

Asymptotics in bond percolation on expanders

Eyal Lubetzky
March 2018

Courant Institute, New York University

The Erdős-Rényi random graph

"This double 'jump' of the size of the largest component... is one of the most striking facts concerning random graphs." (E-R 1960)

$\mathcal{G}(n, p)$: indicators of the $\binom{n}{2}$ edges are IID $\operatorname{Bernoulli}(p)$.

$$
\begin{gathered}
n=1000 \\
p=0.75 / n
\end{gathered}
$$

$$
\begin{gathered}
n=1000 \\
p=1 / n
\end{gathered}
$$

$$
\begin{gathered}
n=1000 \\
p=1.5 / n
\end{gathered}
$$

E. Lubetzky © NYU|COURANT

Bond percolation on the complete graph

Definition (bond percolation \mathcal{G}_{p})
keep (open) edges of \mathcal{G} via IID $\operatorname{Bernoulli}(p)$ variables.
$\mathcal{G}(n, p)$: the special case where $\mathcal{G}=K_{n}$ (complete graph).

Bond percolation on the complete graph

Definition (bond percolation \mathcal{G}_{p})
keep (open) edges of \mathcal{G} via IID Bernoulli(p) variables.
$\mathcal{G}(n, p)$: the special case where $\mathcal{G}=K_{n}$ (complete graph).

- "Double jump" for the order of $\left|\mathcal{C}_{1}\right|$ around $p_{c}=1 / n$:
([Erdős-Rényi (1960's)], [Bollobás '84], [Łuczak '90])

Bond percolation on the complete graph

Definition (bond percolation \mathcal{G}_{p})
keep (open) edges of \mathcal{G} via IID $\operatorname{Bernoulli}(p)$ variables.
$\mathcal{G}(n, p)$: the special case where $\mathcal{G}=K_{n}$ (complete graph).

- "Double jump" for the order of $\left|\mathcal{C}_{1}\right|$ around $p_{c}=1 / n$:
([Erdős-Rényi (1960's)], [Bollobás '84], [Łuczak '90])
- $\Theta(\log n)$ for $p=\lambda / n$ with $\lambda<1$ fixed;

Bond percolation on the complete graph

Definition (bond percolation \mathcal{G}_{p})
keep (open) edges of \mathcal{G} via IID $\operatorname{Bernoulli}(p)$ variables. $\mathcal{G}(n, p)$: the special case where $\mathcal{G}=K_{n}$ (complete graph).

- "Double jump" for the order of $\left|\mathcal{C}_{1}\right|$ around $p_{c}=1 / n$:
([Erdős-Rényi (1960's)], [Bollobás '84], [Łuczak '90])
- $\Theta(\log n)$ for $p=\lambda / n$ with $\lambda<1$ fixed;
- $\Theta\left(n^{2 / 3}\right)$ at $p=1 / n$;
(and within the critical window $p=\frac{1 \pm O\left(n^{-1 / 3}\right)}{n}$)

Bond percolation on the complete graph

Definition (bond percolation \mathcal{G}_{p})
keep (open) edges of \mathcal{G} via IID Bernoulli(p) variables. $\mathcal{G}(n, p)$: the special case where $\mathcal{G}=K_{n}$ (complete graph).

- "Double jump" for the order of $\left|\mathcal{C}_{1}\right|$ around $p_{c}=1 / n$:
([Erdős-Rényi (1960's)], [Bollobás '84], [tuczak '90])
- $\Theta(\log n)$ for $p=\lambda / n$ with $\lambda<1$ fixed;
- $\Theta\left(n^{2 / 3}\right)$ at $p=1 / n$;
(and within the critical window $\left.p=\frac{1 \pm O\left(n^{-1 / 3}\right.}{n}\right)$
- $\Theta(n)$ for $p=\lambda / n$ with $\lambda>1$ fixed.

Bond percolation on the complete graph

Definition (bond percolation \mathcal{G}_{p})
keep (open) edges of \mathcal{G} via IID Bernoulli(p) variables. $\mathcal{G}(n, p)$: the special case where $\mathcal{G}=K_{n}$ (complete graph).

- "Double jump" for the order of $\left|\mathcal{C}_{1}\right|$ around $p_{c}=1 / n$:
([Erdős-Rényi (1960's)], [Bollobás '84], [Łuczak '90])
- $\Theta(\log n)$ for $p=\lambda / n$ with $\lambda<1$ fixed;
- $\Theta\left(n^{2 / 3}\right)$ at $p=1 / n$;
(and within the critical window $p=\frac{1 \pm O\left(n^{-1 / 3}\right)}{n}$)
- $\Theta(n) \quad$ for $p=\lambda / n$ with $\lambda>1$ fixed.

- Emerging from the critical window:
- $\sim 2 \varepsilon n \quad$ when $p=\frac{1+\varepsilon}{n}$ for $n^{-1 / 3} \ll \varepsilon \ll 1$.

Anatomy of a giant component

Theorem (Ding, L., Peres '14)
Giant component of $\mathcal{G}(n, p=\lambda / n)$ is \approx (contiguity):

Anatomy of a giant component

Theorem (Ding, L., Peres '14)

Giant component of $\mathcal{G}(n, p=\lambda / n)$ is \approx (contiguity):

1. kernel : \mathcal{K} random graph with (nice) given degrees

$$
\left(D_{i} \sim \operatorname{Po}\left(\lambda-c_{\lambda} \mid \cdot \geq 3\right) \text { IID for } i=1, \ldots, N\right)
$$

$$
\text { [} \left.c_{\lambda} \rightarrow 0 \text { as } \lambda \rightarrow \infty \text {, and } c_{\lambda} \approx 1-\varepsilon \text { when } \lambda=1+\varepsilon \text { for } \varepsilon=o(1) .\right]
$$

Anatomy of a giant component

Theorem (Ding, L., Peres '14)

Giant component of $\mathcal{G}(n, p=\lambda / n)$ is \approx (contiguity):

1. kernel : \mathcal{K} random graph with (nice) given degrees

$$
\left(D_{i} \sim \operatorname{Po}\left(\lambda-c_{\lambda} \mid \cdot \geq 3\right) \text { IID for } i=1, \ldots, N\right)
$$

2. 2-core : edges \rightsquigarrow paths of lengths IID Geom $\left(1-c_{\lambda}\right)$.

$$
\text { [} \left.c_{\lambda} \rightarrow 0 \text { as } \lambda \rightarrow \infty \text {, and } c_{\lambda} \approx 1-\varepsilon \text { when } \lambda=1+\varepsilon \text { for } \varepsilon=o(1) .\right]
$$

Anatomy of a giant component

Theorem (Ding, L., Peres '14)

Giant component of $\mathcal{G}(n, p=\lambda / n)$ is \approx (contiguity):

1. kernel : \mathcal{K} random graph with (nice) given degrees

$$
\left(D_{i} \sim \operatorname{Po}\left(\lambda-c_{\lambda} \mid \cdot \geq 3\right) \text { IID for } i=1, \ldots, N\right)
$$

2. 2-core : edges \rightsquigarrow paths of lengths IID Geom $\left(1-c_{\lambda}\right)$.
3. giant : attach IID $\operatorname{Po}\left(c_{\lambda}\right)$-Galton-Watson trees

$$
\text { [} \left.c_{\lambda} \rightarrow 0 \text { as } \lambda \rightarrow \infty, \text { and } c_{\lambda} \approx 1-\varepsilon \text { when } \lambda=1+\varepsilon \text { for } \varepsilon=o(1) .\right]
$$

Anatomy of a giant component

Theorem (Ding, L., Peres '14)

Giant component of $\mathcal{G}(n, p=\lambda / n)$ is \approx (contiguity):

1. kernel : \mathcal{K} random graph with (nice) given degrees

$$
\left(D_{i} \sim \operatorname{Po}\left(\lambda-c_{\lambda} \mid \cdot \geq 3\right) \text { IID for } i=1, \ldots, N\right)
$$

2. 2-core : edges \rightsquigarrow paths of lengths IID Geom $\left(1-c_{\lambda}\right)$.
3. giant : attach IID $\operatorname{Po}\left(c_{\lambda}\right)$-Galton-Watson trees

$$
\text { [} c_{\lambda} \rightarrow 0 \text { as } \lambda \rightarrow \infty \text {, and } c_{\lambda} \approx 1-\varepsilon \text { when } \lambda=1+\varepsilon \text { for } \varepsilon=o(1) \text {.] }
$$

- Proof builds on
[Wormald-Pittel '05]' (the key local CLT), and [Łuczak '91].

Anatomy of a giant component

Theorem (Ding, L., Peres '14)

Giant component of $\mathcal{G}(n, p=\lambda / n)$ is \approx (contiguity):

1. kernel : \mathcal{K} random graph with (nice) given degrees

$$
\left(D_{i} \sim \operatorname{Po}\left(\lambda-c_{\lambda} \mid \cdot \geq 3\right) \text { IID for } i=1, \ldots, N\right)
$$

2. 2-core : edges \rightsquigarrow paths of lengths IID Geom $\left(1-c_{\lambda}\right)$.
3. giant : attach IID $\operatorname{Po}\left(c_{\lambda}\right)$-Galton-Watson trees

$$
\left[c_{\lambda} \rightarrow 0 \text { as } \lambda \rightarrow \infty, \text { and } c_{\lambda} \approx 1-\varepsilon \text { when } \lambda=1+\varepsilon \text { for } \varepsilon=o(1) .\right]
$$

- Proof builds on
[Wormald-Pittel '05] (the key local CLT), and [Łuczak '91].

Percolation on expanders

Definition (edge (b, d)-expander)
sequence of graphs with maximum degree $\leq d$ and conductance $\Phi \geq b$ (for $d \geq 3, b>0$ fixed), where

$$
\Phi(G)=\min _{S: \pi(S) \leq \frac{1}{2}} \frac{|E(S, V \backslash S)|}{\pi(S)} \quad \text { for } \quad \pi(S)=\frac{\sum_{v \in S} \operatorname{deg}(v)}{2|E(G)|}
$$

Percolation on expanders

Definition (edge (b, d)-expander)
sequence of graphs with maximum degree $\leq d$ and conductance $\Phi \geq b$ (for $d \geq 3, b>0$ fixed), where

$$
\Phi(G)=\min _{S: \pi(S) \leq \frac{1}{2}} \frac{|E(S, V \backslash S)|}{\pi(S)} \quad \text { for } \quad \pi(S)=\frac{\sum_{v \in S} \operatorname{deg}(v)}{2|E(G)|}
$$

- [Alon, Benjamini, Stacy '04] studied \mathcal{G}_{p} for an expander \mathcal{G} : - Uniqueness of the giant for all p.

Percolation on expanders

Definition (edge (b, d)-expander)
sequence of graphs with maximum degree $\leq d$ and conductance $\Phi \geq b$ (for $d \geq 3, b>0$ fixed), where

$$
\Phi(G)=\min _{S: \pi(S) \leq \frac{1}{2}} \frac{|E(S, V \backslash S)|}{\pi(S)} \quad \text { for } \quad \pi(S)=\frac{\sum_{v \in S} \operatorname{deg}(v)}{2|E(G)|}
$$

- [Alon, Benjamini, Stacy '04] studied \mathcal{G}_{p} for an expander \mathcal{G} :
- Uniqueness of the giant for all p.
- Characterization of the critical point for the appearance of a giant component in high girth d-regular expanders: $p_{c}=\frac{1}{d-1}$.

Percolation on expanders

Definition (edge (b, d)-expander)
sequence of graphs with maximum degree $\leq d$ and
 conductance $\Phi \geq b$ (for $d \geq 3, b>0$ fixed), where

$$
\Phi(G)=\min _{S: \pi(S) \leq \frac{1}{2}} \frac{|E(S, V \backslash S)|}{\pi(S)} \quad \text { for } \quad \pi(S)=\frac{\sum_{v \in S} \operatorname{deg}(v)}{2|E(G)|}
$$

- [Alon, Benjamini, Stacy '04] studied \mathcal{G}_{p} for an expander \mathcal{G} :
- Uniqueness of the giant for all p.
- Characterization of the critical point for the appearance of a giant component in high girth d-regular expanders: $p_{c}=\frac{1}{d-1}$.
- [Benjamini, Peres, Nachmias '09] extended high girth regular expanders to sparse graphs with a Benjamini-Schramm limit.

Percolation on expanders (ctd.)

Theorem (Alon, Benjamini, Stacey '04)
If \mathcal{G} is a (b, d)-expander on n vertices, then $\exists \omega=\omega(b, d)<1$:

$$
\forall p=p_{n}, \quad \mathbb{P}\left(\left|\mathcal{C}_{2}\left(\mathcal{G}_{p}\right)\right|>n^{\omega}\right)=o(1)
$$

Percolation on expanders (ctd.)

Theorem (Alon, Benjamini, Stacey '04)
If \mathcal{G} is a (b, d)-expander on n vertices, then $\exists \omega=\omega(b, d)<1$:

$$
\forall p=p_{n}, \quad \mathbb{P}\left(\left|\mathcal{C}_{2}\left(\mathcal{G}_{p}\right)\right|>n^{\omega}\right)=o(1) .
$$

Theorem (Alon, Benjamini, Stacey '04)
Let \mathcal{G} be a regular (b, d)-expander on n vertices with girth $\rightarrow \infty$. If $p>\frac{1}{d-1}$ then $\exists c>0$:

$$
\mathbb{P}\left(\left|\mathcal{C}_{1}\left(\mathcal{G}_{p}\right)\right|>c n\right)=1-o(1),
$$

whereas if $p<\frac{1}{d-1}$ then $\forall c>0$:

$$
\mathbb{P}\left(\left|\mathcal{C}_{1}\left(\mathcal{G}_{p}\right)\right|>c n\right)=o(1) .
$$

Percolation on random regular graphs

Recall: $\left|\mathcal{C}_{1}\right|$ in the Erdős-Rényi graph $\mathcal{G}\left(n, p=\frac{\lambda}{n}\right)$ for fixed λ is w.h.p.

$$
\begin{array}{c|c|c}
\lambda<1 & \lambda=1 & \lambda>1 \\
\hline \hline \Theta(\log n) & \Theta\left(n^{2 / 3}\right) & (\zeta+o(1)) n \\
\hline
\end{array}
$$

$\zeta=$ survival probab. of a $\operatorname{Po}(\lambda)-G-W$ tree

Percolation on random regular graphs

Recall: $\left|\mathcal{C}_{1}\right|$ in the Erdős-Rényi graph $\mathcal{G}\left(n, p=\frac{\lambda}{n}\right)$ for fixed λ is w.h.p.

$$
\begin{array}{c|c|c}
\lambda<1 & \lambda=1 & \lambda>1 \\
\hline \hline \Theta(\log n) & \Theta\left(n^{2 / 3}\right) & (\zeta+o(1)) n \\
\hline
\end{array}
$$

$$
\zeta=\text { survival probab. }
$$

$$
\text { of a } \operatorname{Po}(\lambda)-G-W \text { tree }
$$

How does \mathcal{G}_{p} behave for $\mathcal{G} \in \mathcal{G}(n, d)$, a uniformly chosen d-regular graph on n vertices for $d \geq 3$ fixed?

Percolation on random regular graphs

Recall: $\left|\mathcal{C}_{1}\right|$ in the Erdős-Rényi graph $\mathcal{G}\left(n, p=\frac{\lambda}{n}\right)$ for fixed λ is w.h.p.

$\lambda<1$	$\lambda=1$	$\lambda>1$
$\Theta(\log n)$	$\Theta\left(n^{2 / 3}\right)$	$(\zeta+o(1)) n$

$\zeta=$ survival probab.
of a $\operatorname{Po}(\lambda)-\mathrm{G}-\mathrm{W}$ tree

How does \mathcal{G}_{p} behave for $\mathcal{G} \in \mathcal{G}(n, d)$, a uniformly chosen d-regular graph on n vertices for $d \geq 3$ fixed?

Theorem ([Pittel '08], [Nachmias, Peres '10])

Fix $d \geq 3$ and $p=\frac{\lambda}{d-1}$. W.h.p., $\left|\mathcal{C}_{1}\right|$ in \mathcal{G}_{p} for $\mathcal{G} \sim \mathcal{G}(n, d)$ satisfies

$$
\begin{array}{c|c|c|}
\lambda<1 & \lambda=1 & \lambda>1 \\
\hline \hline \Theta(\log n) & \Theta\left(n^{2 / 3}\right) & \left(\theta_{1}+o(1)\right) n
\end{array} \begin{gathered}
\theta_{1}=\text { probab. of inf. path in } \\
p \text {-percolation on a d-reg tree }
\end{gathered}
$$

Percolation on random regular graphs

Recall: $\left|\mathcal{C}_{1}\right|$ in the Erdős-Rényi graph $\mathcal{G}\left(n, p=\frac{\lambda}{n}\right)$ for fixed λ is w.h.p.

$\lambda<1$	$\lambda=1$	$\lambda>1$
$\Theta(\log n)$	$\Theta\left(n^{2 / 3}\right)$	$(\zeta+o(1)) n$

$\zeta=$ survival probab.
of a $\mathrm{Po}(\lambda)-\mathrm{G}-\mathrm{W}$ tree

How does \mathcal{G}_{p} behave for $\mathcal{G} \in \mathcal{G}(n, d)$, a uniformly chosen d-regular graph on n vertices for $d \geq 3$ fixed?

Theorem ([Pittel '08], [Nachmias, Peres '10])

Fix $d \geq 3$ and $p=\frac{\lambda}{d-1}$. W.h.p., $\left|\mathcal{C}_{1}\right|$ in \mathcal{G}_{p} for $\mathcal{G} \sim \mathcal{G}(n, d)$ satisfies

$$
\left.\begin{array}{c|c|c}
\lambda<1 & \lambda=1 & \lambda>1 \\
\hline \Theta(\log n) & \Theta\left(n^{2 / 3}\right) & \left(\theta_{1}+o(1)\right) n
\end{array} \right\rvert\, \begin{aligned}
& \theta_{1}=\text { probab. of inf. path in } \\
& p \text {-percolation on a } d \text {-reg tree }
\end{aligned}
$$

Well-known: $\mathcal{G} \sim \mathcal{G}(n, d)$ is w.h.p. an expander; what about an arbitrary expander? Does \mathcal{G}_{p} in that case also mirror $\mathcal{G}(n, p)$?

Percolation on K_{n} vs. $\mathcal{G}(n, d)$ vs. high girth expanders

Comparing \mathcal{G}_{p} on a d-regular graph \mathcal{G} at $p=\frac{\lambda}{d}$ for $\lambda>1$:

	$\mathcal{G}=K_{n}(\mathcal{G}(n, p))$	$\mathcal{G} \sim \mathcal{G}(n, d)$	\mathcal{G} =high girth expander
$\left\|\mathcal{C}_{1}\right\|$	$\sim \zeta n$	$\sim \theta_{1} n$	$\geq c(b, d, \lambda) n$
$\left\|\mathcal{C}_{2}\right\|$	$\Theta(\log n)$	$\Theta(\log n)$	$\leq n^{1-\omega(b, d)}$

Percolation on K_{n} vs. $\mathcal{G}(n, d)$ vs. high girth expanders

Comparing \mathcal{G}_{p} on a d-regular graph \mathcal{G} at $p=\frac{\lambda}{d}$ for $\lambda>1$:

	$\mathcal{G}=K_{n}(\mathcal{G}(n, p))$	$\mathcal{G} \sim \mathcal{G}(n, d)$	\mathcal{G} =high girth expander
$\left\|\mathcal{C}_{1}\right\|$	$\sim \zeta n$	$\sim \theta_{1} n$	$\geq c(b, d, \lambda) n$ asymp.?
$\left\|\mathcal{C}_{2}\right\|$	$\Theta(\log n)$	$\Theta(\log n)$	$\leq n^{1-\omega(b, d)}$ sharp?

Percolation on K_{n} vs. $\mathcal{G}(n, d)$ vs. high girth expanders

Comparing \mathcal{G}_{p} on a d-regular graph \mathcal{G} at $p=\frac{\lambda}{d}$ for $\lambda>1$:

	$\mathcal{G}=K_{n}(\mathcal{G}(n, p))$	$\mathcal{G} \sim \mathcal{G}(n, d)$	$\mathcal{G}=$ high girth expander
$\left\|\mathcal{C}_{1}\right\|$	$\sim \zeta n$	$\sim \theta_{1} n$	$\geq c(b, d, \lambda) n$ asymp.?
$\left\|\mathcal{C}_{2}\right\|$	$\Theta(\log n)$	$\Theta(\log n)$	$\leq n^{1-\omega(b, d)} \quad$ sharp? $)$

Additional geometric features - degree profile? 2-core? excess?

Percolation on K_{n} vs. $\mathcal{G}(n, d)$ vs. high girth expanders

Comparing \mathcal{G}_{p} on a d-regular graph \mathcal{G} at $p=\frac{\lambda}{d}$ for $\lambda>1$:

	$\mathcal{G}=K_{n}(\mathcal{G}(n, p))$	$\mathcal{G} \sim \mathcal{G}(n, d)$	$\mathcal{G}=$ high girth expander
$\left\|\mathcal{C}_{1}\right\|$	$\sim \zeta n$	$\sim \theta_{1} n$	$\geq c(b, d, \lambda) n$ asymp.?
$\left\|\mathcal{C}_{2}\right\|$	$\Theta(\log n)$	$\Theta(\log n)$	$\leq n^{1-\omega(b, d)} \quad$ sharp? $)$

Additional geometric features - degree profile? 2-core? excess?
For instance:
Behavior at $\lambda=1+\varepsilon$ for $\varepsilon \ll 1$:

	$\mathcal{G}=K_{n}(\mathcal{G}(n, p))$	$\mathcal{G}=$ high girth expander
$\left\|\mathcal{C}_{1}\right\|$	$\sim 2 \varepsilon n$	$\geq c(b, d, \varepsilon) n$
2-core	$\sim 2 \varepsilon^{2} n$	$?$
excess	$\sim \frac{2}{3} \varepsilon^{3} n$	$?$

New results: the giant

Let \mathcal{G} be a regular n-vertex (b, d)-expander $(b>0, d \geq 3$ fixed $)$ with girth $\rightarrow \infty$, and fix $\frac{1}{d-1}<p<1$.

New results: the giant

Let \mathcal{G} be a regular n-vertex (b, d)-expander ($b>0, d \geq 3$ fixed $)$ with girth $\rightarrow \infty$, and fix $\frac{1}{d-1}<p<1$.

Recall: w.h.p., $\exists c>0:\left|\mathcal{C}_{1}\left(\mathcal{G}_{p}\right)\right|>c n$ ([Alon, Benjamini, Stacey '04]).

New results: the giant

Let \mathcal{G} be a regular n-vertex (b, d)-expander ($b>0, d \geq 3$ fixed $)$ with girth $\rightarrow \infty$, and fix $\frac{1}{d-1}<p<1$.

Recall: w.h.p., $\exists c>0:\left|\mathcal{C}_{1}\left(\mathcal{G}_{p}\right)\right|>c n$ ([Alon, Benjamini, Stacey '04]).
New results include:

Theorem (Krivelevich, L., Sudakov)

Let $\theta_{1}:=1-q(1-p+p q), \eta_{1}:=\frac{1}{2} p d\left(1-q^{2}\right)$, where $0<q<1$ is the unique solution of $q=(1-p+p q)^{d-1}$. Then w.h.p.,

$$
\left|V\left(\mathcal{C}_{1}\right)\right|=\left(\theta_{1}+o(1)\right) n, \quad\left|E\left(\mathcal{C}_{1}\right)\right|=\left(\eta_{1}+o(1)\right) n,
$$

New results: the giant

Let \mathcal{G} be a regular n-vertex (b, d)-expander ($b>0, d \geq 3$ fixed $)$ with girth $\rightarrow \infty$, and fix $\frac{1}{d-1}<p<1$.

Recall: w.h.p., $\exists c>0:\left|\mathcal{C}_{1}\left(\mathcal{G}_{p}\right)\right|>c n([$ Alon, Benjamini, Stacey '04]).
New results include:

Theorem (Krivelevich, L., Sudakov)

Let $\theta_{1}:=1-q(1-p+p q), \eta_{1}:=\frac{1}{2} p d\left(1-q^{2}\right)$, where $0<q<1$ is the unique solution of $q=(1-p+p q)^{d-1}$. Then w.h.p.,

$$
\left|V\left(\mathcal{C}_{1}\right)\right|=\left(\theta_{1}+o(1)\right) n, \quad\left|E\left(\mathcal{C}_{1}\right)\right|=\left(\eta_{1}+o(1)\right) n,
$$

$\downarrow q$ is the extinction probability on a $\operatorname{Bin}(d-1, p)$-G-W-tree;
θ_{1} is the probability of p-percolation on a d-reg tree.

- η_{1} is the fraction of edges which are open, and the $\operatorname{Bin}(d-1, p)$-G-W-tree from at least one of their endpoints survived.

New results: the giant

Theorem (Krivelevich, L., Sudakov)

Fix $d \geq 3$ and $\frac{1}{d-1}<p<1$. For every $\varepsilon>0$ and $b>0$ there exist some $c, C, R>0$ such that, if \mathcal{G} is a regular (b, d)-expander on n vertices with girth at least R, then w.h.p., $G \sim \mathcal{G}_{p}$ has

$$
\begin{align*}
\left|\frac{1}{n}\right| V\left(\mathcal{C}_{1}\right)\left|-\theta_{1}\right|<\varepsilon, & \left|\frac{1}{n}\right| E\left(\mathcal{C}_{1}\right)\left|-\eta_{1}\right|<\varepsilon \tag{1}\\
\left|\frac{1}{n}\right| V\left(\mathcal{C}_{1}^{(2)}\right)\left|-\theta_{2}\right|<\varepsilon, & \left|\frac{1}{n}\right| E\left(\mathcal{C}_{1}^{(2)}\right)\left|-\eta_{2}\right|<\varepsilon . \tag{2}
\end{align*}
$$

In particular, w.h.p., $\operatorname{excess}\left(\mathcal{C}_{1}\right) \approx\left(\eta_{1}-\theta_{1}\right) n$, and $\operatorname{excess}\left(\mathcal{C}_{1}^{(2)}\right) \approx\left(\eta_{2}-\theta_{2}\right) n$.

$$
0<q<1 \text { solves } q=(1-p+p q)^{d-1}
$$

$$
\begin{array}{cr}
\theta_{1}:=1-q(1-p)-p q^{2} & \eta_{1}:=\frac{1}{2} p d\left(1-q^{2}\right) \\
\theta_{2}:=1-q-(d-1) p q(1-q) & \eta_{2}:=\frac{1}{2} p d(1-q)^{2}
\end{array}
$$

Example: asymptotics for large d

[Recall: w.h.p. $\frac{1}{n}\left|\mathcal{C}_{1}\left(\mathcal{G}\left(n, \frac{\lambda}{n}\right)\right)\right| \sim \zeta=\mathbb{P}($ survival of a $\operatorname{Po}(\lambda)$-G-W-tree).] Limiting behavior of \mathcal{G}_{p} for large d agrees with $\mathcal{G}(n, d)$ and $\mathcal{G}(n, p)$:

Example: asymptotics for large d

[Recall: w.h.p. $\frac{1}{n}\left|\mathcal{C}_{1}\left(\mathcal{G}\left(n, \frac{\lambda}{n}\right)\right)\right| \sim \zeta=\mathbb{P}($ survival of a $\operatorname{Po}(\lambda)$-G-W-tree).] Limiting behavior of \mathcal{G}_{p} for large d agrees with $\mathcal{G}(n, d)$ and $\mathcal{G}(n, p)$:

Example

$1-q=\mathbb{P}$ (survival of a $\operatorname{Bin}(d-1, p)-\mathrm{G}-\mathrm{W}$ tree) converges to $\mathbb{P}\left(\right.$ survival of a $\mathrm{Po}(\lambda)$-G-W-tree) as $d \rightarrow \infty$, hence $\frac{1}{n}\left|\mathcal{C}_{1}\right| \rightarrow \zeta$.

Example: asymptotics for large d

[Recall: w.h.p. $\frac{1}{n}\left|\mathcal{C}_{1}\left(\mathcal{G}\left(n, \frac{\lambda}{n}\right)\right)\right| \sim \zeta=\mathbb{P}($ survival of a $\mathrm{Po}(\lambda)$-G-W-tree).] Limiting behavior of \mathcal{G}_{p} for large d agrees with $\mathcal{G}(n, d)$ and $\mathcal{G}(n, p)$:

Example

$1-q=\mathbb{P}$ (survival of a $\operatorname{Bin}(d-1, p)-\mathrm{G}-\mathrm{W}$ tree) converges to $\mathbb{P}\left(\right.$ survival of a $\mathrm{Po}(\lambda)$-G-W-tree) as $d \rightarrow \infty$, hence $\frac{1}{n}\left|\mathcal{C}_{1}\right| \rightarrow \zeta$.

Example

For $p=\frac{1+\varepsilon}{d-1}$ with $0<\varepsilon \ll 1$, one has $q \underset{d \rightarrow \infty}{\longrightarrow} 1-2 \varepsilon+O\left(\varepsilon^{2}\right)$ and

$$
\begin{array}{rll}
\theta_{1} \rightarrow 2 \varepsilon+O\left(\varepsilon^{2}\right), & \eta_{1} \rightarrow 2 \varepsilon+O\left(\varepsilon^{2}\right), & \eta_{1}-\theta_{1} \rightarrow \frac{2}{3} \varepsilon^{3}+O\left(\varepsilon^{4}\right), \\
\theta_{2} \rightarrow 2 \varepsilon^{2}+O\left(\varepsilon^{3}\right), & \eta_{2} \rightarrow 2 \varepsilon^{2}+O\left(\varepsilon^{3}\right), & \eta_{2}-\theta_{2} \rightarrow \frac{2}{3} \varepsilon^{3}+O\left(\varepsilon^{4}\right) .
\end{array}
$$

Example: asymptotics for large d

[Recall: w.h.p. $\frac{1}{n}\left|\mathcal{C}_{1}\left(\mathcal{G}\left(n, \frac{\lambda}{n}\right)\right)\right| \sim \zeta=\mathbb{P}($ survival of a $\mathrm{Po}(\lambda)$-G-W-tree).] Limiting behavior of \mathcal{G}_{p} for large d agrees with $\mathcal{G}(n, d)$ and $\mathcal{G}(n, p)$:

Example

$1-q=\mathbb{P}$ (survival of a $\operatorname{Bin}(d-1, p)-\mathrm{G}-\mathrm{W}$ tree) converges to $\mathbb{P}\left(\right.$ survival of a $\mathrm{Po}(\lambda)$-G-W-tree) as $d \rightarrow \infty$, hence $\frac{1}{n}\left|\mathcal{C}_{1}\right| \rightarrow \zeta$.

Example

For $p=\frac{1+\varepsilon}{d-1}$ with $0<\varepsilon \ll 1$, one has $q \underset{d \rightarrow \infty}{\longrightarrow} 1-2 \varepsilon+O\left(\varepsilon^{2}\right)$ and

$$
\begin{array}{cll}
\theta_{1} \rightarrow 2 \varepsilon+O\left(\varepsilon^{2}\right), & \eta_{1} \rightarrow 2 \varepsilon+O\left(\varepsilon^{2}\right), & \eta_{1}-\theta_{1} \rightarrow \frac{2}{3} \varepsilon^{3}+O\left(\varepsilon^{4}\right), \\
\theta_{2} \rightarrow 2 \varepsilon^{2}+O\left(\varepsilon^{3}\right), & \eta_{2} \rightarrow 2 \varepsilon^{2}+O\left(\varepsilon^{3}\right), & \eta_{2}-\theta_{2} \rightarrow \frac{2}{3} \varepsilon^{3}+O\left(\varepsilon^{4}\right) .
\end{array}
$$

	$\mathcal{G}=K_{n}(\mathcal{G}(n, p))$	$\mathcal{G}=$ high girth expander
$\left\|\mathcal{C}_{1}\right\|$	$\sim 2 \varepsilon n$	$\geq c(b, d, \varepsilon) n$
2-core	$\sim 2 \varepsilon^{2} n$	$?$
excess	$\sim \frac{2}{3} \varepsilon^{3} n$	$?$

Example: asymptotics for large d

[Recall: w.h.p. $\frac{1}{n}\left|\mathcal{C}_{1}\left(\mathcal{G}\left(n, \frac{\lambda}{n}\right)\right)\right| \sim \zeta=\mathbb{P}($ survival of a $\mathrm{Po}(\lambda)$-G-W-tree).] Limiting behavior of \mathcal{G}_{p} for large d agrees with $\mathcal{G}(n, d)$ and $\mathcal{G}(n, p)$:

Example

$1-q=\mathbb{P}$ (survival of a $\operatorname{Bin}(d-1, p)-\mathrm{G}-\mathrm{W}$ tree) converges to $\mathbb{P}\left(\right.$ survival of a $\mathrm{Po}(\lambda)$-G-W-tree) as $d \rightarrow \infty$, hence $\frac{1}{n}\left|\mathcal{C}_{1}\right| \rightarrow \zeta$.

Example

For $p=\frac{1+\varepsilon}{d-1}$ with $0<\varepsilon \ll 1$, one has $q \underset{d \rightarrow \infty}{\longrightarrow} 1-2 \varepsilon+O\left(\varepsilon^{2}\right)$ and

$$
\begin{array}{cll}
\theta_{1} \rightarrow 2 \varepsilon+O\left(\varepsilon^{2}\right), & \eta_{1} \rightarrow 2 \varepsilon+O\left(\varepsilon^{2}\right), & \eta_{1}-\theta_{1} \rightarrow \frac{2}{3} \varepsilon^{3}+O\left(\varepsilon^{4}\right), \\
\theta_{2} \rightarrow 2 \varepsilon^{2}+O\left(\varepsilon^{3}\right), & \eta_{2} \rightarrow 2 \varepsilon^{2}+O\left(\varepsilon^{3}\right), & \eta_{2}-\theta_{2} \rightarrow \frac{2}{3} \varepsilon^{3}+O\left(\varepsilon^{4}\right) .
\end{array}
$$

	$\mathcal{G}=K_{n}(\mathcal{G}(n, p))$	$\mathcal{G}=$ high girth expander
$\left\|\mathcal{C}_{1}\right\|$	$\sim 2 \varepsilon n$	$\sim 2 \varepsilon n$
2-core	$\sim 2 \varepsilon^{2} n$	$\sim 2 \varepsilon^{2} n$
excess	$\sim \frac{2}{3} \varepsilon^{3} n$	$\sim \frac{2}{3} \varepsilon^{3} n$

Degree distributions of the giant and the 2-core

Let D_{k} be the number of degree- k vertices in \mathcal{C}_{1} and let D_{k}^{*} be the number of degree- k vertices in its 2-core $\mathcal{C}_{1}^{(2)}$.

Theorem (Krivelevich, L., Sudakov)

Fix $d \geq 3,1<\lambda<d-1, p=\frac{\lambda}{d-1}$, and q as above; define

$$
\begin{array}{ll}
\alpha_{k}=\binom{d}{k} p^{k}(1-p)^{d-k}\left(1-q^{k}\right) & (k=1, \ldots, d) \\
\beta_{k}=\binom{d}{k} p^{k}(1-q)^{k}(1-p+p q)^{d-k} & (k=2, \ldots, d) .
\end{array}
$$

For all $b, \varepsilon>0$ there exist some $c, R>0$ so that, if \mathcal{G} is a regular (b, d)-expander on n vertices with girth at least R, w.h.p., $\left|\frac{D_{k}}{n}-\alpha_{k}\right|<\varepsilon \quad \forall 1 \leq k \leq d \quad$ and $\quad\left|\frac{D_{k}^{*}}{n}-\beta_{k}\right|<\varepsilon \quad \forall 2 \leq k \leq d$.

Degree distributions of the giant and the 2-core

Let D_{k} be the number of degree- k vertices in \mathcal{C}_{1} and let D_{k}^{*} be the number of degree- k vertices in its 2-core $\mathcal{C}_{1}^{(2)}$.

Theorem (Krivelevich, L., Sudakov)

Fix $d \geq 3,1<\lambda<d-1, p=\frac{\lambda}{d-1}$, and q as above; define

$$
\begin{array}{ll}
\alpha_{k}=\binom{d}{k} p^{k}(1-p)^{d-k}\left(1-q^{k}\right) & (k=1, \ldots, d) \\
\beta_{k}=\binom{d}{k} p^{k}(1-q)^{k}(1-p+p q)^{d-k} & (k=2, \ldots, d) .
\end{array}
$$

For all $b, \varepsilon>0$ there exist some $c, R>0$ so that, if \mathcal{G} is a regular (b, d)-expander on n vertices with girth at least R, w.h.p.,

$$
\left|\frac{D_{k}}{n}-\alpha_{k}\right|<\varepsilon \quad \forall 1 \leq k \leq d \quad \text { and } \quad\left|\frac{D_{k}^{*}}{n}-\beta_{k}\right|<\varepsilon \quad \forall 2 \leq k \leq d
$$

$$
\left(\theta_{1}=\sum_{k=1}^{d} \alpha_{k}, \quad \eta_{1}=\frac{1}{2} \sum_{k=1}^{d} k \alpha_{k}, \quad \theta_{2}=\sum_{k=2}^{d} \beta_{k}, \quad \eta_{2}=\frac{1}{2} \sum_{k=2}^{d} k \beta_{k} .\right)
$$

Example: the giant in percolation on cubic expanders

Asymptotic degree distribution in \mathcal{G}_{p} for $d=3$ and $\frac{1}{2}<p<1$: w.h.p., the giant has $\left(\alpha_{k}+o(1)\right) n$ vertices of degree $k \in\{1,2,3\}$; its 2 -core has $\left(\beta_{k}+o(1)\right) n$ vertices of degree $k \in\{2,3\}$.

The second largest component

Recall: w.h.p., $\exists \omega(b, d)>0:\left|\mathcal{C}_{2}\left(\mathcal{G}_{p}\right)\right|<n^{1-\omega}$ ([Alon et al. '04]).

	$\mathcal{G}=K_{n}(\mathcal{G}(n, p))$	$\mathcal{G} \sim \mathcal{G}(n, d)$	\mathcal{G} =high girth expander
$\left\|\mathcal{C}_{1}\right\|$	$\sim \zeta n$	$\sim \theta_{1} n$	$\sim \theta_{1} n$
$\left\|\mathcal{C}_{2}\right\|$	$\Theta(\log n)$	$\Theta(\log n)$	$\leq n^{1-\omega(b, d)}$

The second largest component

Recall: w.h.p., $\exists \omega(b, d)>0:\left|\mathcal{C}_{2}\left(\mathcal{G}_{p}\right)\right|<n^{1-\omega}$ ([Alon et al. '04]).

	$\mathcal{G}=K_{n}(\mathcal{G}(n, p))$	$\mathcal{G} \sim \mathcal{G}(n, d)$	\mathcal{G} =high girth expander
$\left\|\mathcal{C}_{1}\right\|$	$\sim \zeta n$	$\sim \theta_{1} n$	$\sim \theta_{1} n$
$\left\|\mathcal{C}_{2}\right\|$	$\Theta(\log n)$	$\Theta(\log n)$	$\leq n^{1-\omega(b, d)}$

Perhaps surprisingly, the $n^{1-\omega}$ from above is essentially tight:

Theorem (Krivelevich, L., Sudakov)

For every $d \geq 3, R \geq 1, p \in\left(\frac{1}{d-1}, 1\right)$ and $\alpha \in(0,1)$ there exist $b>0$ and a regular (b, d)-expander \mathcal{G} on n vertices with girth at least R where $G \sim \mathcal{G}_{p}$ has $\left|V\left(\mathcal{C}_{2}\right)\right| \gtrsim n^{\alpha}$ w.h.p.

The second largest component

Recall: w.h.p., $\exists \omega(b, d)>0:\left|\mathcal{C}_{2}\left(\mathcal{G}_{p}\right)\right|<n^{1-\omega}$ ([Alon et al. '04]).

	$\mathcal{G}=K_{n}(\mathcal{G}(n, p))$	$\mathcal{G} \sim \mathcal{G}(n, d)$	\mathcal{G} =high girth expander
$\left\|\mathcal{C}_{1}\right\|$	$\sim \zeta n$	$\sim \theta_{1} n$	$\sim \theta_{1} n$
$\left\|\mathcal{C}_{2}\right\|$	$\Theta(\log n)$	$\Theta(\log n)$	$\leq n^{1-\omega(b, d)}$

Perhaps surprisingly, the $n^{1-\omega}$ from above is essentially tight:

Theorem (Krivelevich, L., Sudakov)

For every $d \geq 3, R \geq 1, p \in\left(\frac{1}{d-1}, 1\right)$ and $\alpha \in(0,1)$ there exist $b>0$ and a regular (b, d)-expander \mathcal{G} on n vertices with girth at least R where $G \sim \mathcal{G}_{p}$ has $\left|V\left(\mathcal{C}_{2}\right)\right| \gtrsim n^{\alpha}$ w.h.p.

Similarly, for any fixed sequence $0<\alpha_{1} \leq \alpha_{2} \leq \ldots \leq \alpha_{k}<1$ one can construct an expander \mathcal{G} such that w.h.p. $G \sim \mathcal{G}_{p}$ has components with sizes $\Theta\left(n^{\alpha_{1}}\right), \ldots, \Theta\left(n^{\alpha_{k}}\right)$ plus the giant.

A related question of Benjamini: predicting a giant

Question (Benjamini '13)

Let \mathcal{G} be a bounded degree expander. Further assume that there is a fixed vertex $v \in \mathcal{G}$, so that $G \sim \mathcal{G}_{1 / 2}$ satisfies

$$
\mathbb{P}\left(\operatorname{diam}\left(\mathcal{C}_{v}(G)\right)>\frac{1}{2} \operatorname{diam}(\mathcal{G})\right)>\frac{1}{2} .
$$

Is there a giant component w.h.p.?

A related question of Benjamini: predicting a giant

Question (Benjamini '13)

Let \mathcal{G} be a bounded degree expander. Further assume that there is a fixed vertex $v \in \mathcal{G}$, so that $G \sim \mathcal{G}_{1 / 2}$ satisfies

$$
\mathbb{P}\left(\operatorname{diam}\left(\mathcal{C}_{v}(G)\right)>\frac{1}{2} \operatorname{diam}(\mathcal{G})\right)>\frac{1}{2}
$$

Is there a giant component w.h.p.?
Variant of our construction for \mathcal{C}_{2} gives a negative answer to this:

Theorem (Krivelevich, L., Sudakov)

For every $\varepsilon>0$ and $0<p<1$ there exist $b, d, \delta>0$ and, for infinitely many values of n, $a(b, d)$-expander \mathcal{G} on n vertices with a prescribed vertex v, such that the graph $G \sim \mathcal{G}_{p}$ satisfies

$$
\mathbb{P}\left(\operatorname{diam}\left(\mathcal{C}_{v}(G)\right) \geq(1-\varepsilon) \operatorname{diam}(\mathcal{G})\right) \geq 1-\varepsilon,
$$

yet there are no components of size larger than $n^{1-\delta}$ in G w.h.p.

Proof ideas: the giant

Sprinkling argument of [Alon et. al '04] can be used to characterize nearly all edges in the giant: most components that are suitably large should join the giant once we sprinkle some extra edges.

Proof ideas: the giant

Sprinkling argument of [Alon et. al '04] can be used to characterize nearly all edges in the giant: most components that are suitably large should join the giant once we sprinkle some extra edges.

Definition (local predictor for the giant)

$$
\begin{array}{ll}
E_{1}(H):=\{x y \in E(H): & \begin{array}{l}
\text { the component of either } x \text { or } y \\
\text { in } H \backslash\{x y\} \text { has size at least } R
\end{array} \\
V_{1}(H):=\{x \in V(H): & \left.x y \in E_{1}(H) \text { for some } y\right\}
\end{array}
$$

Proof ideas: the giant

Sprinkling argument of [Alon et. al '04] can be used to characterize nearly all edges in the giant: most components that are suitably large should join the giant once we sprinkle some extra edges.

Definition (local predictor for the giant)

$$
\begin{array}{ll}
E_{1}(H):=\{x y \in E(H): & \begin{array}{ll}
\text { the component of either } x \text { or } y \\
\text { in } H \backslash\{x y\} \text { has size at least } R
\end{array} \\
V_{1}(H):=\{x \in V(H): & \left.x y \in E_{1}(H) \text { for some } y\right\}
\end{array}
$$

Proposition

$\forall b, \varepsilon>0 \exists R, c>0$ s.t., if \mathcal{G} is a regular (b, d)-expander on n vertices with girth greater than $2 R$, and $G \sim \mathcal{G}_{p}$, then w.h.p.

$$
\left|E_{1}(G) \triangle E\left(\mathcal{C}_{1}(G)\right)\right| \leq \varepsilon n \quad \text { and } \quad\left|V_{1}(G) \triangle V\left(\mathcal{C}_{1}(G)\right)\right| \leq \varepsilon n .
$$

Proof of giant edge and vertex characterization

Upper bound on $V\left(\mathcal{C}_{1}\right) \triangle V_{1}$ and $E\left(\mathcal{C}_{1}\right) \triangle E_{1}$ is trivial:
$\bigcup\{E(\mathcal{C}): \mathcal{C}$ is a conn. component of H with $|\mathcal{C}| \geq 2 R\} \subseteq E_{1}(H)$
$\bigcup\{V(\mathcal{C}): \mathcal{C}$ is a conn. component of H with $|\mathcal{C}|>d R\} \subseteq V_{1}(H)$

First step in lower bound: via Hoeffding-Azuma,

$$
\mathbb{P}\left(\left|E_{1}(H)\right|-\mathbb{E}\left[\left|E_{1}(H)\right|\right] \mid \geq a\right) \leq e^{-a^{2} /\left(4 d n(d-1)^{2 R}\right)}
$$

and similarly for $\left|\left|V_{1}(H)\right|-\mathbb{E}\left[\left|V_{1}(H)\right|\right]\right|$.
Together, these imply that if $p^{\prime}=p-\varepsilon$ then $G^{\prime} \sim \mathcal{G}_{p^{\prime}}$ w.h.p. has

$$
\begin{aligned}
&\left|E_{1}\left(G^{\prime}\right)\right| \geq\left(\frac{1}{2} p^{\prime} d\left(1-q^{\prime 2}\right)-\varepsilon\right) n \\
&\left|V_{1}\left(G^{\prime}\right)\right| \geq\left(1-q^{\prime}\left(1-p^{\prime}+p^{\prime} q^{\prime}\right)-\varepsilon\right) n
\end{aligned}
$$

Proof of giant edge and vertex characterization (2)

Claim
For every $\varepsilon, b, d>0$ there exist $c, R>0$ such that, if

- \mathcal{G} is a regular (b, d)-expander with n vertices,
- $\left(\mathcal{S}_{i}\right)$ are disjoint vertex subsets of \mathcal{G} with $\left|\mathcal{S}_{i}\right| \geq R \forall i$,
and $H \sim \mathcal{G}_{\varepsilon}$, then w.h.p. there are no disjoint sets $\mathcal{A}=\bigcup_{i \in I} \mathcal{S}_{i}$ and $\mathcal{B}=\bigcup_{j \in J} \mathcal{S}_{j}$ with $|\mathcal{A}|, \mathcal{B} \mid \geq \varepsilon n$ and no path between them in H.

Proof of giant edge and vertex characterization (2)

Claim

For every $\varepsilon, b, d>0$ there exist $c, R>0$ such that, if

- \mathcal{G} is a regular (b, d)-expander with n vertices,
- $\left(\mathcal{S}_{i}\right)$ are disjoint vertex subsets of \mathcal{G} with $\left|\mathcal{S}_{i}\right| \geq R \forall i$, and $H \sim \mathcal{G}_{\varepsilon}$, then w.h.p. there are no disjoint sets $\mathcal{A}=\bigcup_{i \in I} \mathcal{S}_{i}$ and $\mathcal{B}=\bigcup_{j \in J} \mathcal{S}_{j}$ with $|\mathcal{A}|, \mathcal{B} \mid \geq \varepsilon n$ and no path between them in H.

Proof.

By Menger's Theorem: $\exists \geq\left\lceil\frac{b \varepsilon}{2} n\right\rceil$ edge-disjoint paths of length $\leq\left\lfloor\frac{d}{b \varepsilon}\right\rfloor$ between such \mathcal{A}, \mathcal{B} in \mathcal{G}. The probability that none survive in H is at most

$$
\left(1-\varepsilon^{d /(b \varepsilon)}\right)^{\frac{1}{2} b \varepsilon n} \leq \exp \left[-\frac{1}{2} b \varepsilon^{1+d / b \varepsilon} n\right]
$$

A union bound over at most $2^{2 n / R}$ subsets of the \mathcal{S}_{i} 's:

$$
\exp \left[\left(R^{-1} 2 \log 2-\frac{1}{2} b \varepsilon^{1+d / b \varepsilon}\right) n\right] .
$$

Proof of giant edge and vertex characterization (3)

Corollary

For every $\varepsilon, b, d>0$ there exist $c, R>0$ s.t., if \mathcal{G} is a regular (b, d)-expander on n vertices with girth greater than $2 R$, then w.h.p. there \exists a connected component \mathcal{C} of $G^{\prime} \cup \mathcal{G}_{\varepsilon}$ containing all but at most $2 \varepsilon n$ of the vertices $V_{1}\left(G^{\prime}\right)$.

Proof.

Let \mathcal{S}_{i} be the connected components in G^{\prime} of all $y \in V_{1}=V_{1}\left(G^{\prime}\right)$, and form U by collecting connected components in G of (arbitrary) \mathcal{S}_{i} 's until

$$
\left|U \cap V_{1}\right| \geq \varepsilon n,
$$

so $\varepsilon n \leq\left|U \cap V_{1}\right|<\varepsilon n+\left|\mathcal{C} \cap V_{1}\right|$ for some connected component \mathcal{C} in G. If $\left|\mathcal{C} \cap V_{1}\right| \leq\left|V_{1}\right|-2 \varepsilon n$, the cut $\left(U \cap V_{1}, V_{1} \backslash U\right)$ violates the claim.

Proof ideas: the 2-core

Intuition: if both endpoints of an edge are suitably large, then sprinkling should form a cycle through it...

Proof ideas: the 2-core

Intuition: if both endpoints of an edge are suitably large, then sprinkling should form a cycle through it...

Definition (local predictor for the 2-core)

$$
\begin{array}{ll}
E_{2}(H):=\{x y \in E(H): & \begin{array}{l}
\text { the component of both } x \text { and } y \\
\text { in } H \backslash\{x y\} \text { has size at least } R
\end{array} \\
V_{2}(H):=\{x \in V(H): & \left.x y \in E_{2}(H) \text { for some } y\right\}
\end{array}
$$

Proof ideas: the 2-core

Intuition: if both endpoints of an edge are suitably large, then sprinkling should form a cycle through it...

Definition (local predictor for the 2-core)

$$
\left.\begin{array}{ll}
E_{2}(H):=\{x y \in E(H): & \text { the component of both } x \text { and } y \\
\text { in } H \backslash\{x y\} \text { has size at least } R
\end{array}\right\}
$$

Goal: mimic the analysis of the giant to show:

Proposition

$\forall b, \varepsilon>0 \exists R, c>0$ s.t., if \mathcal{G} is a regular (b, d)-expander on n vertices with girth greater than $2 R$, and $G \sim \mathcal{G}_{p}$, then w.h.p.

$$
\left|E_{2}(G) \triangle E\left(\mathcal{C}_{1}^{(2)}(G)\right)\right| \leq \varepsilon n \quad \text { and } \quad\left|V_{2}(G) \triangle V\left(\mathcal{C}_{1}^{(2)}(G)\right)\right| \leq \varepsilon n .
$$

Proof ideas: the 2-core

Intuition: if both endpoints of an edge are suitably large, then sprinkling should form a cycle through it...

Definition (local predictor for the 2-core)

$$
\begin{array}{ll}
E_{2}(H):=\{x y \in E(H): & \begin{array}{l}
\text { the component of both } x \text { and } y \\
\text { in } H \backslash\{x y\} \text { has size at least } R
\end{array} \\
V_{2}(H):=\{x \in V(H): & \left.x y \in E_{2}(H) \text { for some } y\right\}
\end{array}
$$

Goal: mimic the analysis of the giant to show:

Proposition

$\forall b, \varepsilon>0 \exists R, c>0$ s.t., if \mathcal{G} is a regular (b, d)-expander on n vertices with girth greater than $2 R$, and $G \sim \mathcal{G}_{p}$, then w.h.p.

$$
\left|E_{2}(G) \triangle E\left(\mathcal{C}_{1}^{(2)}(G)\right)\right| \leq \varepsilon n \quad \text { and } \quad\left|V_{2}(G) \triangle V\left(\mathcal{C}_{1}^{(2)}(G)\right)\right| \leq \varepsilon n .
$$

Problem: sprinkling may reuse the edge $x y$ and not create a cycle!

Proof ideas: the 2-core (ctd.)

Remedy to the "illegal sprinkling" obstacle: random coloring:

Proof ideas: the 2-core (ctd.)

Remedy to the "illegal sprinkling" obstacle: random coloring:

- Partition the edge set of \mathcal{G} randomly (independently) into blue and red, where the probability of an edge to be blue is ε.

Proof ideas: the 2-core (ctd.)

Remedy to the "illegal sprinkling" obstacle: random coloring:

- Partition the edge set of \mathcal{G} randomly (independently) into blue and red, where the probability of an edge to be blue is ε.
- Modify the definition of $E_{2}(\mathcal{G})$ to include blue edges $x y$ where the red clusters of x and y in $\mathcal{G} \backslash\{x y\}$ are suitably large.

Proof ideas: the 2-core (ctd.)

Remedy to the "illegal sprinkling" obstacle: random coloring:

- Partition the edge set of \mathcal{G} randomly (independently) into blue and red, where the probability of an edge to be blue is ε.
- Modify the definition of $E_{2}(\mathcal{G})$ to include blue edges $x y$ where the red clusters of x and y in $\mathcal{G} \backslash\{x y\}$ are suitably large.
- Sprinkling red edges should connect most such clusters.

Proof ideas: the 2-core (ctd.)

Remedy to the "illegal sprinkling" obstacle: random coloring:

- Partition the edge set of \mathcal{G} randomly (independently) into blue and red, where the probability of an edge to be blue is ε.
- Modify the definition of $E_{2}(\mathcal{G})$ to include blue edges $x y$ where the red clusters of x and y in $\mathcal{G} \backslash\{x y\}$ are suitably large.
- Sprinkling red edges should connect most such clusters.

This should imply there are (roughly) $\geq \varepsilon p(1-q)^{2}|E(\mathcal{G})|$ blue edges in the 2-core, thus $\geq p(1-q)^{2}|E(\mathcal{G})|$ that are blue or red.

Proof ideas: the 2-core (ctd.)

Remedy to the "illegal sprinkling" obstacle: random coloring:

- Partition the edge set of \mathcal{G} randomly (independently) into blue and red, where the probability of an edge to be blue is ε.
- Modify the definition of $E_{2}(\mathcal{G})$ to include blue edges $x y$ where the red clusters of x and y in $\mathcal{G} \backslash\{x y\}$ are suitably large.
- Sprinkling red edges should connect most such clusters.

This should imply there are (roughly) $\geq \varepsilon p(1-q)^{2}|E(\mathcal{G})|$ blue edges in the 2-core, thus $\geq p(1-q)^{2}|E(\mathcal{G})|$ that are blue or red.

Problem: red graph is no longer an expander-e.g., it typically has linearly many isolated vertices-sprinkling argument fails...

Proof ideas: the 2-core (ctd.)

Recall: the edges pf \mathcal{G} are randomly partitioned into blue and red, where the probability of an edge to be blue is ε (independently of other edges).

Definition (k-thick subsets)
A subset $S \subset V(H)$ is k-thick if there exists disjoint connected subsets of $H,\left\{S_{i}\right\}$, each of size at least k, such that $S=\bigcup S_{i}$.

Key: although the red graph is not an expander, w.h.p., sets that are k-thick do maintain edge expansion in it:

Claim

There exists $k(\varepsilon, b, d)$ such that, with probability $1-O\left(2^{-\varepsilon n}\right)$,

$$
\#\left\{\operatorname{red}(x, y) \in E(\mathcal{G}): x \in S, y \in S^{c}\right\} \geq \frac{1}{2} b|S|
$$

for every k-thick $S \subset V(\mathcal{G})$ with $\varepsilon n \leq|S| \leq n / 2$.

Thank you!

