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In this talk
 Mixing time of random walk and specifically cutoff

as a gauge for delicate properties of the geometry.

 Compare its behavior between 

and the effect of the initial state on mixing.

𝒢 𝑛, 𝑝
Erdős-Rényi

random graph

𝒢 𝑛, 3
random regular graph 

(and other degree distributions)

relatives
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The Erdős-Rényi random graph
 𝒢(𝑛, 𝑝): indicators of the 𝑛

2
edges are IID Bernoulli 𝑝 .

“This double “jump” of the size of the largest component… is one of the most striking facts concerning random graphs.”
(Erdős and Rényi, 1960)
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The Erdős-Rényi random graph

 Setting: 𝒢(𝑛, 𝑝) around the critical point 𝑝 = 1/𝑛 .

 “Double jump” phenomenon for order of 𝒞1 :
[Erdős-Rényi (1960’s)], [Bollobás ’84] , [Łuczak ’90]

 for 𝑝 = 𝜆/𝑛 with  𝜆 < 1 fixed.

 at and throughout critical window: 
𝑝 = (1 ± 𝜀)/𝑛 for 𝜀 = 𝑂(𝑛−1/3) .

 for 𝑝 = 𝜆/𝑛 with  𝜆 > 1 fixed.

 Emerging from the critical window:
 :

𝒞1 ∼ 2𝜀𝑛 (giant component gradually forms)

𝑝 = (1 + 𝜀)/𝑛 for 𝑛−1/3 ≪ 𝜀 ≪ 1
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Measuring convergence to equilibrium
 Total-variation mixing time :
 the mixing time of a Markov Chain on Ω with transition kernel 𝑃 to within 

distance 𝜀 from its stationary distribution 𝜋 is defined as

𝑡mix 𝜀 = inf 𝑡 ∶ max
𝑥0

𝑃𝑡(𝑥0 ,⋅) − 𝜋
tv
≤ 𝜀

( where 𝜇 − 𝜈 tv = sup
𝐴⊂Ω

𝜇 𝐴 − 𝜈(𝐴) )

 Analogous definition of 𝑡mix
(𝑥0) 𝜀 for a prescribed starting state 𝑥0.

 Dependence on 𝜀 : (cutoff phenomenon [DS81], [A83],[AD86])
We say there is cutoff ⟺ 𝑡mix 𝜀 ∼ 𝑡mix 𝜀′ ∀ fixed 𝜀, 𝜀′
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Cutoff History (RWs on graphs/groups)

 Discovered:
 Random transpositions on 𝑆𝑛 [Diaconis, Shahshahani ‘81]

 RW on the hypercube, Riffle-shuffle [Aldous ‘83]

 Named “Cutoff Phenomenon” in top-in-at-random shuffle analysis [Diaconis, Aldous ‘86]

 Nearly 3 decades after its discovery: only example of cutoff for RW on a 
bounded-degree graph was the lamplighter on ℤ𝑛2 [Peres & Revelle ’04].
 Is this a phenomenon of (mainly) large degree graphs?
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Basic examples: RWs on graphs
Lazy discrete-time simple random walk

hypercube 0,1 𝑛 :
 cutoff at 1

2
𝑛 log 𝑛 ± 𝑂(𝑛)

[Aldous ’83]

𝑛-cycle: 
 No cutoff.

 What about mixing on 𝒞1 of 𝒢(𝑛, 𝑝)?
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Mixing on the largest component

Critical window
𝑝 = (1 ± 𝜀)/𝑛
𝜀 = 𝑂(𝑛−1/3)

Mildly supercritical
𝑝 = (1 + 𝜀)/𝑛
𝑛−1/3 ≪ 𝜀 ≪ 1

Supercritical
𝑝 = (1 + 𝜀)/𝑛
𝜀 > 𝟎 fixed

𝒞𝟏 ≍ 𝑛2/3 ∼ 2𝜀𝑛 ∼ 2𝜀𝑛

Mixing 
time on

𝒞𝟏

≍ 𝑛
Nachmias, Peres ’08

≍ 𝜀−3 log2(𝜀3𝑛)
Ding, L., Peres ’12

≍ log2 𝑛
Fountoulakis, Reed ’08 

and independently
Benjamini, Kozma, Wormald ’13
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Bottlenecks slow the mixing on 𝒞1
 Lower bound 𝑡mix ≥ 𝐶 log2 𝑛 immediate:
 w.h.p. 𝒞1 contains a path 𝒫 of 𝑐 log 𝑛

degree-2 vertices.
 escaping 𝒫 starting from 𝑣1 at its center

takes 𝑐

2
log 𝑛

2
steps in expectation.

 large hanging trees have a similar effect.

 Dominates mixing (𝑡mix ≍ log2 𝑛); no cutoff.

 Such bottlenecks should be rare…
 faster mixing from a typical initial vertex 𝑣1?

 Indeed: starting from a typical vertex
accelerates the RW & concentrates it (cutoff)!
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New results: RW on a giant

 THEOREM [Berestycki, L., Peres, Sly]:

 𝒞1 = largest component of 𝒢(𝑛, 𝑝 = 𝜆/𝑛) [𝜆 > 1 fixed].

 𝜈 = speed of RW on a Po(𝜆)-GW tree.

 𝐝 = dimension of harmonic measure Po(𝜆)-GW tree.

RW from a uniform vertex 𝑣1 ∈ 𝒞1 w.h.p. satisfies

𝑡mix
(𝑣1) 𝜀 = 𝜈−1𝐝−1 log 𝑛 ± log 𝑛 1/2+𝑜(1)
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Anatomy of a giant
THEOREM [Ding, L., Peres ‘13]: giant of 𝒢(𝑛, 𝑝 = 𝜆/𝑛) is ≈

1. : 𝒦 random graph with (nice) given degrees
( 𝐷𝑖 ∼ Po(𝜆 − 𝜀𝜆 ∣ ⋅ ≥ 3) IID for 𝑖 = 1,… , 𝑁)

2. : edges ↦ paths of lengths IID Geom(1 − 𝜀𝜆)

3. : attach IID Po(𝜀𝜆)-Galton-Watson trees

a typical 𝑣1 ∈ 𝒞1 will be 
“far” from the bottlenecks: 
what is 𝑡mix from a typical 
vertex on an expander?



Eyal Lubetzky, Courant Institute

 DEFINITION [regular expander]:

 Since 𝑡rel = 𝑂(1) the “product condition” of Peres (2004) holds 
and we expect cutoff…

 Specifically, convergence of RW on such a graph occurs along
𝑡 ∈ 𝑐 log 𝑛 , 𝑐′ log 𝑛

(not too gradual: ‘pre-cutoff’). 

 Consider a random regular graph (an expander w.h.p.)

RWs on expanders

sequence of 𝑑-regular graphs (𝑑 ≥ 3 fixed) such that 
the relaxation time (1/spectral-gap) of SRW is 𝑂(1).
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RWs on random regular graphs 
 𝒢 𝑛, 𝑑 = uniformly chosen 𝑑-regular 𝑛-vertex graph.

Its study pioneered by Bollobás in early 80’s.

 W.h.p. 𝐺 ~ 𝒢(𝑛, 𝑑) for 𝑑 ≥ 3 is an 
expander [Pinsker ’73], [Broder, Shamir ’87].

 THEOREM [Berestycki, Durret ’08]: 

 CONJECTURE [Durrett ’07]:

Mixing time of the lazy RW on the random 
cubic graph 𝒢(𝑛, 3) is w.h.p. ~6 log2 𝑛 .

RW on 𝒢(𝑛, 3) after 𝑐 log2 𝑛 steps is w.h.p.
at distance ∼  𝑐 3 ∧ 1 log2 𝑛 from origin.

3 log2 𝑛
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 As Durrett and Peres conjectured, ∃ cutoff almost always:

 THEOREM [L., Sly ‘10]:

 e.g., for 𝑑 = 3:

 NBRW (does not traverse same edge twice in a row)
also has cutoff, earlier and with a constant window!

 THEOREM [L., Sly ‘10]:

Let 𝐺 ∼ 𝒢(𝑛, 𝑑) for 𝑑 ≥ 3 fixed. The SRW on 𝐺

w.h.p. has cutoff at 𝑑

𝑑−2
log𝑑−1 𝑛 with window log 𝑛

Let 𝐺 ∼ 𝒢(𝑛, 𝑑) for 𝑑 ≥ 3 fixed. The NBRW on 𝐺
w.h.p. has cutoff at log𝑑−1 𝑑𝑛 with window 𝑂 1 .

Cutoff for RW on 𝒢(𝑛, 𝑑)

𝑡mix 𝜀 = 3 log2 𝑛 − 2 6 + 𝑜 1 Φ−1 𝜀 log2 𝑛
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Simulations of RWs on 𝒢(𝑛, 𝑑)

𝑂( log𝑛) cutoff window 𝑂(1) cutoff window
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Insight: cutoff for SRW & NBRW

 Consider a 𝑑-regular tree, rooted at the starting point of the RW 
(mixes upon hitting leaves).

 Height of NBRW vs. SRW:
 NBRW cannot backtrack up the tree 
 hits bottom after precisely log𝑑−1 𝑛 steps.

 SRW ≡ biased 1D RW with speed 𝜈 =  𝑑−2
𝑑

 hits bottom after 𝑑

𝑑−2
log𝑑−1 𝑛 + 𝑂P( log 𝑛) steps.

 In both cases: cutoff once the entropy of 𝑃𝑡 𝑣0,⋅

reaches log 𝑛, which occurs at 𝑡 =
1

𝜈

1

log(𝑑−1)
log 𝑛. 

 𝐷 (average distance)

 𝐷/𝜈
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Mixing vs. the distance from the origin

 Mixing on irregular graphs is delayed beyond the stabilization of the distance, 
since the rate at which entropy drops further involves the dimension 𝐝 :

𝑡mix 1 − 𝜀 𝑡mix 𝜀 𝑡mix 1 − 𝜀 𝑡mix 𝜀 𝐷

𝜈

 𝐷

𝜈

Regular graphIrregular graph
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New results: RW on the giant

 Setup:
 𝒞1 = largest component of 𝒢(𝑛, 𝑝 = 𝜆/𝑛) [𝜆 > 1 fixed].
 𝜈 = speed of RW on a Po(𝜆)-GW tree.
 𝐝 = dimension of harmonic measure Po(𝜆)-GW tree

= lim
𝑡→∞

1

𝑡
log

1

𝜃 𝜉𝑡
where 𝜉𝑡 = LERW and 𝜃 𝑥 = probability it visits 𝑥.

 THEOREM [Berestycki, L., Peres, Sly]:

 Cutoff from a typical starting point! 

RW from a uniform vertex 𝑣1 ∈ 𝒞1 w.h.p. satisfies

𝑡mix
(𝑣1) 𝜀 = 𝜈−1𝐝−1 log 𝑛 ± log 𝑛 1/2+𝑜(1)

𝑡mix 𝐷/𝜈
a.s.
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Dimension of harmonic measure

𝐝 = lim
𝑡→∞

1

𝑡
log

1

𝜃 𝜉𝑡
where 𝜉𝑡 = LERW 

and 𝜃 𝑥 = probability it visits 𝑥. 

a.s.
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Dimension of harmonic measure

 For a.e. GW-tree: 𝐝 = lim
𝑡→∞

1

𝑡
log

1

𝜃 𝜉𝑡
where 𝜉𝑡 = LERW and 𝜃 𝑥 = probability it visits 𝑥. 

 Can be written as an integral w.r.t. to the measure on effective 
conductance in the GW-tree.

 Pioneering work [Lyons, Pemantle, Peres ‘94] 
showed that 𝑑 < log 𝔼𝑍 for a.e. GW-tree !

[ 𝜈𝐝 =  𝒔=𝟎
∞

 𝒕=𝟎
∞ log 1+𝑠

1+𝑠−1+𝑡−1
𝑑𝜇 𝑡 𝜇(𝑠) with 𝜇 = dist. of 𝐶eff 𝜌,∞ . ]

a.s.

Density of the 
𝐶eff distribution 

for 𝑍 ∼  

1 1/3
2 1/3
3 1/3
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RW on random graphs with given degrees

• Random graph with given degrees ≥ 3 (e.g., half 3 half 4):
similarly, dimension reduction due to irregularity of degrees…

• THEOREM [Berestycki, L., Peres, Sly]:

Let 𝐺 be a uniformly chosen graph with degree frequencies (𝑝k) s.t. 

𝑍 with ℙ 𝑍 = 𝑘 ∝ 𝑘 𝑝𝑘 satisfies 𝔼𝑍 = 𝑂(1), 2 ≤ 𝑍 ≤ 𝑒 log 𝑛 1/2−𝛿
.

Then RW from a uniform vertex of 𝑣1 ∈ 𝐺 w.h.p. satisfies

𝑡mix
(𝑣1) 𝜀 = 𝜈−1𝐝−1 log 𝑛 ± 𝑂 log 𝑛

and the same statement holds for NBRW (from typical/worst 𝑣1).
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Proof ingredients for 𝒢(𝑛, 𝑝)
 The correct cutoff window requires sharp fluctuation 

estimates on log 𝜃 𝜉𝑡 for 𝜃 = harmonic measure.
 Build on arguments of [Lyons, Pemantle, Peres ’95, ‘96] and 

[Dembo, Gantert, Peres, Zeitouni ‘02].

 Exploit fact (using the structure theorem for 𝒞1) that 
bottlenecks are rare/spread-out to help expansion.

 Additional difficulties: delays from hanging trees, 
coupling the walk on the tree to that on the graph, …

 Proof extends to random graphs with given degrees.
 NBRW directly analyzed by an adaptation of the random 

regular graph proof (sharp cutoff window).
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Open problems
 What is the dimension 𝐝 of harmonic measure on a Po(𝜆)-GW-tree? 

 Does RW exhibit cutoff on every family of transitive 3-regular expanders? 
[conjectured to be true by Y. Peres]

 Does RW exhibit cutoff on any family of transitive 3-regular expanders? 
(explicit / probabilistic)


