Random walks on the Random graph

Eyal Lubetzky
Courant Institute (NYU)
Joint work with
N. Berestycki, Y. Peres, A. Sly

In this talk

- Mixing time of random walk and specifically cutoff as a gauge for delicate properties of the geometry.
- Compare its behavior between

and the effect of the initial state on mixing.

The Erdős-Rényi random graph

- $\mathcal{G}(n, p)$: indicators of the $\binom{n}{2}$ edges are IID $\operatorname{Bernoulli}(p)$.

"This double "jump" of the size of the largest component... is one of the most striking facts concerning random graphs."
(Erdős and Rényi, 1960)

The Erdős-Rényi random graph

- Setting: $\mathcal{G}(n, p)$ around the critical point $p=1 / n$.
- "Double jump" phenomenon for order of $\left|\mathcal{C}_{1}\right|$: [Erdős-Rényi (1960's)], [Bollobás '84] , [Łuczak '90]
- $\log n$ for $p=\lambda / n$ with $\lambda<1$ fixed.
- $n^{2 / 3}$ at and throughout critical window:
$p=(1 \pm \varepsilon) / n$ for $\varepsilon=O\left(n^{-1 / 3}\right)$.
- n for $p=\lambda / n$ with $\lambda>1$ fixed.
- Emerging from the critical window:
- $p=(1+\varepsilon) / n$ for $n^{-1 / 3} \ll \varepsilon \ll 1$:

$\left|\mathcal{C}_{1}\right| \sim 2 \varepsilon n$ (giant component gradually forms)

Measuring convergence to equilibrium

- Total-variation mixing time :
$>$ the mixing time of a Markov Chain on Ω with transition kernel P to within distance ε from its stationary distribution π is defined as

$$
\begin{aligned}
t_{\text {mix }}(\varepsilon)= & \inf \left\{t: \max _{x_{0}}\left\|P^{t}\left(x_{0}, \cdot\right)-\pi\right\|_{\mathrm{tv}} \leq \varepsilon\right\} \\
& \left(\text { where }\|\mu-v\|_{\mathrm{tv}}=\sup _{A \subset \Omega}[\mu(A)-v(A)]\right)
\end{aligned}
$$

$>$ Analogous definition of $t_{\text {mix }}^{\left(x_{0}\right)}(\varepsilon)$ for a prescribed starting state x_{0}.

- Dependence on ε : (cutoff phenomenon [DS81], [A83],[AD86]) We say there is cutoff $\Leftrightarrow t_{\text {mix }}(\varepsilon) \sim t_{\text {mix }}\left(\varepsilon^{\prime}\right) \quad \forall$ fixed $\varepsilon, \varepsilon^{\prime}$

Cutoff History (RWs on graphs/groups)

- Discovered:
- Random transpositions on S_{n} [Diaconis, Shahshahani '81]
- RW on the hypercube, Riffle-shuffle [Aldous '83]
- Named "Cutoff Phenomenon" in top-in-at-random shuffle analysis [Diaconis, Aldous '86]
- Nearly 3 decades after its discovery: only example of cutoff for RW on a bounded-degree graph was the lamplighter on \mathbb{Z}_{n}^{2} [Peres \& Revelle '04].
- Is this a phenomenon of (mainly) large degree graphs?

Basic examples: RWs on graphs

Lazy discrete-time simple random walk

hypercube $\{0,1\}^{n}$:
\checkmark cutoff at $\frac{1}{2} n \log n \pm O(n)$ [Aldous '83]
n-cycle:
囚 No cutoff.

- What about mixing on \mathcal{C}_{1} of $\mathcal{G}(n, p)$?

Mixing on the largest component

	Critical window $p=(1 \pm \varepsilon) / n$ $\varepsilon=0\left(n^{-1 / 3}\right)$	Mildly supercritical $p=(1+\varepsilon) / n$ $n^{-1 / 3}<\varepsilon \ll 1$	Supercritical $p=(1+\varepsilon) / n$ $\varepsilon>0$ fixed
$\left\|\mathcal{C}_{\mathbf{1}}\right\|$	$=n^{2 / 3}$	$\sim 2 \varepsilon n$	$\sim 2 \varepsilon n$
Mixing time on \mathcal{C}_{1}	$=n$ Nachmias, Peres '08	$=\varepsilon^{-3} \log ^{2}\left(\varepsilon^{3} n\right)$ Ding, L., Peres'12	$=\log ^{2} n$ Fountoulakis, Reed '08 and independently Benjamini, Kozma, Wormald'13

Eyal Lubetzky, Courant Institute

Bottlenecks slow the mixing on \mathcal{C}_{1}

- Lower bound $t_{\text {mix }} \geq C \log ^{2} n$ immediate:
- w.h.p. \mathcal{C}_{1} contains a path \mathcal{P} of $c \log n$ degree-2 vertices.
- escaping \mathcal{P} starting from v_{1} at its center takes $\left(\frac{c}{2} \log n\right)^{2}$ steps in expectation.
- large hanging trees have a similar effect.
- Dominates mixing ($t_{\text {mix }}=\log ^{2} n$); no cutoff.
- Such bottlenecks should be rare...
- faster mixing from a typical initial vertex v_{1} ?
- Indeed: starting from a typical vertex accelerates the RW \& concentrates it (cutoff)!

New results: RW on a giant

- Theorem [Berestycki, L., Peres, Sly]:

RW from a uniform vertex $v_{1} \in \mathcal{C}_{1}$ w.h.p. satisfies

$$
t_{\mathrm{mix}}^{\left(v_{1}\right)}(\varepsilon)=v^{-1} \mathbf{d}^{-1} \log n \pm(\log n)^{1 / 2+o(1)}
$$

- $\mathcal{C}_{1}=$ largest component of $\mathcal{G}(n, p=\lambda / n)[\lambda>1$ fixed $]$.
- $v=$ speed of RW on a $\operatorname{Po}(\lambda)-G W$ tree.
- $\mathbf{d}=$ dimension of harmonic measure $\operatorname{Po}(\lambda)$-GW tree.

Anatomy of a giant

Theorem [Ding, L., Peres '13]: giant of $\mathcal{G}(n, p=\lambda / n)$ is \approx

1. kernel : \mathcal{K} random graph with (nice) given degrees

$$
\left(D_{i} \sim \operatorname{Po}\left(\lambda-\varepsilon_{\lambda} \mid \cdot \geq 3\right) \text { IID for } i=1, \ldots, N\right)
$$

2. 2-core : edges \mapsto paths of lengths IID Geom $\left(1-\varepsilon_{\lambda}\right)$
3. giant : attach IID $\operatorname{Po}\left(\varepsilon_{\lambda}\right)$-Galton-Watson trees

a typical $v_{1} \in \mathcal{C}_{1}$ will be "far" from the bottlenecks: what is $t_{\text {mix }}$ from a typical vertex on an expander?

RWs on expanders

- Definition [regular expander]: sequence of d-regular graphs ($d \geq 3$ fixed) such that the relaxation time ($1 /$ spectral-gap) of SRW is $O(1)$.
- Since $t_{\text {rel }}=O(1)$ the "product condition" of Peres (2004) holds and we expect cutoff...
- Specifically, convergence of RW on such a graph occurs along $t \in\left[c \log n, c^{\prime} \log n\right]$ (not too gradual: 'pre-cutoff').
- Consider a random regular graph (an expander w.h.p.)

RWs on random regular graphs

- $\mathcal{G}(n, d)=$ uniformly chosen d-regular n-vertex graph. Its study pioneered by Bollobás in early 80 's.
- W.h.p. $G \sim \mathcal{G}(n, d)$ for $d \geq 3$ is an expander [Pinsker'73], [Broder, Shamir '87].
- Theorem [Berestycki, Durret '08]:

RW on $\mathcal{G}(n, 3)$ after $c \log _{2} n$ steps is w.h.p. at distance $\sim(c / 3 \wedge 1) \log _{2} n$ from origin.

- Conjecture [Durrett '07]:

Mixing time of the lazy RW on the random cubic graph $\mathcal{G}(n, 3)$ is w.h.p. $\sim 6 \log _{2} n$.

Cutoff for RW on $\mathcal{G}(n, d)$

- As Durrett and Peres conjectured, \exists cutoff almost always:
- Theorem [L., Sly '10]:

Let $G \sim \mathcal{G}(n, d)$ for $d \geq 3$ fixed. The SRW on G w.h.p. has cutoff at $\frac{d}{d-2} \log _{d-1} n$ with window $\sqrt{\log n}$

- e.g., for $d=3: \quad t_{\operatorname{mix}}(\varepsilon)=3 \log _{2} n-(2 \sqrt{6}+o(1)) \Phi^{-1}(\varepsilon) \sqrt{\log _{2} n}$
- NBRW (does not traverse same edge twice in a row) also has cutoff, earlier and with a constant window!
- Theorem [L., Sly '10]:

Let $G \sim \mathcal{G}(n, d)$ for $d \geq 3$ fixed. The NBRW on G w.h.p. has cutoff at $\log _{d-1}(d n)$ with window $O(1)$.

Simulations of RWs on $\mathcal{G}(n, d)$

SRW 6-regular graph on 5000 vertices

NBRW 3-regular graph on 2000 vertices

Insight: cutoff for SRW \& NBRW

- Consider a d-regular tree, rooted at the starting point of the RW (mixes upon hitting leaves).
- Height of NBRW vs. SRW:

- NBRW cannot backtrack up the tree
\Rightarrow hits bottom after precisely $\log _{d-1} n$ steps.
- SRW \equiv biased 1D RW with speed $v=d-2 / d$
\Rightarrow hits bottom after $\frac{d}{d-2} \log _{d-1} n+O_{\mathrm{P}}(\sqrt{\log n})$ steps.
- In both cases: cutoff once the entropy of $P^{t}\left(v_{0}, \cdot\right)$ reaches $\log n$, which occurs at $t=\frac{1}{v} \underbrace{\frac{1}{\log (d-1)} \log n .}_{\bar{D} \text { (average distance) }}$

Mixing vs. the distance from the origin

- Mixing on irregular graphs is delayed beyond the stabilization of the distance, since the rate at which entropy drops further involves the dimension d :

$\frac{\bar{D}}{v} t_{\text {mix }}(1-\varepsilon) \quad t_{\text {mix }}(\varepsilon)$
Irregular graph

$t_{\text {mix }}(1-\varepsilon) \quad \frac{\bar{D}}{v} \quad t_{\text {mix }}(\varepsilon)$
Regular graph

New results: RW on the giant

- Setup:

- $\mathcal{C}_{1}=$ largest component of $\mathcal{G}(n, p=\lambda / n)[\lambda>1$ fixed $]$.
- $v=$ speed of RW on a Po(λ)-GW tree.
- $\mathbf{d}=$ dimension of harmonic measure $\mathrm{Po}(\lambda)$-GW tree

$\stackrel{\text { a.s. }}{=} \lim _{t \rightarrow \infty} \frac{1}{t} \log \frac{1}{\theta\left(\xi_{t}\right)}$ where $\left(\xi_{t}\right)=$ LERW and $\theta(x)=$ probability it visits x.
- Theorem [Berestycki, L., Peres, Sly]:

RW from a uniform vertex $v_{1} \in \mathcal{C}_{1}$ w.h.p. satisfies

$$
t_{\text {mix }}^{\left(v_{1}\right)}(\varepsilon)=v^{-1} \mathbf{d}^{-1} \log n \pm(\log n)^{1 / 2+o(1)}
$$

- Cutoff from a typical starting point!

Dimension of harmonic measure

d $\stackrel{\text { a.s. }}{=} \lim _{t \rightarrow \infty} \frac{1}{t} \log \frac{1}{\theta\left(\xi_{t}\right)}$
where $\left(\xi_{t}\right)=$ LERW
and $\theta(x)=$ probability it visits x.

Dimension of harmonic measure

- For a.e. GW-tree: d $\stackrel{\text { a.s. }}{=} \lim _{t \rightarrow \infty} \frac{1}{t} \log \frac{1}{\theta\left(\xi_{t}\right)}$ where $\left(\xi_{t}\right)=$ LERW and $\theta(x)=$ probability it visits x.
- Can be written as an integral w.r.t. to the measure on effective conductance in the GW-tree.
- Pioneering work [Lyons, Pemantle, Peres '94] showed that $d<\log \mathbb{E} Z$ for a.e. GW-tree!

$$
\left[v \mathbf{d}=\int_{s=\mathbf{0}}^{\infty} \int_{t=\mathbf{0}}^{\infty} \frac{\log (1+s)}{1+s^{-1}+t^{-1}} d \mu(t) \mu(s) \text { with } \mu=\text { dist. of } C_{\mathrm{eff}}(\rho, \infty) .\right]
$$

RW on random graphs with given degrees

- Random graph with given degrees ≥ 3 (e.g., half 3 half 4): similarly, dimension reduction due to irregularity of degrees...
- Theorem [Berestycki, L., Peres, Sly]:

Let G be a uniformly chosen graph with degree frequencies $\left(p_{\mathrm{k}}\right)$ s.t. Z with $\mathbb{P}(Z=k) \propto k p_{k}$ satisfies $\mathbb{E} Z=O(1), 2 \leq Z \leq e^{(\log n)^{1 / 2-\delta}}$.
Then RW from a uniform vertex of $v_{1} \in G$ w.h.p. satisfies

$$
t_{\text {mix }}^{\left(v_{1}\right)}(\varepsilon)=v^{-1} \mathbf{d}^{-1} \log n \pm O(\sqrt{\log n})
$$

and the same statement holds for NBRW (from typical/worst v_{1}).

Proof ingredients for $\mathcal{G}(n, p)$

- The correct cutoff window requires sharp fluctuation estimates on $\log \theta\left(\xi_{t}\right)$ for $\theta=$ harmonic measure.
- Build on arguments of [Lyons, Pemantle, Peres '95, '96] and [Dembo, Gantert, Peres, Zeitouni ‘02].
- Exploit fact (using the structure theorem for \mathcal{C}_{1}) that bottlenecks are rare/spread-out to help expansion.
- Additional difficulties: delays from hanging trees, coupling the walk on the tree to that on the graph, ...
- Proof extends to random graphs with given degrees.
- NBRW directly analyzed by an adaptation of the random regular graph proof (sharp cutoff window).

Open problems

-What is the dimension d of harmonic measure on a $\mathrm{Po}(\lambda)-G W$-tree?

- Does RW exhibit cutoff on every family of transitive 3-regular expanders? [conjectured to be true by Y. Peres]
- Does RW exhibit cutoff on any family of transitive 3-regular expanders? (explicit / probabilistic)

Thank you

