

Oxford May 2020

Maximum height of 3D Ising interfaces

Eyal Lubetzky Courant Institute (NYU)

based on joint works with Reza Gheissari (UC Berkeley)

3D Ising interfaces

Consider surfaces generated as follows: > 3D cylinder $\Lambda = [-n, n]^2 \times (\mathbb{Z} + \frac{1}{2})$

 $\succ \sigma$ is a 2-coloring of the vertices:

- internal vertices: arbitrarily (*for now*).
- > Draw a **dual-face** $(u, v)^*$ if $\sigma_u \neq \sigma_v$.

3D Ising interfaces (ctd.)

Goal: understand random interfaces sampled via the distribution:

$$\mu(\mathcal{I}) \propto \exp\left(-\beta|\mathcal{I}| + \sum_{f \in \mathcal{I}} \mathbf{g}(f, \mathcal{I})\right)$$

- > β > 0: inverse temperature (large, fixed).
- > $\mathbf{g}(\cdot, \cdot)$: some complicated function, yet satisfying

1) $\mathbf{g} \leq K_{\mathbf{0}}$

2) $|\mathbf{g}(f,\mathcal{I}) - \mathbf{g}(f',\mathcal{I}')| \le e^{-c_0 \mathbf{r}} \text{ if } B_{\mathbf{r}}(f,\mathcal{I}) \cong B_{\mathbf{r}}(f',\mathcal{I}')$

for **absolute** constants c_0, K_0 .

Definition: the classical Ising model

- Underlying geometry: finite $\Lambda \subset \mathbb{Z}^d$.
- Set of possible configurations: $\Omega = \{\pm 1\}^{\Lambda}$
- Probability of a configuration $\sigma \in \Omega$ given by the *Gibbs distribution*:

E. Lubetzky 🦿 NYU COURANT 4

2D Ising interfaces

- ▶ μ_{Λ}^{\mp} : Ising model on 2D cylinder $\Lambda = [-n, n] \times (\mathbb{Z} + \frac{1}{2})$

Boundary conditions:
 upper half-plane
 lower half-plane

- > Draw a dual-edge $(u, v)^*$ if $\sigma_u \neq \sigma_v$.
- ▶ **Interface**: connected component *J* of dual-edges that separates the boundary components.
- Known [Higuchi '79], [Dobrushin, Hryniv '97], [Hryniv '98], [Dobrushin, Kotecký, Shlosman '92]:
 - > Interface has a scaling limit: $\frac{\mathcal{I}(x/n)}{\sqrt{c_B n}} \rightarrow$ Brownian bridge
 - > Maximum M_n is $O_P(\sqrt{n})$, and $M_n \mathbb{E}[M_n]$ is also $O_P(\sqrt{n})$.

3D Ising interfaces

▶ μ_{Λ}^{\mp} : Ising model on 3D cylinder $\Lambda = [-n, n]^2 \times (\mathbb{Z} + \frac{1}{2})$

Boundary conditions:
 upper half-plane
 lower half-plane

> Draw a dual-face $(u, v)^*$ if $\sigma_u \neq \sigma_v$.

- ▶ **Interface**: maximal connected component *J* of dual-faces that separates the boundary components.
- [Minlos, Sinai '67], [Dobrushin '72]: $\mu_{\Lambda}^{\mp}(\mathcal{I}) \propto e^{-\beta |\mathcal{I}| + \sum_{f \in \mathcal{I}} \mathbf{g}(f, \mathcal{I})}$ (*cluster expansion*; valid for large β)
- <u>THEOREM</u>: [Dobrushin '72] (*rigidity of the interface*)

There exists $\beta_0 > 0$ such that $\forall \beta > \beta_0$ and $\forall x_1, x_2, h_i$ $\mu_{\Lambda}^{\mp} (\mathcal{I} \ni (x_1, x_2, h)) \le \exp\left(-\frac{1}{3}\beta h\right)$

Plus/minus interface in 3D Ising

- M_n = maximum height of the interface J in 3D Ising with Dobrushin's boundary conditions.
 - > [Dobrushin '72]: $\exists C_{\beta} \text{ s.t. } \mu_{\Lambda}^{\mp} (M_n \leq C_{\beta} \log n) \rightarrow 1.$
 - > \Rightarrow (via straightforward matching order lower bound) the maximum of the interface has **order** log *n*.
- Asymptotics of the maximum (LLN)? Tightness?
- Structure of interface conditional on the rare event of reaching height *h* >> 1 above some fixed point?

Related work on 3D Ising interfaces

- Alternative simpler argument by [van Beijeren '75] for [Dobrushin '72]'s result on the rigidity of the 3D Ising interface.
- Rigidity argument extended to
 - Widom-Rowlinson model [Bricmont, Lebowitz, Pfister, Olivieri '79a], [Bricmont, Lebowitz, Pfister '79b, '79c]
 - Super-critical percolation / random cluster model conditioned to have interfaces [Gielis, Grimmett '02]
- Tilted interfaces: [Cerf, Kenyon '01] (zero temperature, 111 interface), [Miracle Sole '95] (1-step interface), [Sheffield '03] (|∇φ|^p models), many works on the conjectured behavior, related to the (non-)existence of non-translational invariant Gibbs measures
- Wulff shape, large deviations for the magnetization, surface tension [Pisztora '96], [Bodineau '96], [Cerf, Pisztora '00], [Bodineau '05], [Cerf '06]
- Plus/minus phases away from the interface [Zhou '19]

LLN for the maximum

- Recall: M_n = maximum of the interface \mathcal{I} in 3D Ising; [Dobrushin '72]: $M_n = O_P(\log n)$.
- <u>THEOREM</u>: ([Gheissari, L. '19a])

There exists β_0 such that for all $\beta > \beta_0$,

$$\lim_{n \to \infty} \frac{M_n}{\log n} = \frac{2}{\alpha} , \qquad in \text{ probability,}$$

where

$$\alpha(\beta) = \lim_{h \to \infty} -\frac{1}{h} \log \mu_{\mathbb{Z}^3}^{\mp} \left((0,0,0) \stackrel{+}{\longleftrightarrow} (\mathbb{R}^2 \times \{h\}) \right)$$

and satisfies $\alpha(\beta)/\beta \to 4$ as $\beta \to \infty$.

> existence of the limit α nontrivial: sub-multiplicativity argument relying on new results on the interface shape.

LLN

*-connected in $\mathbb{Z}^2 \times [0, h]$

Tightness and tails for the maximum

• <u>THEOREM</u>: ([Gheissari, L. '19b])

- 1. There exists β_0 such that for all $\beta > \beta_0$, $M_n - \mathbb{E}M_n = O_{\mathbf{P}}(1).$
- Tightness Gumbel tails 2. There exist C, $\overline{\alpha}$, α such that $\forall r \geq 1$, $\begin{cases} e^{-(\overline{\alpha}r+C)} \leq \mu_n^{\overline{+}}(M_n \geq \mathbb{E}[M_n] + r) \leq e^{-(\underline{\alpha}r-C)} \\ e^{-e^{\overline{\alpha}r+C}} \leq \mu_n^{\overline{+}}(M_n \leq \mathbb{E}[M_n] - r) \leq e^{-e^{\underline{\alpha}r-C}} \end{cases}$ where $\bar{\alpha}/\alpha \to 1$ as $\beta \to \infty$.

PROPOSITION: ([Gheissari, L. '19b])

There *does not* exist a deterministic sequence (m_n) s.t. $(M_n - m_n)$ converges weakly to a nondegenerate law.

- Notation: $\mathcal{L}_0 = \mathbb{R}^2 \times \{0\}$; π = projection onto \mathcal{L}_0
- DEFINITION: [ceiling and walls]
 - 1. *Ceiling face* : a horizontal face $f \in \mathcal{I}$ such that $\pi(f') \neq \pi(f) \quad \forall f' \neq f$.
 - *Ceiling C* : connected component of ceiling faces.
 - 2. Wall face : all other faces.Wall W : connected component of wall faces.

DEFINITION: [ceiling and walls]

- 1. *Ceiling face* : a horizontal face $f \in \mathcal{I}$ with $\pi(f') \neq \pi(f) \quad \forall f' \neq f$. *Ceiling* \mathcal{C} : connected component of ceiling faces.
- 2. *Wall face* : all other faces.

Wall \mathcal{W} : connected component of wall faces.

FACTS:

- 1. \forall ceiling C has a single height.
- 2. \forall wall \mathcal{W} : $\pi(\mathcal{W})$ is connected.
- 3. \forall walls $\mathcal{W} \neq \mathcal{W}'$: $\pi(\mathcal{W}) \cap \pi(\mathcal{W}') = \emptyset$.

- A wall \mathcal{W} is **standard** if $\exists \mathcal{J}$ whose only wall is \mathcal{W} .
- <u>FACT</u>: 1: 1 correspondence between interfaces and *admissible** collections of standard walls.

** admissible: walls are disjoint components and so are their projections*

- A wall \mathcal{W} is **standard** if $\exists \mathcal{J}$ whose only wall is \mathcal{W} .
- <u>FACT</u>: 1: 1 correspondence between interfaces and *admissible* collections of standard walls.
- ▶ Basic idea: given $x \in \mathcal{L}_0$, construct a map Φ :
 - > "standardize" every wall W in J;
 - > delete the wall \mathcal{W}_x of x;
 - *"reconstruct" J'* from other standard walls.

• Goal: establish for this map Φ:

- 1. (Energy bound) $\frac{\mu(\mathcal{I})}{\mu(\Phi(\mathcal{I}))} \leq e^{-c\beta|\mathcal{W}_{\chi}|}$
- 2. (Multiplicity bound) # $\{\mathcal{I} \in \Phi^{-1}(\mathcal{I}') : |\mathcal{W}_x| = \ell\} \le e^{c\ell}$

- Basic idea: delete the wall \mathcal{W}_x of x.
- Energy bound $\left(\frac{\mu(\mathcal{I})}{\mu(\Phi(\mathcal{I}))} \le e^{-c\beta|\mathcal{W}_x|}\right)$:
 - > Gain $\beta |\mathcal{W}_x|$ from $\beta (|\mathcal{I}| |\Phi(\mathcal{I})|)$
 - Problem: effect on non-deleted faces that moved due to g...
 - The effect of **g** is **local** (decays exp. in distance).
 - **BUT**: tall nearby walls can pick up a cost that cancels our $\beta |W_x|$ gain.

Solution: also delete **tall** walls that are **close** to \mathcal{W}_x .

recall $\mu_{\Lambda}^{+}(\mathcal{I}) \propto e^{-\beta|\mathcal{I}| + \sum_{f \in \mathcal{I}} \mathbf{g}(f,\mathcal{I})}$

recall $\mu_{\Lambda}^{\mp}(\mathcal{I}) \propto e^{-\beta|\mathcal{I}| + \sum_{f \in \mathcal{I}} \mathbf{g}(f, \mathcal{I})}$

- Energy bound $\left(\frac{\mu(\mathcal{I})}{\mu(\Phi(\mathcal{I}))} \le e^{-c\beta|\mathcal{W}_x|}\right)$:
 - ≻ Gain β|W_x| from β(|J| − |Φ(J)|), but must handle g...
 ≻ ... must also delete tall walls that are close.
- Multiplicity bound (#{J ∈ Φ⁻¹(J') : |W_x| = ℓ} ≤ e^{cℓ}):
 Problem: accounting for the extra walls we deleted...
- Dobrushin's criterion: groups of walls: for x, y ∈ L₀, W_x ~ W_y ⇔ d(x, y)² ≤ max{|π⁻¹(x)|, |π⁻¹(y)|}. (a "tall" W_x (many faces above x) is easier to group with)
 The map Φ deletes the entire group of walls of W_x: analysis becomes 2D (but too crude for detailed questions).

New approach: pillars in the interface

<u>DEFINITION</u>: [\mathcal{P}_x , the **pillar** at $x \in \mathbb{R}^2 \times \{0\}$]

- 1. Take the interface \mathcal{I} (filling in \forall bubble)
- 2. Discard $\mathbb{R}^2 \times (-\infty, 0)$ from the sites below \mathcal{I}
- 3. The pillar \mathcal{P}_x is the remaining \bigoplus *-connected component of x

Goal: second moment argument for $M_n = \max_{x} \operatorname{ht} (\mathcal{P}_x)$

Pillars vs. connected + components

<u>DEFINITION</u>: $[\mathcal{P}_{x}, \text{ the pillar at } x \in \mathbb{R}^2 \times \{0\}]$

- 1. Take the interface \mathcal{I} (filling in \forall bubble)
- 2. Discard $\mathbb{R}^2 \times (-\infty, 0)$ from the sites below \mathcal{I}
- 3. The pillar \mathcal{P}_x is the remaining \bigoplus *-connected component of x

<u>REMARK</u>: No monotonicity the height of the pillar \mathcal{P}_x and the height of the \bigoplus component of x (in either direction)

Goal: second moment argument for $M_n = \max_{x} \operatorname{ht} (\mathcal{P}_x)$

Decomposition of pillars

- <u>DEFINITION</u>: [cutpoint of the pillar] a cell v_i which is the only intersection of the pillar \mathcal{P}_x with a horizontal slab.
- <u>DEFINITION</u>: [pillar **increment**] χ_i = segment of \mathcal{P}_x bounded between the cutpoints v_i, v_{i+1} (inclusively).
- Decompose \mathcal{P}_x into:
 - 1. *increments* $(X_1, X_2, ..., X_T)$
 - 2. *base* $\mathfrak{B}_x = \mathcal{P}_x \cap (\mathbb{R}^2 \times [0, \operatorname{ht}(v_1)])$

Decomposition of pillars

- Typical increments are perturbations (with exponential tails) of the trivial increment
- But: (rarely) they can be quite complex...

 χ_8

 χ_6

 χ_4

 χ_2

 X_{q}

 X_{7}

 χ_{10}

The interface map $\Psi_{x,t}$

2. (Multiplicity bound) #{ $\mathcal{I} \in \Psi_{x,t}^{-1}(\mathcal{I}') : |\mathcal{I}| - |\mathcal{I}'| = \ell$ } $\leq e^{c\ell}$

Challenges due to interacting pillars

- The map $\Psi_{x,t}$ induces
 - 1. horizontal shifts
 - 2. vertical shifts (down & up)

- The pillar P_x to hit a nearby P_y
 (possibly making the map not well-defined)
- The pillar may get very close to a nearby P_y and heavily interact with it (destroying the energy control).

Basic map $\Psi_{x,t}$ to control increments

- Target the structure of the increment X_t by:
 - > straightening X_t if its size is too large.
 - > straightening any
 other increment X_s
 for s ≥ t whose size
 is at least
 e^{c|s-t|}
 (too large w.r.t. X_t).

A basic $\Psi_{x,t}$ for controlling increments

- Base is delicate: incorporates interaction with other nearby pillars in the interface...
- Trying to relax the definition of the base to rule out such interactions gives an O(log h) error on its size: sufficient for LLN but not for tightness.

Algorithm for the refined map $\Psi_{x,t}$

- Defining $\Psi_{x,t}$:
 - ∀ *j* ≥ 1, determine whether
 to straighten \mathcal{P}_x at the
 increment \mathcal{X}_j . If so:
 - $\forall y \neq x$, determine whether this action may cause \mathcal{P}_x to draw to closely to \mathcal{P}_y . If so, delete \mathcal{P}_y as well.
- Delicate balance between deleting too little (energy control) and deleting too much (multiplicity control).

Algorithm 1: The map $\Psi_{x,t}$

```
    Let {W
<sub>y</sub> : y ∈ L<sub>0,n</sub>} be the standard wall representation of the interface I \ S<sub>x</sub>. Also let O<sub>v1</sub> be the nested sequence of walls of v<sub>1</sub>, so that θ<sub>sT</sub>O<sub>v1</sub> = M
<sub>v1</sub>.
    // Base modification
    Mark [x] = {x} ∪ ∂<sub>0</sub>x and ρ(v<sub>1</sub>) for deletion (where ∂<sub>0</sub>x denotes the four faces in L<sub>0</sub> adjacent to x).
```

```
s if the interface with standard wall representation \tilde{\mathfrak{W}}_{v_1} has a cut-height then
```

```
Let h^{\dagger} be the height of the highest such cut-height.
Let y^{\dagger} be the index of a wall that intersects (\mathcal{P}_x \setminus \mathcal{O}_{v_1}) \cap \mathcal{L}_{h^{\dagger}} and mark y^{\dagger} for deletion.
```

// Spine modification (A): the 1st increment

Let $j^* \leftarrow \mathfrak{s}_{\mathscr{T}+2}$ and mark y^*_A for deletion.

// Spine modification (B): the t-th increment

if $t > j^*$ then		
Set $\mathfrak{s}_t \leftarrow t-1$ and $y_B^* \leftarrow \emptyset$.		
for $k = t$ to $\mathscr{T} + 1$ do		
Let $s \leftarrow \mathfrak{s}_k$ and $\mathfrak{s}_{k+1} \leftarrow \mathfrak{s}_k$.		
$ \text{if} \mathfrak{m}(\mathscr{X}_k) \geq k-t \text{then} $	11	(B1)
Let $\mathfrak{s}_{k+1} \leftarrow k$.		
if $\mathfrak{D}_x(\tilde{W}_u, j, -v_{s+1}, v_t - v_{i^*+1}) \leq \mathfrak{m}(\tilde{W}_u)$ for some y then	11	(B2)
Let $\mathfrak{s}_{k+1} \leftarrow k$ and mark for deletion every y for which (B2) holds.		
if $\mathfrak{D}_{x}(\tilde{W}_{y}, j, -v_{s+1}, v_{t} - v_{i^{*}+1}) \leq (k-t)/2$ for some y then	11	(B3)
Let $\mathfrak{s}_{k+1} \leftarrow k$ and let y_B^* be the minimal index y for which (B3) holds.		
Let $k^* \leftarrow \mathfrak{s}_{\mathcal{T}+2}$ and mark y_B^* for deletion.		
else		
Let $k^* \leftarrow j^*$.		

6 for each index $y \in \mathcal{L}_{0,n}$ marked for deletion do delete $\tilde{\mathfrak{F}}_y$ from the standard wall representation (\tilde{W}_y) .

- 7 Add a standard wall $W_x^{\mathcal{J}}$ consisting of $ht(v_1) \frac{1}{2}$ trivial increments above x.
- $s\,$ Let ${\cal K}$ be the (unique) interface with the resulting standard wall representation.

9 Denoting by $(\mathscr{X}_i)_{i\geq 1}$ the increment sequence of \mathcal{S}_x , set

$$\mathcal{S} \leftarrow \begin{cases} \left(\underbrace{\mathcal{X}_{\varnothing}, \mathcal{X}_{\varnothing}, \dots, \mathcal{X}_{\varnothing}, \mathscr{X}_{j^*+1}, \dots, \mathscr{X}_{t-1}, \underbrace{\mathcal{X}_{\varnothing}, \mathcal{X}_{\varnothing}, \dots, \mathcal{X}_{\varnothing}}_{\operatorname{ht}(v_j * + 1) - \operatorname{ht}(v_1)} \right) & \text{if } t > j^*, \\ \left(\underbrace{\mathcal{X}_{\varnothing}, \mathcal{X}_{\varnothing}, \dots, \mathcal{X}_{\varnothing}, \mathscr{X}_{j^*+1}, \dots}_{\operatorname{ht}(v_j * + 1) - \operatorname{ht}(v_1)} \right) & \text{if } t \leq j^*. \end{cases}$$

10 Obtain $\Psi_{x,t}(\mathcal{I})$ by appending the spine with increment sequence \mathcal{S} to \mathcal{K} at $x + (0, 0, ht(v_1))$.

CLT for location of tip, volume, surface area

- Via additional maps (2 → 2): tall pillars are stationary sequences of increments.
- THEOREM: ([Gheissari, L. '19a])

Let $(Y_1, Y_2, ht(\mathcal{P}_x))$ be the location of the tip of the pillar \mathcal{P}_x . Conditional on \mathcal{P}_x having at least $1 \ll T_n \ll n$ increments, $(Y_1, Y_2, ht(\mathcal{P}_x)) - (x_1, x_2, \lambda T_n) \xrightarrow{d} \mathcal{N}(0, \begin{pmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & (\sigma')^2 \end{pmatrix})$ for some $\sigma, \sigma' > 0$.

CLT also holds, e.g., for the surface area and volume of \mathcal{P}_{x} .

Open: tilted interfaces

- Major open problem: roughness of tilted interfaces of the 3D Ising model at low temperature (β fixed, large).
 - > Conjecture: $Var(ht_x(\mathcal{I})) \approx \log n$.
 - ≻ Verified only for $\beta = \infty$ ([Cerf, Kenyon '01]).
 - ≻ For finite large β , unknown that Var(ht_x(\mathcal{I})) → ∞...

Thank you!