

Eyal Lubetzky Microsoft Research

Based on joint work with Noga Alon, Itai Benjamini and Sasha Sodin

November 2007

UW Probability Seminar

Random Walks on graphs

 \circ Random walk on G:

• Simple to analyze:

satisfying some natural properties

- Mixes quickly to stationary distribution.
- $\circ \implies$ efficient sampling of the vertices.
- Numerous applications, e.g.:
 - Volume computation and enumeration
 - Space efficient algorithms for STCONN.
 - De-randomization and conservation of random bits.

De-randomization via random walks

\circ Randomized algorithm ${\cal A}$:

- Requires an *n*-bit seed.
- One sided error with fixed probability $0 < p_{e} < 1$.
- Naïve amplification of p_e to $exp(-\Omega(k))$ requires k n random bits.
- Random walks on expanders:
 - W = random walk of length k.
 - S = set of vertices of fixed proportion.
 - $\Pr[W \text{ misses } S] = \exp(-\Omega(k))$

 $\circ p_{e} \rightsquigarrow \exp(-\Omega(k))$ using only $n + \Theta(k)$ bits!

Non-backtracking random walks

 In many cases (cf. above application) there is "no sense" in backtracking.

<u>Q</u>: Can we benefit from forbidding the random walk to backtrack?

<u>Q</u>: What can be said about the distribution of a set of vertices sampled this way?

some fixed integer

Expanders and random walks

 $\circ G = d$ -regular graph on *n* vertices. \circ RW on G mixes to the stat. dist. $\pi \iff$ G is connected and non-bipartite. \circ Let G have eigenvalues $d = \lambda_1 \geq \ldots \geq \lambda_n$: • $\lambda_2 < d$ iff G is connected. • $\lambda_n > -d$ iff G is non-bipartite. $0 \Longrightarrow \lambda < d$, where $\lambda = \max\{\lambda_2, \lambda_n\}$. O How fast does the RW mix in this case?

Mixing rate of RWs

• $P_{uv}^{(k)} = \Pr[\mathsf{RW} \text{ of length } k \text{ from } u \text{ ends in } v].$ • The mixing rate of G is defined as:

 $\log_
ho(\delta)$ steps for the L_∞

distance from

 π to be $\leq \delta$.

$$\int \rho(G) = \limsup_{k \to \infty} \sup_{u,v \in V(G)} \left| P_{uv}^{(k)} - \pi(v) \right|^{1/k}$$

 \circ If G is an (n, d, λ) -graph, $\rho(G) = \lambda/d$:

$$\begin{split} \underbrace{A_G}{d} &= u \underbrace{\begin{pmatrix} 0 & \ddots & 0 \\ 0 & 0 \end{pmatrix}}_0 \left\{ \begin{array}{l} \frac{1}{d} & \text{if } uv \in E(G), \\ 0 & \text{otherwise.} \end{array} \right\} \\ P^{(k)} &= \left(\frac{A_G}{d}\right)^k, \ \pi = \frac{1}{n} \cdot \underline{1} \\ \\ \text{Largest eigenvalue of } P^{(k)} - \frac{1}{n}J \\ \text{in absolute value is } (\lambda/d)^k. \end{split}$$

Non-backtracking RWs mix faster

• Define $\tilde{\rho}(G)$ analogously for NBRWs. • $\tilde{\rho}$ is a function of λ, d , is always $\leq \rho$, and may reach $\sim \rho/2$ (twice faster)!

The mixing rate of NBRWs

o [Alon, Benjamini, L, Sodin '07]:

 \forall NBRW on an (n, d, λ) -graph with $d \ge 3$ and $\lambda < d$ converges to the uniform distribution with

$$\tilde{\rho} = \psi \left(\frac{\lambda}{2\sqrt{d-1}} \right) / \sqrt{d-1} ,$$
where $\psi(x) = \begin{cases} x + \sqrt{x^2 - 1} & \text{If } x \ge 1 \\ 1 & \text{If } x < 1 \end{cases}$

$$\circ \text{Corollary:} \left[\lambda \ge 2\sqrt{d-1} \Rightarrow \frac{d}{2(d-1)} \le \frac{\tilde{\rho}}{\rho} \le 1 \right],$$

 $\lambda < 2\sqrt{d-1} \ , \ d = n^{o(1)} \ \Rightarrow \ rac{ ilde
ho}{
ho} = rac{d}{2(d-1)} + o(1) \ .$

Ramanujan graphs

Computing the mixing rate of NBRWs

 $\circ A_{uv}^{(k)} := \# k$ -long NB walks from u to v. \circ Goal: determine the spectrum of $A^{(k)}$. $\circ \text{ Claim:} \left\{ \begin{array}{l} A^{(1)} = A , \\ A^{(2)} = A^2 - dI , \\ A^{(k+1)} = AA^{(k)} - (d-1)A^{(k-1)} . \end{array} \right.$ Adjacency matrix of Gall extensions of the # of BT walks we counted: walks by 1 edge. $\circ A^{(k)}$ is a polynomial NB k-long walk d-1 choices of A, yet might be complicated to analyze: $P_{k+1}(x) = xP_k(x) - (d-1)P_{k-1}(x).$

Chebyshev polynomials of the 2nd kind

• The polynomials $U_k(\cos\theta) = \frac{\sin((k+1)\theta)}{\sin\theta}$ satisfy: $U_{k+1}(x) = 2xU_k(x) - U_{k-1}(x)$ Reminds the recursion that $A^{(k)}$ satisfies...

Chebyshev polynomials of the 2nd kind

• The polynomials $U_k(\cos\theta) = \frac{\sin((k+1)\theta)}{\sin\theta}$ satisfy: $U_{k+1}(x) = 2xU_k(x) - U_{k-1}(x)$ Reminds the recursion that $A^{(k)}$ satisfies...

o Indeed:

$$\begin{aligned} A^{(k)} &= \sqrt{d(d-1)^{k-1}} q_k \left(\frac{A}{2\sqrt{d-1}} \right) ,\\ \text{where:}\\ q_k(x) &= \sqrt{\frac{d-1}{d}} U_k(x) - \frac{1}{\sqrt{d(d-1)}} U_{k-2}(x) . \end{aligned}$$

• Result now follows from an asymptotic analysis of the behavior of $q_k(x)$.

Distribution of sampled vertices: RW

o Recall: n-long RW on an expander:

- Costs $\Theta(n)$ random bits.
- $\Pr[$ missing a linear set $] = \exp(-\Omega(n))$.

<u>Q</u>: What about frequencies of visits at vertices?

• Random setting: Classical n balls $\rightarrow n$ bins Poisson visits at a given vertex.

"right" probability

 \longrightarrow Max # visits $\sim \log n \; / \; \log \log n$.

• RW setting: # of visits reaches $\Omega(\log n)$... (too much) Large probability of traversing an edge back & forth $\Omega(\log n)$ times

Distribution of sampled vertices: NBRW

Backtracking - Too many visits to a vertex - Short cycles

• What about NBRWs and high girth? o [Alon, Benjamini, L, Sodin '08]:

Almost \forall NBRW of length n on a high-girth *n*-vertex expander has the "right" maximum # of visits to a vertex: $(1+o(1)) \log n / \log \log n$.

 \circ Girth requirement: $\Omega(\log \log n)$ (tight). \circ Indeed, maximum = balls & bins setting. What about the entire distribution?

Poisson approximation for NBRW

Recall: unbounded girth is *necessary* for a Poisson dist. of visits to vertices.

o [Alon, L]: this requirement is sufficient:

Almost \forall NBRW of length n on an n-vertex expander of girth $g = \omega(1)$ makes t visits to (1+o(1)) n/(e t!) vertices.

Brun's Sieve

 \circ Moreover, high-girth \implies relative point-wise convergence to the Poisson distribution:

If in addition $g = \Omega(\log \log n)$, the above holds uniformly over all t up to the "right" maximum of the distribution. Stronger version of Brun's Sieve (error estimate) 14

Open problems

• Recall: Maximum # of visits to a vertex in *n*-long NBRWs on high-girth *n*-vertex expanders is w.h.p. $(1+o(1)) \frac{\log n}{\log \log n}$.

• For which other families of *d*-regular graphs, $d \ge 3$, is this maximum $\sim \frac{\log n}{\log \log n}$

○ Does a NBRW on any *n*-vertex *d*-regular (*d* ≥ 3) graph visit some vertex w.h.p. at least $(1+o(1)) \frac{\log n}{\log \log n}$ times?

Thank you.

UW Probability Seminar