

Asymptotics in bond percolation on expanders

Eyal Lubetzky March 2018

Courant Institute, New York University

The Erdős–Rényi random graph

"This double 'jump' of the size of the largest component... is one

of the most striking facts concerning random graphs." (E-R 1960)

 $\mathcal{G}(n, p)$: indicators of the $\binom{n}{2}$ edges are IID Bernoulli(p).

Definition (bond percolation \mathcal{G}_p)

keep (open) edges of \mathcal{G} via IID Bernoulli(p) variables.

 $\mathcal{G}(n, p)$: the special case where $\mathcal{G} = \mathcal{K}_n$ (complete graph).

Definition (bond percolation \mathcal{G}_p)

keep (open) edges of \mathcal{G} via IID Bernoulli(p) variables. $\mathcal{G}(n, p)$: the special case where $\mathcal{G} = K_n$ (complete graph).

► "Double jump" for the order of |C₁| around p_c = 1/n: ([Erdős-Rényi (1960's)], [Bollobás '84], [Łuczak '90])

Definition (bond percolation \mathcal{G}_p)

keep (open) edges of \mathcal{G} via IID Bernoulli(p) variables. $\mathcal{G}(n, p)$: the special case where $\mathcal{G} = K_n$ (complete graph).

► "Double jump" for the order of |C₁| around p_c = 1/n: ([Erdős-Rényi (1960's)], [Bollobás '84], [Łuczak '90])

• $\Theta(\log n)$ for $p = \lambda/n$ with $\lambda < 1$ fixed;

Definition (bond percolation \mathcal{G}_p)

keep (open) edges of \mathcal{G} via IID Bernoulli(p) variables. $\mathcal{G}(n, p)$: the special case where $\mathcal{G} = K_n$ (complete graph).

► "Double jump" for the order of |C₁| around p_c = 1/n: ([Erdős-Rényi (1960's)], [Bollobás '84], [Łuczak '90])

• $\Theta(\log n)$ for $p = \lambda/n$ with $\lambda < 1$ fixed;

• $\Theta(n^{2/3})$ at p=1/n;

(and within the critical window $p = \frac{1 \pm O(n^{-1/3})}{n}$)

Definition (bond percolation \mathcal{G}_p)

keep (open) edges of \mathcal{G} via IID Bernoulli(p) variables. $\mathcal{G}(n, p)$: the special case where $\mathcal{G} = K_n$ (complete graph).

► "Double jump" for the order of |C₁| around p_c = 1/n: ([Erdős-Rényi (1960's)], [Bollobás '84], [Łuczak '90])

• $\Theta(\log n)$ for $p = \lambda/n$ with $\lambda < 1$ fixed;

•
$$\Theta(n^{2/3})$$
 at $p=1/n$;

(and within the critical window $p = rac{1 \pm O(n^{-1/3})}{n}$)

•
$$\Theta(n)$$
 for $p = \lambda/n$ with $\lambda > 1$ fixed.

Definition (bond percolation \mathcal{G}_p)

keep (open) edges of \mathcal{G} via IID Bernoulli(*p*) variables. $\mathcal{G}(n, p)$: the special case where $\mathcal{G} = K_n$ (complete graph).

► "Double jump" for the order of |C₁| around p_c = 1/n: ([Erdős-Rényi (1960's)], [Bollobás '84], [Łuczak '90])

• $\Theta(\log n)$ for $p = \lambda/n$ with $\lambda < 1$ fixed;

•
$$\Theta(n^{2/3})$$
 at $p=1/n$;

(and within the critical window $p = \frac{1 \pm O(n^{-1/3})}{n}$)

$$\Theta(n)$$
 for $p = \lambda/n$ with $\lambda > 1$ fixed.

• Emerging from the critical window: • $\sim 2\varepsilon n$ when $p = \frac{1+\varepsilon}{2}$ for $n^{-1/3} \ll \varepsilon \ll 1$.

Theorem (Ding, L., Peres '14)

Giant component of $\mathcal{G}(n, p = \lambda/n)$ is \approx (contiguity):

Theorem (Ding, L., Peres '14)

Giant component of $\mathcal{G}(n, p = \lambda/n)$ is \approx (contiguity):

1. *kernel* : \mathcal{K} random graph with (nice) given degrees $(D_i \sim Po(\lambda - c_{\lambda} | \cdot \geq 3) \text{ IID for } i = 1, ..., N)$

Theorem (Ding, L., Peres '14)

Giant component of $\mathcal{G}(n, p = \lambda/n)$ is \approx (contiguity):

- $\begin{array}{ll} & \textit{kernel} : \mathcal{K} \text{ random graph with (nice) given degrees} \\ & (D_i \sim \operatorname{Po}(\lambda c_\lambda \mid \cdot \geq 3) \text{ IID for } i = 1, \ldots, N) \end{array}$
- 2. **2-core** : edges \rightsquigarrow paths of lengths IID Geom $(1 c_{\lambda})$.

 $[c_{\lambda} \to 0 \text{ as } \lambda \to \infty, \text{ and } c_{\lambda} \approx 1 - \varepsilon \text{ when } \lambda = 1 + \varepsilon \text{ for } \varepsilon = o(1).]$

Theorem (Ding, L., Peres '14)

Giant component of $\mathcal{G}(n, p = \lambda/n)$ is \approx (contiguity):

- $(kernel) : \mathcal{K} \text{ random graph with (nice) given degrees} \\ (D_i \sim \operatorname{Po}(\lambda c_\lambda \mid \cdot \geq 3) \text{ IID for } i = 1, \dots, N)$
- 2-core : edges \rightsquigarrow paths of lengths IID $\operatorname{Geom}(1-c_\lambda)$.
 - giant : attach IID $\operatorname{Po}(c_\lambda)$ -Galton–Watson trees

 $[c_{\lambda} \to 0 \text{ as } \lambda \to \infty, \text{ and } c_{\lambda} \approx 1 - \varepsilon \text{ when } \lambda = 1 + \varepsilon \text{ for } \varepsilon = o(1).]$

Theorem (Ding, L., Peres '14)

Giant component of $\mathcal{G}(n, p = \lambda/n)$ is \approx (contiguity):

- $\begin{array}{l} \textbf{kernel} : \mathcal{K} \text{ random graph with (nice) given degrees} \\ (D_i \sim \operatorname{Po}(\lambda c_\lambda \mid \cdot \geq 3) \text{ IID for } i = 1, \ldots, N) \end{array}$
- 2-core : edges \rightsquigarrow paths of lengths IID $\operatorname{Geom}(1-c_{\lambda})$.
 - giant : attach IID $\operatorname{Po}(c_\lambda)$ -Galton–Watson trees

 $[c_{\lambda} \to 0 \text{ as } \lambda \to \infty, \text{ and } c_{\lambda} \approx 1 - \varepsilon \text{ when } \lambda = 1 + \varepsilon \text{ for } \varepsilon = o(1).]$

 Proof builds on [Wormald–Pittel '05] (the key local CLT) and [Łuczak '91].

Theorem (Ding, L., Peres '14)

Giant component of $\mathcal{G}(n, p = \lambda/n)$ is \approx (contiguity):

- $(kernel) : \mathcal{K} \text{ random graph with (nice) given degrees} \\ (D_i \sim \operatorname{Po}(\lambda c_\lambda \mid \cdot \geq 3) \text{ IID for } i = 1, \dots, N)$
 - 2-core : edges \rightsquigarrow paths of lengths IID $\operatorname{Geom}(1-c_{\lambda})$.
 - giant : attach IID $\operatorname{Po}(c_\lambda)$ -Galton–Watson trees

 $[c_{\lambda} \to 0 \text{ as } \lambda \to \infty, \text{ and } c_{\lambda} \approx 1 - \varepsilon \text{ when } \lambda = 1 + \varepsilon \text{ for } \varepsilon = o(1).]$

Proof builds on [Wormald–Pittel '05] (the key local CLT) and [Łuczak '91]. Proof builds on [Wormald–Pittel '05] behavior at $p = \frac{1+\varepsilon}{n}$ giant 2-core $\approx 2\varepsilon^2 n$ $\approx 2\varepsilon^2 n$

Definition (edge(b, d)-expander)

sequence of graphs with maximum degree $\leq d$ and conductance $\Phi \geq b$ (for $d \geq 3, b > 0$ fixed), where

$$\Phi(G) = \min_{S:\pi(S) \leq \frac{1}{2}} \frac{|E(S, V \setminus S)|}{\pi(S)} \quad \text{for} \quad \pi(S) = \frac{\sum_{v \in S} \deg(v)}{2|E(G)|}$$

Definition (edge (b, d)-expander**)**

sequence of graphs with maximum degree $\leq d$ and conductance $\Phi \geq b$ (for $d \geq 3, b > 0$ fixed), where

$$\Phi(G) = \min_{S:\pi(S) \leq \frac{1}{2}} \frac{|E(S, V \setminus S)|}{\pi(S)} \quad \text{for} \quad \pi(S) = \frac{\sum_{v \in S} \deg(v)}{2|E(G)|}$$

[Alon, Benjamini, Stacy '04] studied \$\mathcal{G}_p\$ for an expander \$\mathcal{G}\$:
 Uniqueness of the giant for all \$p\$.

Definition (*edge* (*b*, *d*)*-expander***)**

sequence of graphs with maximum degree $\leq d$ and conductance $\Phi \geq b$ (for $d \geq 3, b > 0$ fixed), where

$$\Phi(G) = \min_{S:\pi(S) \leq \frac{1}{2}} \frac{|E(S, V \setminus S)|}{\pi(S)} \quad \text{for} \quad \pi(S) = \frac{\sum_{v \in S} \deg(v)}{2|E(G)|}$$

- ▶ [Alon, Benjamini, Stacy '04] studied *G*_p for an expander *G*:
 - Uniqueness of the giant for all *p*.
 - Characterization of the critical point for the appearance of a giant component in high girth *d*-regular expanders: $p_c = \frac{1}{d-1}$.

Definition (*edge* (*b*, *d*)*-expander***)**

sequence of graphs with maximum degree $\leq d$ and conductance $\Phi \geq b$ (for $d \geq 3, b > 0$ fixed), where

$$\Phi(G) = \min_{S:\pi(S) \leq rac{1}{2}} rac{|E(S,V \setminus S)|}{\pi(S)} \quad ext{for} \quad \pi(S) = rac{\sum_{v \in S} \deg(v)}{2|E(G)|}$$

- ▶ [Alon, Benjamini, Stacy '04] studied \mathcal{G}_p for an expander \mathcal{G} :
 - Uniqueness of the giant for all *p*.
 - Characterization of the critical point for the appearance of a giant component in high girth *d*-regular expanders: $p_c = \frac{1}{d-1}$.
- [Benjamini, Peres, Nachmias '09] extended high girth regular expanders to sparse graphs with a Benjamini–Schramm limit.

Percolation on expanders (ctd.)

Theorem (Alon, Benjamini, Stacey '04)

uniqueness of giant

If ${\mathcal G}$ is a (b,d)-expander on n vertices, then $\exists \omega = \omega(b,d) < 1$:

 $\forall p = p_n, \qquad \mathbb{P}(|\mathcal{C}_2(\mathcal{G}_p)| > n^{\omega}) = o(1).$

Percolation on expanders (ctd.)

Theorem (Alon, Benjamini, Stacey '04)

uniqueness of giant

If ${\mathcal G}$ is a (b,d)-expander on n vertices, then $\exists \omega = \omega(b,d) < 1$:

 $\forall p = p_n, \qquad \mathbb{P}(|\mathcal{C}_2(\mathcal{G}_p)| > n^\omega) = o(1).$

Theorem (Alon, Benjamini, Stacey '04) existence of giant Let \mathcal{G} be a regular (b, d)-expander on n vertices with girth $\rightarrow \infty$. If $p > \frac{1}{d-1}$ then $\exists c > 0$:

 $\mathbb{P}(|\mathcal{C}_1(\mathcal{G}_p)| > cn) = 1 - o(1)$,

whereas if $p < \frac{1}{d-1}$ then $\forall c > 0$:

 $\mathbb{P}(|\mathcal{C}_1(\mathcal{G}_p)| > cn) = o(1).$

Recall: $|\mathcal{C}_1|$ in the Erdős–Rényi graph $\mathcal{G}(n, p = \frac{\lambda}{n})$ for fixed λ is w.h.p.

 $\zeta =$ survival probab. of a $Po(\lambda)$ -G–W tree

Recall: $|\mathcal{C}_1|$ in the Erdős–Rényi graph $\mathcal{G}(n, p = \frac{\lambda}{n})$ for fixed λ is w.h.p.

 $\zeta =$ survival probab. of a Po(λ)-G–W tree

How does \mathcal{G}_p behave for $\mathcal{G} \in \mathcal{G}(n, d)$, a uniformly chosen *d*-regular graph on *n* vertices for $d \geq 3$ fixed?

Recall: $|\mathcal{C}_1|$ in the Erdős–Rényi graph $\mathcal{G}(n, p = \frac{\lambda}{n})$ for fixed λ is w.h.p.

 $egin{array}{c|c|c|c|c|c|} \lambda < 1 & \lambda = 1 & \lambda > 1 \\ \hline \Theta(\log n) & \Theta(n^{2/3}) & (\zeta + o(1))n \end{array} \end{array}$

 $\zeta =$ survival probab. of a $Po(\lambda)$ -G–W tree

How does \mathcal{G}_p behave for $\mathcal{G} \in \mathcal{G}(n, d)$, a uniformly chosen *d*-regular graph on *n* vertices for $d \ge 3$ fixed?

Theorem ([Pittel '08], [Nachmias, Peres '10])

Fix $d \ge 3$ and $p = \frac{\lambda}{d-1}$. W.h.p., $|C_1|$ in \mathcal{G}_p for $\mathcal{G} \sim \mathcal{G}(n, d)$ satisfies

 $\begin{array}{c|c|c|c|c|c|c|c|c|} \lambda < 1 & \lambda = 1 & \lambda > 1 \\ \hline \Theta(\log n) & \Theta(n^{2/3}) & (\theta_1 + o(1))n \end{array}$

 θ_1 = probab. of inf. path in p-percolation on a d-reg tree

Recall: $|\mathcal{C}_1|$ in the Erdős–Rényi graph $\mathcal{G}(n, p = \frac{\lambda}{n})$ for fixed λ is w.h.p.

 $egin{array}{c|c|c|c|c|c|} \lambda < 1 & \lambda = 1 & \lambda > 1 \\ \hline \Theta(\log n) & \Theta(n^{2/3}) & (\zeta + o(1))n \end{array} \end{array}$

 $\zeta =$ survival probab. of a $Po(\lambda)$ -G–W tree

How does \mathcal{G}_p behave for $\mathcal{G} \in \mathcal{G}(n, d)$, a uniformly chosen *d*-regular graph on *n* vertices for $d \ge 3$ fixed?

Theorem ([Pittel '08], [Nachmias, Peres '10])

Fix $d \ge 3$ and $p = \frac{\lambda}{d-1}$. W.h.p., $|C_1|$ in \mathcal{G}_p for $\mathcal{G} \sim \mathcal{G}(n, d)$ satisfies

 $egin{array}{c|c|c|c|c|c|} \lambda < 1 & \lambda = 1 & \lambda > 1 \ \hline \Theta(\log n) & \Theta(n^{2/3}) & (heta_1 + o(1))n \ \hline \end{array}$

 $\theta_1 = \text{probab. of inf. path in}$ p-percolation on a d-reg tree

Well-known: $\mathcal{G} \sim \mathcal{G}(n, d)$ is w.h.p. an expander; what about an *arbitrary* expander? Does \mathcal{G}_p in that case also mirror $\mathcal{G}(n, p)$?

Percolation on K_n vs. $\mathcal{G}(n, d)$ vs. high girth expandersComparing \mathcal{G}_p on a d-regular graph \mathcal{G} at $p = \frac{\lambda}{d}$ for $\lambda > 1$: $\mathcal{G} = K_n (\mathcal{G}(n, p))$ $\mathcal{G} \sim \mathcal{G}(n, d)$ $\mathcal{G} = \text{high girth expander}$ $|\mathcal{C}_1|$ $\sim \zeta n$ $\sim \theta_1 n$ $\geq c(b, d, \lambda)n$ $|\mathcal{C}_2|$ $\Theta(\log n)$ $\Theta(\log n)$ $\leq n^{1-\omega(b,d)}$

Percolation on K_n vs. $\mathcal{G}(n, d)$ vs. high girth expandersComparing \mathcal{G}_p on a d-regular graph \mathcal{G} at $p = \frac{\lambda}{d}$ for $\lambda > 1$: $\mathcal{G} = K_n (\mathcal{G}(n, p))$ $\mathcal{G} \sim \mathcal{G}(n, d)$ $\mathcal{G} = \text{high girth expander}$ $|\mathcal{C}_1|$ $\sim \zeta n$ $\sim \theta_1 n$ $\geq c(b, d, \lambda)n$ $|\mathcal{C}_2|$ $\Theta(\log n)$ $\Theta(\log n)$ $\leq n^{1-\omega(b,d)}$

Percolation on K_n vs. $\mathcal{G}(n, d)$ vs. high girth expandersComparing \mathcal{G}_p on a d-regular graph \mathcal{G} at $p = \frac{\lambda}{d}$ for $\lambda > 1$: $\mathcal{G} = K_n (\mathcal{G}(n, p))$ $\mathcal{G} \sim \mathcal{G}(n, d)$ $\mathcal{G} = \text{high girth expander}$ $|\mathcal{C}_1|$ $\sim \zeta n$ $\sim \theta_1 n$ $\geq c(b, d, \lambda)n$ (asymp.?) $|\mathcal{C}_2|$ $\Theta(\log n)$ $\Theta(\log n)$ $\leq n^{1-\omega(b,d)}$ (sharp?)

Additional geometric features — degree profile? 2-core? excess?

Percolation on K_n vs. $\mathcal{G}(n, d)$ vs. high girth expanders

Comparing \mathcal{G}_p on a *d*-regular graph \mathcal{G} at $p = \frac{\lambda}{d}$ for $\lambda > 1$:

	$\mathcal{G} = K_n \left(\mathcal{G}(n, p) \right)$	$\mathcal{G} \sim \mathcal{G}(n, d)$	$\mathcal{G}=$ high girth expander
$ \mathcal{C}_1 $	$\sim \zeta n$	$\sim heta_1$ n	$\geq c(b, d, \lambda)n$ asymp.?
$ \mathcal{C}_2 $	$\Theta(\log n)$	$\Theta(\log n)$	$\leq n^{1-\omega(b,d)}$ sharp?

Additional geometric features — degree profile? 2-core? excess? For instance:

Behavior at $\lambda = 1 + \varepsilon$ for $\varepsilon \ll 1$:

	$\mathcal{G} = K_n \left(\mathcal{G}(n, p) \right)$	$\mathcal{G}{=}high$ girth expander
$ \mathcal{C}_1 $	$\sim 2arepsilon$ n	$\geq c(b,d,arepsilon)$ n
2-core	$\sim 2 arepsilon^2 n$?
excess	$\sim rac{2}{3}arepsilon^3 n$?

Let \mathcal{G} be a regular *n*-vertex (b, d)-expander $(b > 0, d \ge 3 \text{ fixed})$ with girth $\rightarrow \infty$, and fix $\frac{1}{d-1} .$

Let \mathcal{G} be a regular *n*-vertex (b, d)-expander $(b > 0, d \ge 3 \text{ fixed})$ with girth $\rightarrow \infty$, and fix $\frac{1}{d-1} .$

Recall: w.h.p., $\exists c > 0$: $|C_1(\mathcal{G}_p)| > cn$ ([Alon, Benjamini, Stacey '04]).

Let \mathcal{G} be a regular *n*-vertex (b, d)-expander $(b > 0, d \ge 3 \text{ fixed})$ with girth $\rightarrow \infty$, and fix $\frac{1}{d-1} .$

Recall: w.h.p., $\exists c > 0$: $|C_1(\mathcal{G}_p)| > cn$ ([Alon, Benjamini, Stacey '04]).

New results include:

Theorem (Krivelevich, L., Sudakov) Let $\theta_1 := 1 - q(1 - p + pq), \ \eta_1 := \frac{1}{2}pd(1 - q^2), \ where \ 0 < q < 1$ is the unique solution of $q = (1 - p + pq)^{d-1}$. Then w.h.p., $|V(C_1)| = (\theta_1 + o(1))n, \quad |E(C_1)| = (\eta_1 + o(1))n,$

Let \mathcal{G} be a regular *n*-vertex (b, d)-expander $(b > 0, d \ge 3 \text{ fixed})$ with girth $\rightarrow \infty$, and fix $\frac{1}{d-1} .$

Recall: w.h.p., $\exists c > 0$: $|C_1(\mathcal{G}_p)| > cn$ ([Alon, Benjamini, Stacey '04]).

New results include:

Theorem (Krivelevich, L., Sudakov) Let $\theta_1 := 1 - q(1 - p + pq), \ \eta_1 := \frac{1}{2}pd(1 - q^2), \ where \ 0 < q < 1$ is the unique solution of $q = (1 - p + pq)^{d-1}$. Then w.h.p., $|V(C_1)| = (\theta_1 + o(1))n, \quad |E(C_1)| = (\eta_1 + o(1))n,$

- ▶ q is the extinction probability on a Bin(d 1, p)-G-W-tree;
- θ_1 is the probability of *p*-percolation on a *d*-reg tree.
- ▶ η₁ is the fraction of edges which are open, and the Bin(d − 1, p)-G–W-tree from at least one of their endpoints survived.

Theorem (Krivelevich, L., Sudakov)

Fix $d \ge 3$ and $\frac{1}{d-1} . For every <math>\varepsilon > 0$ and b > 0 there exist some c, C, R > 0 such that, if \mathcal{G} is a regular (b, d)-expander on n vertices with girth at least R, then w.h.p., $G \sim \mathcal{G}_p$ has

$$\left|\frac{1}{n}|V(\mathcal{C}_{1})| - \theta_{1}\right| < \varepsilon, \qquad \left|\frac{1}{n}|E(\mathcal{C}_{1})| - \eta_{1}\right| < \varepsilon, \qquad (1)$$

$$\frac{1}{n}|V(\mathcal{C}_{1}^{(2)})| - \theta_{2}\right| < \varepsilon, \qquad \left|\frac{1}{n}|E(\mathcal{C}_{1}^{(2)})| - \eta_{2}\right| < \varepsilon. \qquad (2)$$

In particular, w.h.p., excess(C_1) $\approx (\eta_1 - \theta_1)n$, and excess($C_1^{(2)}$) $\approx (\eta_2 - \theta_2)n$.

$$0 < q < 1 \text{ solves } q = (1 - p + pq)^{d-1}$$

$$\theta_1 := 1 - q(1 - p) - pq^2 \qquad \eta_1 := \frac{1}{2}pd(1 - q^2)$$

$$\theta_2 := 1 - q - (d - 1)pq(1 - q) \qquad \eta_2 := \frac{1}{2}pd(1 - q)^2$$

[Recall: w.h.p. $\frac{1}{n}|\mathcal{C}_1(\mathcal{G}(n,\frac{\lambda}{n}))| \sim \zeta = \mathbb{P}(\text{survival of a Po}(\lambda)\text{-}G\text{-}W\text{-}tree).]$ Limiting behavior of \mathcal{G}_p for large d agrees with $\mathcal{G}(n, d)$ and $\mathcal{G}(n, p)$:

[Recall: w.h.p. $\frac{1}{n}|\mathcal{C}_1(\mathcal{G}(n,\frac{\lambda}{n}))| \sim \zeta = \mathbb{P}(\text{survival of a Po}(\lambda)\text{-}G\text{-}W\text{-}\text{tree}).]$ Limiting behavior of \mathcal{G}_p for large d agrees with $\mathcal{G}(n,d)$ and $\mathcal{G}(n,p)$:

Example

 $1 - q = \mathbb{P}(\text{survival of a Bin}(d - 1, p) - G - W \text{ tree}) \text{ converges to}$ $\mathbb{P}(\text{survival of a Po}(\lambda) - G - W - \text{tree}) \text{ as } d \to \infty, \text{ hence } \frac{1}{n} |\mathcal{C}_1| \to \zeta.$

[Recall: w.h.p. $\frac{1}{n}|\mathcal{C}_1(\mathcal{G}(n,\frac{\lambda}{n}))| \sim \zeta = \mathbb{P}(\text{survival of a Po}(\lambda)\text{-}G\text{-}W\text{-}\text{tree}).]$ Limiting behavior of \mathcal{G}_p for large d agrees with $\mathcal{G}(n,d)$ and $\mathcal{G}(n,p)$:

Example

 $1 - q = \mathbb{P}(\text{survival of a Bin}(d - 1, p)\text{-}G\text{-}W \text{ tree}) \text{ converges to}$ $\mathbb{P}(\text{survival of a Po}(\lambda)\text{-}G\text{-}W\text{-}\text{tree}) \text{ as } d \to \infty, \text{ hence } \frac{1}{n}|\mathcal{C}_1| \to \zeta.$

Example

For $p = \frac{1+\varepsilon}{d-1}$ with $0 < \varepsilon \ll 1$, one has $q \xrightarrow[d \to \infty]{} 1 - 2\varepsilon + O(\varepsilon^2)$ and

$$\begin{split} \theta_1 &\to 2\varepsilon + O(\varepsilon^2) \,, \quad \eta_1 \to 2\varepsilon + O(\varepsilon^2) \,, \quad \eta_1 - \theta_1 \to \frac{2}{3}\varepsilon^3 + O(\varepsilon^4) \,, \\ \theta_2 &\to 2\varepsilon^2 + O(\varepsilon^3) \,, \quad \eta_2 \to 2\varepsilon^2 + O(\varepsilon^3) \,, \quad \eta_2 - \theta_2 \to \frac{2}{3}\varepsilon^3 + O(\varepsilon^4) \,. \end{split}$$

[Recall: w.h.p. $\frac{1}{n}|\mathcal{C}_1(\mathcal{G}(n,\frac{\lambda}{n}))| \sim \zeta = \mathbb{P}(\text{survival of a Po}(\lambda)\text{-}G\text{-}W\text{-}\text{tree}).]$ Limiting behavior of \mathcal{G}_p for large d agrees with $\mathcal{G}(n,d)$ and $\mathcal{G}(n,p)$:

Example

 $1 - q = \mathbb{P}(\text{survival of a Bin}(d - 1, p)\text{-}G\text{-}W \text{ tree}) \text{ converges to}$ $\mathbb{P}(\text{survival of a Po}(\lambda)\text{-}G\text{-}W\text{-}\text{tree}) \text{ as } d \to \infty, \text{ hence } \frac{1}{n}|\mathcal{C}_1| \to \zeta.$

Example

For
$$p = \frac{1+\varepsilon}{d-1}$$
 with $0 < \varepsilon \ll 1$, one has $q \xrightarrow[d \to \infty]{} 1 - 2\varepsilon + O(\varepsilon^2)$ and

 $\begin{aligned} \theta_1 &\to 2\varepsilon + O(\varepsilon^2) \,, \quad \eta_1 \to 2\varepsilon + O(\varepsilon^2) \,, \quad \eta_1 - \theta_1 \to \frac{2}{3}\varepsilon^3 + O(\varepsilon^4) \,, \\ \theta_2 &\to 2\varepsilon^2 + O(\varepsilon^3) \,, \quad \eta_2 \to 2\varepsilon^2 + O(\varepsilon^3) \,, \quad \eta_2 - \theta_2 \to \frac{2}{3}\varepsilon^3 + O(\varepsilon^4) \,. \end{aligned}$

	$\mathcal{G} = K_n \left(\mathcal{G}(n, p) \right)$	$\mathcal{G}{=}high$ girth expander
$ \mathcal{C}_1 $	$\sim 2\varepsilon n$	$\geq c(b, d, \varepsilon)n$
2-core	$\sim 2\varepsilon^2 n$?
excess	$\sim \frac{2}{3}\varepsilon^3 n$?

[Recall: w.h.p. $\frac{1}{n}|\mathcal{C}_1(\mathcal{G}(n,\frac{\lambda}{n}))| \sim \zeta = \mathbb{P}(\text{survival of a Po}(\lambda)\text{-}G\text{-}W\text{-}\text{tree}).]$ Limiting behavior of \mathcal{G}_p for large d agrees with $\mathcal{G}(n,d)$ and $\mathcal{G}(n,p)$:

Example

 $1 - q = \mathbb{P}(\text{survival of a Bin}(d - 1, p)\text{-}G\text{-}W \text{ tree}) \text{ converges to}$ $\mathbb{P}(\text{survival of a Po}(\lambda)\text{-}G\text{-}W\text{-}\text{tree}) \text{ as } d \to \infty, \text{ hence } \frac{1}{n}|\mathcal{C}_1| \to \zeta.$

Example

For
$$p = \frac{1+\varepsilon}{d-1}$$
 with $0 < \varepsilon \ll 1$, one has $q \xrightarrow[d \to \infty]{} 1 - 2\varepsilon + O(\varepsilon^2)$ and

 $\begin{aligned} \theta_1 &\to 2\varepsilon + O(\varepsilon^2) \,, \quad \eta_1 \to 2\varepsilon + O(\varepsilon^2) \,, \quad \eta_1 - \theta_1 \to \frac{2}{3}\varepsilon^3 + O(\varepsilon^4) \,, \\ \theta_2 &\to 2\varepsilon^2 + O(\varepsilon^3) \,, \quad \eta_2 \to 2\varepsilon^2 + O(\varepsilon^3) \,, \quad \eta_2 - \theta_2 \to \frac{2}{3}\varepsilon^3 + O(\varepsilon^4) \,. \end{aligned}$

	$\mathcal{G} = K_n \left(\mathcal{G}(n, p) \right)$	$\mathcal{G}{=}high$ girth expander
$ \mathcal{C}_1 $	$\sim 2\varepsilon n$	$\sim 2\varepsilon n$
2-core	$\sim 2\varepsilon^2 n$	$\sim 2\varepsilon^2 n$
excess	$\sim \frac{2}{3}\varepsilon^3 n$	$\sim \frac{2}{3}\varepsilon^3 n$

Degree distributions of the giant and the 2-core

Let D_k be the number of degree-k vertices in C_1 and let D_k^* be the number of degree-k vertices in its 2-core $C_1^{(2)}$.

Theorem (Krivelevich, L., Sudakov)

$$\begin{split} & \text{Fix } d \geq 3, \ 1 < \lambda < d-1, \ p = \frac{\lambda}{d-1}, \ \text{and } q \text{ as above; define} \\ & \alpha_k = \binom{d}{k} p^k (1-p)^{d-k} (1-q^k) & (k=1,\ldots,d), \\ & \beta_k = \binom{d}{k} p^k (1-q)^k (1-p+pq)^{d-k} & (k=2,\ldots,d). \end{split} \\ & \text{For all } b, \varepsilon > 0 \text{ there exist some } c, R > 0 \text{ so that, if } \mathcal{G} \text{ is a regular} \\ & (b,d)\text{-expander on } n \text{ vertices with girth at least } R, \ w.h.p., \\ & \left| \frac{D_k}{n} - \alpha_k \right| < \varepsilon \ \forall 1 \leq k \leq d \quad \text{and} \quad \left| \frac{D_k^*}{n} - \beta_k \right| < \varepsilon \ \forall 2 \leq k \leq d. \end{split}$$

Degree distributions of the giant and the 2-core

Let D_k be the number of degree-k vertices in C_1 and let D_k^* be the number of degree-k vertices in its 2-core $C_1^{(2)}$.

Theorem (Krivelevich, L., Sudakov)

Fix $d \ge 3$, $1 < \lambda < d - 1$, $p = \frac{\lambda}{d-1}$, and q as above; define $\alpha_k = \binom{d}{k} p^k (1-p)^{d-k} (1-q^k)$ (k = 1, ..., d), $\beta_k = \binom{d}{k} p^k (1-q)^k (1-p+pq)^{d-k}$ (k = 2, ..., d). For all $b, \varepsilon > 0$ there exist some c, R > 0 so that, if \mathcal{G} is a regular (b, d)-expander on n vertices with girth at least R, w.h.p., $\left|\frac{D_k}{n} - \alpha_k\right| < \varepsilon \quad \forall 1 \le k \le d$ and $\left|\frac{D_k^*}{n} - \beta_k\right| < \varepsilon \quad \forall 2 \le k \le d$.

 $(\theta_1 = \sum_{k=1}^d \alpha_k, \ \eta_1 = \frac{1}{2} \sum_{k=1}^d k \alpha_k, \ \theta_2 = \sum_{k=2}^d \beta_k, \ \eta_2 = \frac{1}{2} \sum_{k=2}^d k \beta_k.)$

Example: the giant in percolation on cubic expanders

Asymptotic degree distribution in \mathcal{G}_p for d = 3 and $\frac{1}{2} :$ $w.h.p., the giant has <math>(\alpha_k + o(1))n$ vertices of degree $k \in \{1, 2, 3\}$; its 2-core has $(\beta_k + o(1))n$ vertices of degree $k \in \{2, 3\}$.

The second largest component

Recall: w.h.p., $\exists \omega(b,d) > 0$: $|\mathcal{C}_2(\mathcal{G}_p)| < n^{1-\omega}$ ([Alon et al. '04]).

	$\mathcal{G} = K_n \left(\mathcal{G}(n, p) \right)$	$\mathcal{G} \sim \mathcal{G}(n, d)$	\mathcal{G} =high girth expander
$ \mathcal{C}_1 $	$\sim \zeta n$	$\sim \theta_1 n$	$\sim \theta_1 n$
$ \mathcal{C}_2 $	$\Theta(\log n)$	$\Theta(\log n)$	$\leq n^{1-\omega(b,d)}$

The second largest component

Recall: w.h.p., $\exists \omega(b,d) > 0$: $|\mathcal{C}_2(\mathcal{G}_p)| < n^{1-\omega}$ ([Alon et al. '04]).

	$\mathcal{G} = K_n \left(\mathcal{G}(n, p) \right)$	$\mathcal{G} \sim \mathcal{G}(n, d)$	\mathcal{G} =high girth expander
$ \mathcal{C}_1 $	$\sim \zeta n$	$\sim \theta_1 n$	$\sim \theta_1 n$
$ \mathcal{C}_2 $	$\Theta(\log n)$	$\Theta(\log n)$	$\leq n^{1-\omega(b,d)}$

Perhaps surprisingly, the $n^{1-\omega}$ from above is essentially tight:

Theorem (Krivelevich, L., Sudakov)

For every $d \ge 3$, $R \ge 1$, $p \in (\frac{1}{d-1}, 1)$ and $\alpha \in (0, 1)$ there exist b > 0 and a regular (b, d)-expander \mathcal{G} on n vertices with girth at least R where $G \sim \mathcal{G}_p$ has $|V(\mathcal{C}_2)| \ge n^{\alpha}$ w.h.p.

The second largest component

Recall: w.h.p., $\exists \omega(b,d) > 0$: $|\mathcal{C}_2(\mathcal{G}_p)| < n^{1-\omega}$ ([Alon et al. '04]).

	$\mathcal{G} = K_n \left(\mathcal{G}(n, p) \right)$	$\mathcal{G} \sim \mathcal{G}(n, d)$	\mathcal{G} =high girth expander
$ \mathcal{C}_1 $	$\sim \zeta n$	$\sim \theta_1 n$	$\sim \theta_1 n$
$ \mathcal{C}_2 $	$\Theta(\log n)$	$\Theta(\log n)$	$\leq n^{1-\omega(b,d)}$

Perhaps surprisingly, the $n^{1-\omega}$ from above is essentially tight:

Theorem (Krivelevich, L., Sudakov)

For every $d \ge 3$, $R \ge 1$, $p \in (\frac{1}{d-1}, 1)$ and $\alpha \in (0, 1)$ there exist b > 0 and a regular (b, d)-expander \mathcal{G} on n vertices with girth at least R where $G \sim \mathcal{G}_p$ has $|V(\mathcal{C}_2)| \ge n^{\alpha}$ w.h.p.

Similarly, for any fixed sequence $0 < \alpha_1 \le \alpha_2 \le \ldots \le \alpha_k < 1$ one can construct an expander \mathcal{G} such that w.h.p. $\mathcal{G} \sim \mathcal{G}_p$ has components with sizes $\Theta(n^{\alpha_1}), \ldots, \Theta(n^{\alpha_k})$ plus the giant.

A related question of Benjamini: predicting a giant

Question (Benjamini '13)

Let \mathcal{G} be a bounded degree expander. Further assume that there is a fixed vertex $v \in \mathcal{G}$, so that $\mathcal{G} \sim \mathcal{G}_{1/2}$ satisfies

 $\mathbb{P}(\operatorname{diam}(\mathcal{C}_{v}(G)) > \frac{1}{2}\operatorname{diam}(\mathcal{G})) > \frac{1}{2}$.

Is there a giant component w.h.p.?

A related question of Benjamini: predicting a giant

Question (Benjamini '13)

Let \mathcal{G} be a bounded degree expander. Further assume that there is a fixed vertex $v \in \mathcal{G}$, so that $\mathcal{G} \sim \mathcal{G}_{1/2}$ satisfies

 $\mathbb{P}(\operatorname{diam}(\mathcal{C}_{v}(\mathcal{G})) > \frac{1}{2}\operatorname{diam}(\mathcal{G})) > \frac{1}{2}$.

Is there a giant component w.h.p.?

Variant of our construction for C_2 gives a negative answer to this: **Theorem (Krivelevich, L., Sudakov)** For every $\varepsilon > 0$ and $0 there exist <math>b, d, \delta > 0$ and, for infinitely many values of n, a (b, d)-expander \mathcal{G} on n vertices with a prescribed vertex v, such that the graph $G \sim \mathcal{G}_p$ satisfies

 $\mathbb{P}(\operatorname{diam}(\mathcal{C}_{\nu}(G)) \geq (1-\varepsilon)\operatorname{diam}(\mathcal{G})) \geq 1-\varepsilon$,

yet there are no components of size larger than $n^{1-\delta}$ in G w.h.p.

Proof ideas: the giant

Sprinkling argument of [Alon et. al '04] can be used to characterize nearly all edges in the giant: *most components that are suitably large should join the giant once we sprinkle some extra edges.*

Proof ideas: the giant

Sprinkling argument of [Alon et. al '04] can be used to characterize nearly all edges in the giant: *most components that are suitably* large should join the giant once we sprinkle some extra edges.

Definition (local predictor for the giant)

 $E_1(H) := \{ xy \in E(H) :$

the component of either x or yin $H \setminus \{xy\}$ has size at least R

 $V_1(H) := \{ x \in V(H) : xy \in E_1(H) \text{ for some } y \}$

Proof ideas: the giant

Sprinkling argument of [Alon et. al '04] can be used to characterize nearly all edges in the giant: *most components that are suitably* large should join the giant once we sprinkle some extra edges.

Definition (local predictor for the giant)

 $E_1(H) := \left\{ xy \in E(H) : \begin{array}{c} \text{the component of either } x \text{ or } y \\ \text{in } H \setminus \{xy\} \text{ has size at least } R \end{array} \right\}$

 $V_1(H) := \{ x \in V(H) : xy \in E_1(H) \text{ for some } y \}$

Proposition

 $\forall b, \varepsilon > 0 \exists R, c > 0$ s.t., if \mathcal{G} is a regular (b, d)-expander on nvertices with girth greater than 2*R*, and $G \sim \mathcal{G}_p$, then w.h.p. $|E_1(G) \bigtriangleup E(\mathcal{C}_1(G))| \le \varepsilon n$ and $|V_1(G) \bigtriangleup V(\mathcal{C}_1(G))| \le \varepsilon n$.

Proof of giant edge and vertex characterization

Upper bound on $V(\mathcal{C}_1) \bigtriangleup V_1$ and $E(\mathcal{C}_1) \bigtriangleup E_1$ is trivial:

 $\bigcup \{E(\mathcal{C}) : \mathcal{C} \text{ is a conn. component of } H \text{ with } |\mathcal{C}| \ge 2R\} \subseteq E_1(H)$ $\bigcup \{V(\mathcal{C}) : \mathcal{C} \text{ is a conn. component of } H \text{ with } |\mathcal{C}| > dR\} \subseteq V_1(H)$

First step in lower bound: via Hoeffding-Azuma,

$$\mathbb{P}\left(\left|E_1(H)| - \mathbb{E}[|E_1(H)|]\right| \ge a\right) \le e^{-a^2/(4dn(d-1)^{2R})}$$

and similarly for $\left||V_1(H)| - \mathbb{E}[|V_1(H)|]\right|$.

Together, these imply that if $p' = p - \varepsilon$ then $G' \sim \mathcal{G}_{p'}$ w.h.p. has $|E_1(G')| \ge (\frac{1}{2}p'd(1-q'^2)-\varepsilon)n,$ $|V_1(G')| \ge (1-q'(1-p'+p'q')-\varepsilon)n.$

Proof of giant edge and vertex characterization (2)

Claim

For every ε , b, d > 0 there exist c, R > 0 such that, if

- \mathcal{G} is a regular (b, d)-expander with n vertices,
- (S_i) are disjoint vertex subsets of G with $|S_i| \ge R \ \forall i$,

and $H \sim \mathcal{G}_{\varepsilon}$, then w.h.p. there are no disjoint sets $\mathcal{A} = \bigcup_{i \in I} \mathcal{S}_i$ and $\mathcal{B} = \bigcup_{i \in J} \mathcal{S}_j$ with $|\mathcal{A}|, \mathcal{B}| \geq \varepsilon n$ and no path between them in H.

Proof of giant edge and vertex characterization (2)

Claim

For every ε , b, d > 0 there exist c, R > 0 such that, if

- \mathcal{G} is a regular (b, d)-expander with n vertices,
- (S_i) are disjoint vertex subsets of \mathcal{G} with $|S_i| \ge R \ \forall i$,

and $H \sim \mathcal{G}_{\varepsilon}$, then w.h.p. there are no disjoint sets $\mathcal{A} = \bigcup_{i \in I} \mathcal{S}_i$ and $\mathcal{B} = \bigcup_{j \in J} \mathcal{S}_j$ with $|\mathcal{A}|, \mathcal{B}| \geq \varepsilon n$ and no path between them in H.

Proof.

By Menger's Theorem: $\exists \geq \left\lceil \frac{b\varepsilon}{2}n \right\rceil$ edge-disjoint paths of length $\leq \left\lfloor \frac{d}{b\varepsilon} \right\rfloor$ between such \mathcal{A}, \mathcal{B} in \mathcal{G} . The probability that none survive in \mathcal{H} is at most $\left(1 - \varepsilon^{d/(b\varepsilon)}\right)^{\frac{1}{2}b\varepsilon n} \leq \exp\left[-\frac{1}{2}b\varepsilon^{1+d/b\varepsilon}n\right]$. A union bound over at most $2^{2n/R}$ subsets of the \mathcal{S}_i 's: $\exp\left[\left(R^{-1}2\log 2 - \frac{1}{2}b\varepsilon^{1+d/b\varepsilon}\right)n\right]$.

Proof of giant edge and vertex characterization (3)

Corollary

For every ε , b, d > 0 there exist c, R > 0 s.t., if \mathcal{G} is a regular (b, d)-expander on n vertices with girth greater than 2R, then w.h.p. there \exists a connected component \mathcal{C} of $G' \cup \mathcal{G}_{\varepsilon}$ containing all but at most $2\varepsilon n$ of the vertices $V_1(G')$.

Proof.

Let S_i be the connected components in G' of all $y \in V_1 = V_1(G')$, and form U by collecting connected components in G of (arbitrary) S_i 's until

 $|U\cap V_1|\geq \varepsilon n\,,$

so $\varepsilon n \leq |U \cap V_1| < \varepsilon n + |C \cap V_1|$ for some connected component C in G. If $|C \cap V_1| \leq |V_1| - 2\varepsilon n$, the cut $(U \cap V_1, V_1 \setminus U)$ violates the claim. \Box

Intuition: if both endpoints of an edge are suitably large, then sprinkling should form a cycle through it...

Intuition: if both endpoints of an edge are suitably large, then sprinkling should form a cycle through it...

 $\begin{array}{ll} \textbf{Definition (local predictor for the 2-core)} \\ E_2(H) := \left\{ xy \in E(H) : \begin{array}{ll} \text{the component of both x and y} \\ \text{in $H \setminus \{xy\}$ has size at least R} \end{array} \right\} \\ V_2(H) := \left\{ x \in V(H) : xy \in E_2(H) \text{ for some y} \right\} \end{array}$

Intuition: if both endpoints of an edge are suitably large, then sprinkling should form a cycle through it...

Definition (local predictor for the 2-core) the component of both x and y $E_2(H) := \{xy \in E(H) :$ in $H \setminus \{xy\}$ has size at least R $V_2(H) := \{ x \in V(H) : xy \in E_2(H) \text{ for some } y \}$ Goal: mimic the analysis of the giant to show: $(1-q)^2 p$ Proposition $\forall b, \varepsilon > 0 \exists R, c > 0$ s.t., if \mathcal{G} is a regular (b, d)-expander on nvertices with girth greater than 2*R*, and $G \sim \mathcal{G}_p$, then w.h.p. $|E_2(G) riangle E(\mathcal{C}_1^{(2)}(G))| \le \varepsilon n$ and $|V_2(G) riangle V(\mathcal{C}_1^{(2)}(G))| \le \varepsilon n$.

Intuition: if both endpoints of an edge are suitably large, then sprinkling should form a cycle through it...

Definition (local predictor for the 2-core) the component of both x and y $E_2(H) := \{xy \in E(H) :$ in $H \setminus \{xy\}$ has size at least R $V_2(H) := \{ x \in V(H) : xy \in E_2(H) \text{ for some } y \}$ Goal: mimic the analysis of the giant to show: $(1-q)^2 p$ Proposition $\forall b, \varepsilon > 0 \exists R, c > 0$ s.t., if \mathcal{G} is a regular (b, d)-expander on nvertices with girth greater than 2*R*, and $G \sim \mathcal{G}_p$, then w.h.p. $|E_2(G) \bigtriangleup E(\mathcal{C}_1^{(2)}(G))| \le \varepsilon n$ and $|V_2(G) \bigtriangleup V(\mathcal{C}_1^{(2)}(G))| \le \varepsilon n$.

Problem: sprinkling may reuse the edge xy and not create a cycle!

Remedy to the "illegal sprinkling" obstacle: random coloring:

Remedy to the "illegal sprinkling" obstacle: random coloring:

Partition the edge set of *G* randomly (independently) into blue and red, where the probability of an edge to be blue is *ε*.

Remedy to the "illegal sprinkling" obstacle: random coloring:

- Partition the edge set of *G* randomly (independently) into blue and red, where the probability of an edge to be blue is ε.
- ► Modify the definition of E₂(G) to include blue edges xy where the red clusters of x and y in G \ {xy} are suitably large.

Remedy to the "illegal sprinkling" obstacle: random coloring:

- Partition the edge set of *G* randomly (independently) into blue and red, where the probability of an edge to be blue is ε.
- ▶ Modify the definition of E₂(G) to include blue edges xy where the red clusters of x and y in G \ {xy} are suitably large.
- Sprinkling red edges should connect most such clusters.

Remedy to the "illegal sprinkling" obstacle: random coloring:

- Partition the edge set of *G* randomly (independently) into blue and red, where the probability of an edge to be blue is ε.
- ▶ Modify the definition of E₂(G) to include blue edges xy where the red clusters of x and y in G \ {xy} are suitably large.
- Sprinkling red edges should connect most such clusters.

This should imply there are (roughly) $\geq \varepsilon p(1-q)^2 |E(\mathcal{G})|$ blue edges in the 2-core, thus $\geq p(1-q)^2 |E(\mathcal{G})|$ that are blue or red.

Remedy to the "illegal sprinkling" obstacle: random coloring:

- Partition the edge set of *G* randomly (independently) into blue and red, where the probability of an edge to be blue is ε.
- ► Modify the definition of E₂(G) to include blue edges xy where the red clusters of x and y in G \ {xy} are suitably large.
- Sprinkling red edges should connect most such clusters.

This should imply there are (roughly) $\geq \varepsilon p(1-q)^2 |E(\mathcal{G})|$ blue edges in the 2-core, thus $\geq p(1-q)^2 |E(\mathcal{G})|$ that are blue or red.

Problem: red graph is no longer an expander—e.g., it typically has linearly many isolated vertices—sprinkling argument fails...

Recall: the edges pf \mathcal{G} are randomly partitioned into blue and red, where the probability of an edge to be blue is ε (independently of other edges).

Definition (*k*-thick subsets)

A subset $S \subset V(H)$ is k-thick if there exists disjoint connected subsets of H, $\{S_i\}$, each of size at least k, such that $S = \bigcup S_i$.

Key: although the red graph is not an expander, w.h.p., sets that are *k*-thick do maintain edge expansion in it:

Claim

There exists $k(\varepsilon, b, d)$ such that, with probability $1 - O(2^{-\varepsilon n})$, $\#\{\text{red } (x, y) \in E(\mathcal{G}) : x \in S, y \in S^c\} \ge \frac{1}{2}b|S|$ for every k-thick $S \subset V(\mathcal{G})$ with $\varepsilon n \le |S| \le n/2$.

Thank you!