Non-backtracking random walks on expanders

Eyal Lubetzky
 Microsoft Research

Based on joint work with

Noga Alon, Itai Benjamini and Sasha Sodin

Random Walks on graphs

- Random walk on G :
- Simple to analyze:
satisfying some natural properties
- Mixes quickly to stationary distribution.

○ \Longrightarrow efficient sampling of the vertices.
o Numerous applications, e.g.:

- Volume computation and enumeration
- Space efficient algorithms for STCONN.
- De-randomization and conservation of random bits.

De-randomization via random walks

- Randomized algorithm \mathcal{A} :
- Requires an n-bit seed.
- One sided error with fixed probability $0<p_{\mathrm{e}}<1$.
- Naïve amplification of p_{e} to $\exp (-\Omega(k))$ requires $k n$ random bits.
- Random walks on expanders:
- $W=$ random walk of length k.
- $S=$ set of vertices of fixed proportion.
- $\operatorname{Pr}[W$ misses $S]=\exp (-\Omega(k))$

- $p_{\mathrm{e}} \rightsquigarrow \exp (-\Omega(k))$ using only $n+\Theta(k)$ bits!

Non-backtracking random walks

o In many cases (cf. above application) there is "no sense" in backtracking.

Q: Can we benefit from forbidding the random walk to backtrack?

Q: What can be said about the distribution of a set of vertices sampled this way?

Expanders and random walks

- $G=d$-regular graph on n vertices.
- RW on G mixes to the stat. dist. π
 G is connected and non-bipartite.
- Let G have eigenvalues $d=\lambda_{1} \geq \ldots \geq \lambda_{n}$:
- $\lambda_{2}<d$ iff G is connected.
- $\lambda_{n}>-d$ iff G is non-bipartite.
$\circ \Longrightarrow \lambda<d$, where $\lambda=\max \left\{\lambda_{2}, \lambda_{n}\right\}$.
o How fast does the RW mix in this case?

Mixing rate of RWs

- $P_{u v}^{(k)}=\operatorname{Pr}[$ RW of length k from u ends in $v]$. - The mixing rate of G is defined as:

$$
\rho(G)=\underset{k \rightarrow \infty}{\limsup } \max _{u, v \in V(G)}\left|P_{u v}^{(k)}-\pi(v)\right|^{1 / k} \rightarrow \begin{gathered}
\log _{\rho}(\delta) \text { steps } \\
\text { for the } L_{\infty} \\
\text { distance from } \\
\pi \text { to be } \leq \delta
\end{gathered}
$$

- If G is an (n, d, λ)-graph, $\rho(G)=\lambda / d$:

$$
\frac{A_{G}}{d}=u\left(a_{0}^{v}\right), \begin{cases}\left.\frac{1}{\frac{1}{d}} \begin{array}{l}
\text { if } u v E(G), \\
0 \\
0
\end{array}\right), \\
\text { otherwise. }\end{cases}
$$

Largest eigenvalue of $P^{(k)}-\frac{1}{n} J$ in absolute value is $(\lambda / d)^{k}$.

Non-backtracking RWs mix faster

- Define $\tilde{\rho}(G)$ analogously for NBRWs.
- $\tilde{\rho}$ is a function of $\lambda_{2} d$, is always $\leq \rho$, and may reach $\sim \rho / 2$ (twice faster)!

The mixing rate of NBRWs

- [Alon, Benjamini, L, Sodin '07]:

NBRW on an (n, d, λ)-graph with $d \geq 3$ and $\lambda<d$ converges to the uniform distribution with

$$
\begin{gathered}
\tilde{\rho}=\psi\left(\frac{\lambda}{2 \sqrt{d-1}}\right) / \sqrt{d-1} \\
\text { where } \psi(x)= \begin{cases}x+\sqrt{x^{2}-1} & \text { If } x \geq 1, \\
1 & \text { If } x \leq 1\end{cases}
\end{gathered}
$$

Computing the mixing rate of NBRWs

- $A_{u v}^{(k)}:=\# k$-long NB walks from u to v.
- Goal: determine the spectrum of $A^{(k)}$.
o Claim:

$$
\left\{\begin{array}{l}
A^{(1)}=A, \\
A^{(2)}=A^{2}-d I, \\
A^{(k+1)}=A A^{(k)}-(d-1) A^{(k-1)} .
\end{array}\right.
$$

all extensions of the walks by 1 edge.

- $A^{(k)}$ is a polynomial of A, yet might be complicated to analyze:

$$
P_{k+1}(x)=x P_{k}(x)-(d-1) P_{k-1}(x) .
$$

Chebyshev polynomials of the $2^{\text {nd }}$ kind

- The polynomials $U_{k}(\cos \theta)=\frac{\sin ((k+1) \theta)}{\sin \theta}$ satisfy:

$$
U_{k+1}(x)=2 x U_{k}(x)-U_{k-1}(x) \longleftarrow \quad \begin{gathered}
\text { Reminds the recursion } \\
\text { that } A^{(k)} \text { satisfies... }
\end{gathered}
$$

Chebyshev polynomials of the $2^{\text {nd }}$ kind

- The polynomials $U_{k}(\cos \theta)=\frac{\sin ((k+1) \theta)}{\sin \theta}$ satisfy: $U_{k+1}(x)=2 x U_{k}(x)-U_{k-1}(x) \leftrightarrows \begin{gathered}\text { Reminds the recursion } \\ \text { that } A^{(k)} \text { satisfies... }\end{gathered}$
o Indeed:

$$
\begin{aligned}
& A^{(k)}=\sqrt{d(d-1)^{k-1}} q_{k}\left(\frac{A}{2 \sqrt{d-1}}\right), \\
& \text { where: }
\end{aligned}
$$

$$
q_{k}(x)=\sqrt{\frac{d-1}{d}} U_{k}(x)-\frac{1}{\sqrt{d(d-1)}} U_{k-2}(x) .
$$

o Result now follows from an asymptotic analysis of the behavior of $q_{k}(x)$.

Distribution of sampled vertices: RW

o Recall: n-long RW on an expander:

- Costs $\Theta(n)$ random bits.
"right" probability
- $\operatorname{Pr}[$ missing a linear set $]=\exp (-\Omega(n))$.

Q: What about frequencies of visits at vertices?

- Random setting:

Classical n balls $\rightarrow n$ bins
Poisson visits at a given vertex.
Max \# visits $\sim \log n / \log \log n$.

- RW setting: \# of visits reaches $\Omega(\log n)$... (too much)

Large probability of traversing an edge back \& forth $\Omega(\log n)$ times

Distribution of sampled vertices: NBRW

Backtracking - Too many visits to a vertex Short cycles

- What about NBRWs and high girth?
- [Alon, Benjamini, L, Sodin '08]:

Almost \forall NBRW of length n on a high-girth n-vertex expander has the "right" maximum \# of visits to a vertex: $(1+o(1)) \log n / \log \log n$.

- Girth requirement: $\Omega(\log \log n)$ (tight).
- Indeed, maximum = balls \& bins setting. What about the entire distribution?

Poisson approximation for NBRW

o Recall:
unbounded girth is necessary for a Poisson dist. of visits to vertices.

- [Alon, L]: this requirement is sufficient:

Almost \forall NBRW of length n on an n-vertex expander of girth $g=\omega(1)$ makes t visits to

Brun's
Sieve $(1+o(1)) n /(\mathrm{e} t!)$ vertices.

- Moreover, high-girth \Longrightarrow relative point-wise convergence to the Poisson distribution:
If in addition $g=\Omega(\log \log n)$, the above holds uniformly over all t up to the "right" maximum of the distribution.

Stronger version of Brun's Sieve (error estimate)

Open problems

o Recall:
Maximum \# of visits to a vertex in n-long NBRWs on high-girth n-vertex expanders is w.h.p. $(1+o(1)) \frac{\log n}{\log \log n}$.

- For which other families of d-regular graphs, $d \geq 3$, is this maximum $\sim \frac{\log n}{\log \log n}$?
- Does a NBRW on any n-vertex d-regular ($d \geq 3$) graph visit some vertex w.h.p. at least $(1+o(1)) \frac{\log n}{\log \log n}$ times?

Thank you.

