale and	
AND AND AREA	A MANANA A MANANANA A MANANA

Eyal Lubetzky

Courant Institute (NYU)

Joint work with N. Berestycki, Y. Peres, A. Sly

In this talk

- Mixing time of random walk and specifically cutoff as a gauge for delicate properties of the geometry.
- Compare its behavior between

and the effect of the initial state on mixing.

The Erdős-Rényi random graph

• $\mathcal{G}(n,p)$: indicators of the $\binom{n}{2}$ edges are IID Bernoulli(p).

"This double "jump" of the size of the largest component... is one of the most striking facts concerning random graphs." (Erdős and Rényi, 1960)

The Erdős-Rényi random graph

- Setting: G(n, p) around the critical point p = 1/n.
- "Double jump" phenomenon for order of $|C_1|$: [Erdős-Rényi (1960's)], [Bollobás '84], [Łuczak '90]
 - $\log n$ for $p = \lambda/n$ with $\lambda < 1$ fixed.
 - $n^{2/3}$ at and throughout *critical window*: $p = (1 \pm \varepsilon)/n$ for $\varepsilon = O(n^{-1/3})$.
 - *n* for $p = \lambda/n$ with $\lambda > 1$ fixed.
- Emerging from the critical window:
 - $(p = (1 + \varepsilon)/n \text{ for } n^{-1/3} \ll \varepsilon \ll 1)$:

 $|\mathcal{C}_1| \sim 2\varepsilon n$ (giant component gradually forms)

Measuring convergence to equilibrium

- <u>Total-variation mixing time</u> :
 - \succ the mixing time of a Markov Chain on Ω with transition kernel P to within distance ε from its stationary distribution π is defined as

$$t_{\min}(\varepsilon) = \inf \left\{ t : \max_{x_0} \left\| P^t(x_0, \cdot) - \pi \right\|_{tv} \le \varepsilon \right\}$$

$$(\text{where } \|\mu - \nu\|_{tv} = \sup_{A \in \Omega} [\mu(A) - \nu(A)])$$

> Analogous definition of $t_{\text{mix}}^{(x_0)}(\varepsilon)$ for a prescribed starting state x_0 .

• <u>Dependence on ε </u> : (cutoff phenomenon [DS81], [A83], [AD86]) We say there is cutoff $\Leftrightarrow t_{mix}(\varepsilon) \sim t_{mix}(\varepsilon') \quad \forall$ fixed $\varepsilon, \varepsilon'$

Cutoff History (RWs on graphs/groups)

- Discovered:
 - Random transpositions on S_n [Diaconis, Shahshahani '81]
 - RW on the hypercube, Riffle-shuffle [Aldous '83]
 - Named "Cutoff Phenomenon" in top-in-at-random shuffle analysis [Diaconis, Aldous '86]
- Nearly 3 decades after its discovery: *only example* of cutoff for RW on a *bounded-degree graph* was the lamplighter on Z²_n [Peres & Revelle '04].
 - Is this a phenomenon of (mainly) large degree graphs?

Basic examples: RWs on graphs

Lazy discrete-time simple random walk

• What about mixing on C_1 of $\mathcal{G}(n, p)$?

Mixing on the largest component

	Critical window $p = (1 \pm \varepsilon)/n$ $\varepsilon = O(n^{-1/3})$	Mildly supercritical $p = (1 + \varepsilon)/n$ $n^{-1/3} \ll \varepsilon \ll 1$	Supercritical $p = (1 + \varepsilon)/n$ $\varepsilon > 0$ fixed
$ \mathcal{C}_1 $	$\approx n^{2/3}$	~ 2 <i>ɛn</i>	~ 2 <i>ɛn</i>
Mixing time on \mathcal{C}_1	<i>≍ n</i> Nachmias, Peres ′08	$\approx \varepsilon^{-3} \log^2(\varepsilon^3 n)$ Ding, L., Peres '12	≍ log ² n Fountoulakis, Reed '08 and independently Benjamini, Kozma, Wormald '13
	THE HE THE		Eyal Lubetzky, Courant

Bottlenecks slow the mixing on \mathcal{C}_1

- Lower bound $t_{\text{mix}} \ge C \log^2 n$ immediate:
 - w.h.p. C_1 contains a path \mathcal{P} of $c \log n$ degree-2 vertices.
 - escaping \mathcal{P} starting from v_1 at its center takes $\left(\frac{c}{2}\log n\right)^2$ steps in expectation.
 - large hanging trees have a similar effect.
- Dominates mixing $(t_{\text{mix}} \approx \log^2 n)$; **no cutoff**.
- Such bottlenecks should be rare...
 - faster mixing from a typical initial vertex v_1 ?
- Indeed: starting from a typical vertex accelerates the RW & concentrates it (cutoff)!

New results: RW on a giant

• **THEOREM** [Berestycki, L., Peres, Sly]:

RW from a uniform vertex $v_1 \in C_1$ w.h.p. satisfies $t_{\text{mix}}^{(v_1)}(\varepsilon) = v^{-1} \mathbf{d}^{-1} \log n \pm (\log n)^{1/2+o(1)}$

- $C_1 = \text{largest component of } \mathcal{G}(n, p = \lambda/n) \ [\lambda > 1 \ \text{fixed}].$
- $\nu =$ speed of RW on a Po(λ)-GW tree.
- $\mathbf{d} = \text{dimension of harmonic measure Po}(\lambda)$ -GW tree.

Anatomy of a giant

THEOREM [Ding, L., Peres '13]: giant of $\mathcal{G}(n, p = \lambda/n)$ is \approx 1. kernel : \mathcal{K} random graph with (nice) given degrees $(D_i \sim \text{Po}(\lambda - \varepsilon_{\lambda} \mid \cdot \geq 3) \text{ IID for } i = 1, ..., N)$ 2. 2-core : edges \mapsto paths of lengths IID Geom $(1 - \varepsilon_{\lambda})$ 3. giant : attach IID Po (ε_{λ}) -Galton-Watson trees

a typical $v_1 \in C_1$ will be "far" from the bottlenecks: what is t_{mix} from a typical vertex on an *expander*?

RWs on expanders

• **DEFINITION** [regular expander]:

sequence of *d*-regular graphs ($d \ge 3$ fixed) such that the relaxation time (1/spectral-gap) of **SRW** is O(1).

- Since $t_{rel} = O(1)$ the "product condition" of Peres (2004) holds and we expect **cutoff**...
- Specifically, convergence of RW on such a graph occurs along $t \in [c \log n, c' \log n]$ (not too gradual: 'pre-cutoff').
- Consider a random regular graph (an expander w.h.p.)

RWs on random regular graphs

- G(n, d) = uniformly chosen d-regular n-vertex graph.
 Its study pioneered by Bollobás in early 80's.
- W.h.p. $G \sim \mathcal{G}(n, d)$ for $d \geq 3$ is an expander [Pinsker '73], [Broder, Shamir '87].
- <u>**Тнеокем</u>** [Berestycki, Durret '08]:</u>

RW on G(n, 3) after $c \log_2 n$ steps is w.h.p. at distance ~ $(c/_3 \wedge 1) \log_2 n$ from origin.

• <u>CONJECTURE</u> [Durrett '07]:

Mixing time of the lazy RW on the random cubic graph G(n, 3) is w.h.p. $\sim 6 \log_2 n$.

Cutoff for RW on $\mathcal{G}(n, d)$

- As Durrett and Peres conjectured, \exists cutoff almost always:
- <u>THEOREM</u> [L., Sly '10]:

Let $G \sim G(n, d)$ for $d \geq 3$ fixed. The **SRW** on *G* w.h.p. has cutoff at $\frac{d}{d-2}\log_{d-1} n$ with window $\sqrt{\log n}$

• e.g., for d = 3: $t_{\min}(\varepsilon) = 3 \log_2 n - (2\sqrt{6} + o(1)) \Phi^{-1}(\varepsilon) \sqrt{\log_2 n}$

- NBRW (does not traverse same edge twice in a row) also has cutoff, earlier and with a **constant** window!
- <u>**THEOREM</u>** [L., Sly '10]:</u>

Let $G \sim \mathcal{G}(n, d)$ for $d \geq 3$ fixed. The **NBRW** on G w.h.p. has cutoff at $\log_{d-1}(dn)$ with window O(1).

Simulations of RWs on $\mathcal{G}(n,d)$

Eyal Lubetzky, Courant Institute

Insight: cutoff for SRW & NBRW

- Consider a *d*-regular tree, rooted at the starting point of the RW (mixes upon hitting leaves).
- Height of NBRW vs. SRW:
 - NBRW cannot backtrack up the tree \Rightarrow hits bottom after precisely $\log_{d-1} n$ steps.
 - SRW \equiv biased 1D RW with speed $\nu = \frac{d-2}{d}$ \Rightarrow hits bottom after $\frac{d}{d-2}\log_{d-1}n + O_{\mathrm{P}}(\sqrt{\log n})$ steps.
- In both cases: cutoff once the entropy of $P^t(v_0, \cdot)$ reaches $\log n$, which occurs at $t = \frac{1}{\nu} \frac{1}{\log(d-1)} \log n$.

 \overline{D}/ν

 \overline{D} (average distance)

Mixing vs. the distance from the origin

 Mixing on irregular graphs is delayed beyond the stabilization of the distance, since the rate at which entropy drops further involves the dimension d :

Eyal Lubetzky, Courant Institute

New results: RW on the giant

- Setup:
 - $C_1 = \text{largest component of } \mathcal{G}(n, p = \lambda/n) \ [\lambda > 1 \ \text{fixed}].$
 - $\nu =$ speed of RW on a Po(λ)-GW tree.
 - $\mathbf{d} = \text{dimension of harmonic measure Po}(\lambda)\text{-GW tree}$ $\stackrel{\text{a.s.}}{=} \lim_{t \to \infty} \frac{1}{t} \log \frac{1}{\theta(\xi_t)} \text{ where } (\xi_t) = \text{LERW and } \theta(x) = \text{probability it visits } x.$

RW from a uniform vertex $v_1 \in C_1$ w.h.p. satisfies $t_{\min}^{(v_1)}(\varepsilon) = v^{-1}\mathbf{d}^{-1}\log n \pm (\log n)^{1/2+o(1)}$

• Cutoff from a typical starting point!

Dimension of harmonic measure

Dimension of harmonic measure

- For a.e. GW-tree: $\mathbf{d} \stackrel{\text{a.s.}}{=} \lim_{t \to \infty} \frac{1}{t} \log \frac{1}{\theta(\xi_t)}$ where $(\xi_t) = \text{LERW}$ and $\theta(x) = \text{probability it visits } x$.
- Can be written as an integral w.r.t. to the measure on effective conductance in the GW-tree.
- Pioneering work [Lyons, Pemantle, Peres '94] showed that $d < \log \mathbb{E}Z$ for a.e. GW-tree !

Density of the $C_{\rm eff}$ distribution

for $Z \sim \begin{cases} 1 & 1/3 \\ 2 & 1/3 \\ 3 & 1/3 \end{cases}$

 $[\nu \mathbf{d} = \int_{s=0}^{\infty} \int_{t=0}^{\infty} \frac{\log(1+s)}{1+s^{-1}+t^{-1}} d\mu(t)\mu(s) \text{ with } \mu = \text{dist. of } C_{\text{eff}}(\rho, \infty).]$

RW on random graphs with given degrees

- Random graph with given degrees ≥ 3 (e.g., half 3 half 4): similarly, dimension reduction due to irregularity of degrees...
- **<u>THEOREM</u>** [Berestycki, L., Peres, Sly]:

Let *G* be a uniformly chosen graph with degree frequencies (p_k) s.t. *Z* with $\mathbb{P}(Z = k) \propto k p_k$ satisfies $\mathbb{E}Z = O(1), 2 \leq Z \leq e^{(\log n)^{1/2-\delta}}$. Then **RW** from a uniform vertex of $v_1 \in G$ w.h.p. satisfies $t_{\text{mix}}^{(v_1)}(\varepsilon) = v^{-1} \mathbf{d}^{-1} \log n \pm O\left(\sqrt{\log n}\right)$ and the same statement holds for **NBRW** (from typical/worst v_1).

0.8

0.4

0.2

Proof ingredients for $\mathcal{G}(n,p)$

- The correct cutoff window requires sharp fluctuation estimates on $\log \theta(\xi_t)$ for $\theta =$ harmonic measure.
 - Build on arguments of [Lyons, Pemantle, Peres '95, '96] and [Dembo, Gantert, Peres, Zeitouni '02].
- Exploit fact (using the structure theorem for \mathcal{C}_1) that bottlenecks are rare/spread-out to help expansion.
- Additional difficulties: delays from hanging trees, coupling the walk on the tree to that on the graph, ...
- Proof extends to random graphs with given degrees.
 - NBRW directly analyzed by an adaptation of the random regular graph proof (sharp cutoff window).

Open problems

- What is the dimension **d** of harmonic measure on a $Po(\lambda)$ -GW-tree?
- Does RW exhibit cutoff on every family of transitive 3-regular expanders? [conjectured to be true by Y. Peres]
- Does RW exhibit cutoff on any family of transitive 3-regular expanders? (explicit / probabilistic)

