MIT

Dec 2019

Maximum of 3D Ising interfaces

Eyal Lubetzky

Courant Institute (NYU)
based on joint works with Reza Gheissari (UC Berkeley)

Definition: the classical Ising model

- Underlying geometry: finite $\Lambda \subset \mathbb{Z}^{d}$.
- Set of possible configurations:

$$
\Omega=\{ \pm 1\}^{\Lambda}
$$

(each site receives a plus/minus spin)

- Probability of a configuration $\sigma \in \Omega$ given by the Gibbs distribution:

$$
\mu_{\Lambda}(\sigma)=\frac{1}{Z(\beta)} \exp \left(-\beta \sum_{x \sim y} \mathbf{1}_{\left\{\sigma_{x} \neq \sigma_{y}\right\}}\right)
$$

> $\beta \geq 0$: the inverse temperature
$>Z(\beta)$: the partition function

The Ising model phase transition

> Underlying geometry: Λ = finite 2D grid.
> Set of possible configurations: $\Omega=\{ \pm 1\}^{\Lambda}$
> Probability of a configuration: $\mu_{\Lambda}(\sigma)=\frac{1}{Z(\beta)} \exp \left(-\beta \sum_{x \sim y} \mathbf{1}_{\left\{\sigma_{x} \neq \sigma_{y}\right\}}\right)$
Local (nearest-neighbor) interactions have macroscopic effects:

$\beta=0.75$

$\beta=0.88$

Low temperature representation in 2D

- Setting: $\Lambda \subset \mathbb{Z}^{2}$ is an $n \times n$ box with -plus boundary.
$>$ Draw a dual-edge $(u, v)^{*}$ if $\sigma_{x} \neq \sigma_{y}$
> Bijection between a dual-loop collection and the Ising configuration σ.
$>$ Induced distribution on the dual-loops:

$$
\mu_{\Lambda}^{+}\left(\left\{\gamma_{1}, \gamma_{2}, \ldots\right\}\right)=\frac{1}{Z(\beta)} e^{-\beta \sum\left|\gamma_{i}\right|}
$$

- [Peierls '36]: proof of a phase transition for $\beta>\beta_{0}$: 1st moment argument on \# of sites inside a " "island" $^{\prime \prime}$

Peierls' phase transition argument

- Setting: $\Lambda \subset \mathbb{Z}^{2}$ is an $n \times n$ box with -plus boundary.
- For any σ containing γ flip all spins in the interior of γ :

$$
\mu_{\Lambda}^{+}(\sigma)=Z(\beta)^{-1} e^{B}
$$

$\Rightarrow \mu_{\Lambda}^{+}(\gamma$ belongs to loop collection $) \leq e^{-\beta|\gamma|}$.

- For a site x : at most $e^{c \ell}$ contours γ of length ℓ around x, and each such γ costs $e^{-\beta \ell}$; overall:

$$
\mu_{\Lambda}^{+}\left(\sigma_{x}=-1\right) \leq e^{-4(\beta-C)} .
$$

2D Ising interfaces

What does the interface between the
\oplus and \bigodot phases look like at $\beta>\beta_{c}$?

- μ_{Λ}^{\mp} : Ising model on
$>2 \mathrm{D}$ cylinder $\Lambda=\llbracket-n, n \rrbracket \times\left(\mathbb{Z}+\frac{1}{2}\right)$
>Boundary conditions: $\left\{\begin{array}{l}- \text { upper half-plane } \\ + \text { lower half-plane }\end{array}\right.$
$>$ Draw a dual-edge $(u, v)^{*}$ if $\sigma_{x} \neq \sigma_{y}$.
- Interface: (max) connected set \mathcal{J} of dual-edges separating the infinite + and - components of the boundary.

2D Ising interfaces: roughness

What does the interface between the
\oplus and \bigcirc phases look like at $\beta>\beta_{c}$?

- 2D Ising model w. Dobrushin's boundary conditions $\mu_{\Lambda_{n}}^{\mp}$:
> Interface has a scaling limit:

$$
\frac{\mathcal{J}(x / n)}{\sqrt{c_{\beta} n}} \rightarrow \text { Brownian bridge }
$$

$>$ Interface is rough: fluctuations of \sqrt{n}
$>$ Maximum M_{n} is $\mathrm{O}_{\mathrm{P}}(\sqrt{n})$, and $M_{n}-\mathbb{E}\left[M_{n}\right]$ is also $\mathrm{O}_{\mathrm{P}}(\sqrt{n})$.
[Higuchi ‘79], [Dobrushin, Hryniv ‘97], [Hryniv ‘98],
[Dobrushin, Kotecky, Shlosman '92]

3D Ising Interfaces

- μ_{Λ}^{\mp} : Ising model on
$>3 \mathrm{D}$ cylinder $\Lambda=\llbracket-n, n \rrbracket^{2} \times\left(\mathbb{Z}+\frac{1}{2}\right)$
>Boundary conditions: $\left\{\begin{array}{l}- \text { upper half-space } \\ + \text { lower half-space }\end{array}\right.$
$>$ Draw a dual-face $(u, v)^{*}$ if $\sigma_{x} \neq \sigma_{y}$.
- Interface: (max) connected set \mathcal{J} of faces separating the infinite + and - components of the boundary.

3D Ising interfaces: rigidity

- μ_{Λ}^{\mp} : Ising model on
$>3 \mathrm{D}$ cylinder $\Lambda=\llbracket-n, n \rrbracket^{2} \times\left(\mathbb{Z}+\frac{1}{2}\right)$
> Boundary conditions: $\left\{\begin{array}{l}- \text { upper half-space } \\ + \text { lower half-space }\end{array}\right.$
- THEOREM: [Dobrushin '72] (rigidity of the interface)

There exists $\beta_{0}>0$ such that $\forall \beta>\beta_{0}$ and $\forall x_{1}, x_{2}, h$,

$$
\mu_{\Lambda}^{\mp}\left(\mathcal{J} \ni\left(x_{1}, x_{2}, h\right)\right) \leq \exp \left(-\frac{1}{3} \beta h\right)
$$

- COROLLARY: [Dobrushin '72, '73] for $\beta>\beta_{0}$:

1. \exists non-translation invariant \mathbb{Z}^{3} Gibbs measures
2. Maximum height of \mathcal{J} is $O_{\mathrm{P}}(\log n)$.

Plus/minus interface in 3D Ising

- $M_{n}=$ maximum height of the interface \mathcal{J} in 3D Ising with Dobrushin's boundary conditions.
$>\left[\right.$ Dobrushin '72]: $\exists C_{\beta}$ s.t. $\mu_{\Lambda}^{\mp}\left(M_{n} \leq C_{\beta} \log n\right) \rightarrow 1$.
$>\Rightarrow$ (via straightforward matching order lower bound) the maximum of the interface has order $\log n$.
- Asymptotics of the maximum (LLN)? Tightness?
- Structure of interface conditioned on LDs?
$>$ conditioned on $\left(x_{1}, x_{2}, 0\right)$ belonging to a "pillar" reaching height h, what can we say about that pillar, e.g., its surface area? its volume? $x y$-coords of its tip?

3D Ising Roughening phase transition

- Conj.: Roughening phase transition in 3D at $\beta_{\mathrm{R}} \approx 0.83$:
$\left.\boldsymbol{\beta}_{c}\right) \boldsymbol{\beta}_{c}<\boldsymbol{\beta}<\boldsymbol{\beta}_{\boldsymbol{R}}$
$\frac{\operatorname{rough}(\text { delocalized }}{\operatorname{Var}\left(\mathrm{ht}_{x}(\mathcal{J})\right) \rightarrow \infty}$
$\mathcal{J} \approx$ DGFF

$$
\beta_{R} \quad \beta>\beta_{R}
$$

$$
\begin{aligned}
& \frac{\text { rigid (localized) }}{\operatorname{Var}^{\left(h t_{x}(J)\right)}=O(1)} \\
& \max _{x} \mathrm{ht}_{x}(\mathcal{J})=\log n
\end{aligned}
$$

"Evidence that $T_{R}<T_{C}(3)$ strictly was obtained by Weeks et al. (1973) ...
To this day, there still appears to be no proof that $T_{R}<T_{c}(3)$." [Abraham '86]

Related work on 3D Ising interfaces

- Alternative simpler argument by [van Beijeren '75] for [Dobrushin '72]'s result on the rigidity of the 3D Ising interface.
- Rigidity argument extended to
> Widom-Rowlinson model [Bricmont, Lebowitz, Pfister, Olivieri '79a], [Bricmont, Lebowitz, Pfister '79b, '79c]
> Super-critical percolation / random cluster model conditioned to have interfaces [Gielis, Grimmett '02]
- Tilted interfaces: [Cerf, Kenyon '01] (zero temperature, 111 interface), [Miracle Sole '95] (1-step interface), [Sheffield '03] (| $\left.\nabla \phi\right|^{p}$ models), many works on the conjectured behavior, related to the (non-)existence of non-translational invariant Gibbs measures
- Wulff shape, large deviations for the magnetization, surface tension [Pisztora '96], [Bodineau '96], [Cerf, Pisztora '00], [Bodineau '05], [Cerf '06]
- Plus/minus phases away from the interface [Zhou '19]

Approximating random surface models

DEFINITION: $(2+1)$-dimensional SOS above a wall [Temperley '52] probability measure on height functions ϕ on $\Lambda=\{1, \ldots, L\}^{2}$ with $\Lambda \ni x \mapsto \phi_{x} \in \mathbb{Z}$ and $\phi_{x}=0$ for $x \notin \Lambda$ given by

$$
\pi_{\Lambda}(\phi)=\frac{1}{Z_{\beta, \Lambda}} \exp \left(-\beta \sum_{x \sim y}\left|\phi_{x}-\phi_{y}\right|\right)
$$

$>$ no bubbles (distribution on interfaces)
$>$ no overhangs (interface $=$ height function)
$|\nabla \phi|^{p}$ model: $\quad \pi_{\Lambda}(\phi) \propto e^{-\beta \sum_{x \sim y}\left|\phi_{x}-\phi_{y}\right|^{p}}$ for $p \geq 1$ ($p=1$ is SOS; $p=2$ is the discrete Gaussian; $p=\infty$ is RSOS)

SOS: roughening transition

- $(2+1) \mathrm{D}$ surface delocalized (rough) at $\beta \ll 1$:

$$
\operatorname{Var}\left(\phi_{x}\right)=\log n, \quad \mathbb{E} \phi_{x} \phi_{y}=\log |x-y|
$$

[Fröhlich, Spencer ('81), ('83)]
$(2+1) \mathrm{D}$ surface localized (rigid) at $\beta \gg 1$:

$$
\operatorname{Var}\left(\phi_{x}\right)=1, \quad \mathbb{E} \phi_{x} \phi_{y} \simeq e^{-c|x-y|}
$$

[Gallavotti, Martin-Löf, Miracle-Solé ('73)], [Brandenberger, Wayne ('82)]

- Maximum M_{n} of the rigid ($2+1$) D surface at $\beta \gg 1$:
$>\mathbb{E}\left[M_{n}\right]=\beta^{-1} \log n \quad[$ Bricmont, El-Mellouki, Fröhlich '86]
$>M_{n}=\frac{1}{2 \beta} \log n+O(1) \quad$ (+shape theorem, with and w/o a floor) [Caputo, L., Martinelli, Sly, Toninelli '12, '14, '16]

Maximum dominated by LD at origin

- Maximum governed by ∞-volume large deviation rate

$$
\lim _{h \rightarrow \infty}-\frac{1}{h^{a}} \log \pi_{\mathbb{Z}^{2}}\left(\phi_{x} \geq h\right)
$$

which is tied to the shape of tall pillars:

- [L., Martinelli, Sly '16]: general $|\nabla \phi|^{p}$ surface models:

$$
\left(c_{p} \beta+o(1)\right) h^{p} \quad=\beta h^{2}
$$

LLN for the maximum

- Recall: $M_{n}=$ maximum of the interface \mathcal{J} in 3D Using with Dobrushin's b.c.; [Dobrushin '72]: $M_{n}=O_{\mathrm{P}}(\log n)$.
- THEOREM: ([Gheissari, L. '19a])

There exists β_{0} such that for all $\beta>\beta_{0}$,

$$
\lim _{n \rightarrow \infty} \frac{M_{n}}{\log n}=\frac{2}{\alpha}
$$

where

$$
\alpha(\beta)=\lim _{h \rightarrow \infty}-\frac{1}{h} \log \mu_{\mathbb{Z}^{3}}^{\mp}\left((0,0,0) \stackrel{+}{\leftrightarrow}\left(\mathbb{R}^{2} \times\{h\}\right)\right)
$$

and satisfies $\alpha(\beta) / \beta \rightarrow 4$ as $\beta \rightarrow \infty$.
> existence of the limit α nontrivial: relies on new results on the interface shape conditioned on LD.

Tightness and tails for the maximum

THEOREM: ([Gheissari, L. '19b])

1. There exists β_{0} such that for all $\beta>\beta_{0}$,

$$
M_{n}-\mathbb{E} M_{n}=O_{\mathrm{P}}(1) .
$$

2. There exist $C, \bar{\alpha}, \underline{\alpha}$ such that $\forall r \geq 1$,

$$
\left\{\begin{aligned}
e^{-(\bar{\alpha} r+C)} & \leq \mu_{n}^{\mp}\left(M_{n} \geq \mathbb{E}\left[M_{n}\right]+r\right) \leq e^{-(\underline{\alpha} r-C)} \\
e^{-e^{\bar{\alpha} r+C}} & \leq \mu_{n}^{\mp}\left(M_{n} \leq \mathbb{E}\left[M_{n}\right]-r\right) \leq e^{-e^{\alpha r-C}}
\end{aligned}\right.
$$

where $\bar{\alpha} / \underline{\alpha} \rightarrow 1$ as $\beta \rightarrow \infty$.

- PROPOSITION: ([Gheissari, L. '19b])

There does not exist a deterministic sequence $\left(m_{n}\right)$ s.t. ($M_{n}-m_{n}$) converges weakly to a nondegenerate law.

Pillars in the 3D Ising interface

DEFINITION: $\left[\mathcal{P}_{x}\right.$, the pillar at $\left.x \in \mathbb{R}^{2} \times\{0\}\right]$

1. Fill in all the bubbles to obtain the interface \mathcal{J}
2. Discard $\mathbb{R}^{2} \times(-\infty, 0)$ from the sites below \mathcal{J}
3. The pillar \mathcal{P}_{x} is the remaining component above x.

Goal: second moment argument for $M_{n}=\max _{x} \operatorname{ht}\left(\mathcal{P}_{x}\right)$

Decomposition of pillars

- DEFINITION: [cutpoint of the pillar] a cell v_{i} which is the only intersection of the pillar \mathcal{P}_{x} with a horizontal slab.
- DEFINITION: [pillar increment] $X_{i}=$ segment of \mathcal{P}_{x} bounded between the cutpoints v_{i}, v_{i+1} (inclusively).
- Decompose \mathcal{P}_{x} into:

1. increments $\left(X_{1}, X_{2}, \ldots, X_{T}\right)$
2. base $\mathfrak{B}_{x}=\mathcal{P}_{x} \cap\left(\mathbb{R}^{2} \times\left[0, \mathrm{ht}\left(\mathrm{v}_{1}\right)\right]\right)$

Decomposition of pillars

- Typical increments are perturbations (with exponential tails) of the trivial increment
- But: (rarely) they can be quite complex...

Key ingredient: shape of tall pillars

- THEOREM: ([Gheissari, L. '19a,'19b])

$\exists \beta_{0}$ s.t. for $\forall \beta>\beta_{0}$ and every $x=\left(x_{1}, x_{2}, 0\right)$ is in the bulk (distance $\geq h^{2}$ from $\partial \Lambda$), conditional on $\operatorname{ht}\left(\mathcal{P}_{x}\right) \geq h$,

1. W.h.p. \mathcal{P}_{x} has at least $\left(1-\epsilon_{\beta}\right) h$ increments.
2. $\forall t$, the size of the increment X_{t} has an exponential tail.
3. Base \mathfrak{B}_{x} has an exponential tail on its diameter, height.

- Used to decorrelate $\operatorname{ht}\left(\mathcal{P}_{x}\right)$ and $\operatorname{ht}\left(\mathcal{P}_{y}\right)$ as part of the 2 nd moment argument.

Cluster expansion \& Dobrushin's approach

- Peierls' classical phase transition argument eliminates bubbles, but is not enough to "flatten" the interface.
- Instead: do Peierls on interfaces via cluster expansion: THEOREM: ([Minlos, Sinai '67], [Dobrushin '72])

$$
\mu(\mathcal{J}) \propto \exp \left[-\beta|\mathcal{J}|+\sum_{f \in \mathcal{J}} \mathbf{g}(f, \mathcal{J})\right]
$$

where $\mathbf{g} \leq K_{0}$ and $\left|\mathbf{g}(f, \mathcal{J})-\mathbf{g}\left(f^{\prime}, \mathcal{J}^{\prime}\right)\right| \leq e^{-\bar{c} \mathbf{r}\left(f, J, f^{\prime}, J^{\prime}\right)}$.

- [Dobrushin '72] decomposed J into groups of walls \& ceilings, then defined a map that deletes a wall around x, flattening \mathcal{J} (2D analysis).

The interface map $\Psi_{x, t}$

$\Psi_{x, t}:\left\{\mathcal{J}: \operatorname{ht}\left(\mathcal{P}_{x}\right) \geq h,\left|\mathfrak{B}_{x}\right| \vee\left|\mathcal{X}_{t}\right| \geq r\right\} \rightarrow\left\{\mathcal{I}: \operatorname{ht}\left(\mathcal{P}_{x}\right) \geq h\right\}$ s.t.

1. Energy control: $\mu(\mathcal{J}) \leq e^{-c \beta\left(|\mathcal{I}|-\left|\Psi_{x, t}(\mathcal{J})\right|\right.} \mu\left(\Psi_{x, t}(\mathcal{J})\right)$
2. Multiplicity control: at most $e^{c l}$ many $\mathcal{J} \in \Psi_{x, t}^{-1}\left(\mathcal{J}^{\prime}\right)$ such that $|\mathcal{J}|-\left|\mathcal{J}^{\prime}\right|=\ell$.

Challenges due to interacting pillars

- The map $\Psi_{x, t}$ induces

1. horizontal shifts
2. vertical shifts (down \& up)

- The pillar \mathcal{P}_{x} to hit a nearby \mathcal{P}_{y}
 (possibly making the map not well-defined)
- The pillar may get very close to a nearby \mathcal{P}_{y} and heavily interact with it (destroying the energy control).

A basic $\Psi_{x, t}$ for controlling increments

- Target the structure of the increment \mathcal{X}_{t} by:
$>$ straightening X_{t} if its size is too large.
> straightening any other increment \mathcal{X}_{s} for $s \geq t$ whose size is at least
$e^{c|s-t|}$
(too large w.r.t. x_{t}).

A basic $\Psi_{x, t}$ for controlling increments

- Base is delicate: incorporates interaction with other nearby pillars in the interface...
- Trying to extend the definition of the base so as to rule out such interactions gives an $O(\log h)$ error on its size: sufficient for LLN but not for tightness.

An algorithmic procedure to define $\Psi_{x, t}$

- Defining $\Psi_{x, t}$:
> $\forall j \geq 1$, determine whether to straighten \mathcal{P}_{x} at the increment \mathcal{X}_{j}. If so:
- $\forall y \neq x$, determine whether this action may cause \mathcal{P}_{x} to draw to closely to \mathcal{P}_{y}. If so, delete \mathcal{P}_{y} as well.
Delicate balance between deleting too little (energy control) and deleting too much (multiplicity control).

Algorithm 1: The map $\Psi_{x, i}$
${ }_{1}$ Let $\left\{\bar{W}_{y}: y \in \mathcal{L}_{0, n}\right\}$ be the standard wall representation of the interface $\mathcal{I} \backslash \mathcal{S}_{x}$. Also let $\mathcal{O}_{v_{1}}$ be the nested sequence of walls of v_{1}, so that $\theta_{S T} \mathcal{O}_{v_{1}}=\tilde{\mathfrak{W}}_{v_{1}}$
// Base modification
2 Mark $[x]=\{x\} \cup \partial_{0} x$ and $\rho\left(v_{1}\right)$ for deletion (where $\partial_{0} x$ denotes the four faces in \mathcal{L}_{0} adjacent to x),
3 if the interface with standard wall representation $\tilde{\mathfrak{V}}_{v_{1}}$ has a cut-height then
3 if the interface with standard wall representation $\mathfrak{W J}_{v_{1}}$
Let h^{\dagger} be the height of the highest such cut-height.
Let y^{\dagger} be the index of a wall that intersects $\left(\mathcal{P}_{x} \backslash \mathcal{O}_{v_{1}}\right) \cap \mathcal{L}_{h^{\dagger}}$ and mark y^{\dagger} for deletion.
// Spine modification (A): the 1st increment
4 Set $\mathbf{s}_{1} \leftarrow 0$ and $y_{A}^{*} \leftarrow \emptyset$.
for $j=1$ to $\mathscr{T}+1$ do
Let $s \leftarrow \mathfrak{s}_{j}$ and $\mathfrak{s}_{j+1} \leftarrow \mathfrak{s}_{j}$.
if \quad.
if $\quad \mathfrak{m}\left(\mathscr{X}_{j}\right) \geq j-1$ then
if $\quad \mathfrak{D}_{x}\left(\tilde{W}_{y}, j,-v_{s+1}, 0\right) \leq \mathrm{m}\left(\tilde{W}_{y}\right)$ for some y then
Let $\mathbf{s}_{j+1} \leftarrow j$ and mark for deletion every y for which (A2) holds.
if $\quad \mathfrak{D}_{x}\left(\tilde{W}_{y}, j,-v_{s+1}, 0\right) \leq(j-1) / 2$ for some y then
Let $\mathfrak{s}_{j+1} \leftarrow j$ and let y_{A}^{*} be the minimal index y for which (A3) holds. Let $j^{*} \leftarrow \boldsymbol{s}_{\mathscr{J}+2}$ and mark y_{A}^{*} for deletion.
// Spine modification (B) : the t-th increment
5 if $t>j^{*}$ then
$\left\lvert\, \begin{aligned} & \text { Set } \mathfrak{s}_{t} \leftarrow t-1 \text { and } y_{B}^{*} \leftarrow \emptyset . \\ & \text { for } k=t \text { to } \mathscr{T}+1 \text { do }\end{aligned}\right.$
for $k=t$ to $\mathscr{T}+1$ do
Let $s \leftarrow \boldsymbol{s}_{k}$ and $\boldsymbol{s}_{k+1} \leftarrow \boldsymbol{s}_{\boldsymbol{k}}$.
if $\quad \mathrm{m}\left(\mathscr{X}_{k}\right) \geq k-t \quad$ then
L Let $\boldsymbol{s}_{k+1} \leftarrow k$.
if $\mathfrak{D}_{x}\left(\tilde{W}_{y}, j,-v_{s+1}, v_{t}-v_{j \cdot+1}\right) \leq \mathfrak{m}\left(\tilde{W}_{y}\right) \quad$ for some y then
Let $\boldsymbol{s}_{\boldsymbol{k}+1} \leftarrow k$ and mark for deletion every y for which (B2) holds.
if $\mathfrak{D}_{x}\left(\tilde{W}_{y}, j,-v_{s+1}, v_{t}-v_{j^{*}}+1 \leq(k-t) / 2\right.$ for some y then
Let $\mathfrak{s}_{k+1} \leftarrow k$ and let y_{B}^{*} be the minimal index y for which (B3) holds.

Let $k^{*} \leftarrow \mathfrak{s}_{\mathscr{G}+2}$ and mark y_{B}^{*} for deletion.

else

L Let $k^{*} \leftarrow j^{*}$
6 foreach index $y \in \mathcal{L}_{0, n}$ marked for deletion do delete $\tilde{\mathfrak{F}}_{y}$ from the standard wall representation (\tilde{W}_{y}) 7 Add a standard wall $W_{x}^{\mathcal{J}}$ consisting of $\mathrm{ht}\left(v_{1}\right)-\frac{1}{2}$ trivial increments above x.
\boldsymbol{s} Let \mathcal{K} be the (unique) interface with the resulting standard wall representation.
${ }_{9}$ Denoting by $\left(\mathscr{X}_{i}\right)_{i \geq 1}$ the increment sequence of \mathcal{S}_{x}, set

$$
\mathcal{S} \leftarrow \begin{cases}(\underbrace{X_{\varnothing}, X_{\varnothing}, \ldots, X_{\varnothing}}_{\operatorname{ht}\left(v_{j^{*}+1}\right)-\operatorname{ht}\left(v_{1}\right)}, \mathscr{X}_{j^{*}+1}, \ldots, \mathscr{X}_{t-1}, \underbrace{X_{\varnothing}, X_{\varnothing}, \ldots, X_{\varnothing}}_{\text {ht }\left(v_{k^{*}+1}\right)-h t\left(v_{t}\right)}, \mathscr{X}_{k^{*}+1}, \ldots) & \text { if } t>j^{*}, \\ (\underbrace{X_{\varnothing}, X_{\varnothing}, \ldots, X_{\mathscr{\prime}}}_{\operatorname{ht}\left(v_{j^{*}+1}\right)-\operatorname{ht}\left(v_{1}\right)}, \mathscr{X}_{j^{*}+1}, \ldots) & \text { if } t \leq j^{*} .\end{cases}
$$

${ }_{10}$ Obtain $\Psi_{x, t}(\mathcal{I})$ by appending the spine with increment sequence \mathcal{S} to \mathcal{K} at $x+\left(0,0\right.$, ht $\left.\left(v_{1}\right)\right)$.

LLN: sub/super-multiplicativity?

- Important ingredient for the LLN: establishing

$$
\exists \lim _{h \rightarrow \infty}-\frac{1}{h} \log \mu_{\Lambda}^{\mp}\left(h t\left(\mathcal{P}_{x}\right) \geq h\right) .
$$

- Natural route: establish sub/super-multiplicativity:

1. Move from $\left\{\operatorname{ht}\left(\mathcal{P}_{x}\right) \geq h\right\}$ to a comparable event in \mathbb{Z}^{3} :

$$
A_{h}=\left\{x \stackrel{+}{\leftrightarrow} \mathbb{R}^{2} \times\{h\} \text { in } \mathbb{R}^{2} \times[0, \infty)\right\}
$$

2. If translation invariant, FKG can typically give

$$
\mu_{\mathbb{Z}^{3}}^{\mp}\left(0 \stackrel{+}{\leftrightarrow}\left(0,0, h_{1}+h_{2}\right)\right) \geq \mu_{\mathbb{Z}^{3}}^{\mp}\left(0 \stackrel{+}{\leftrightarrow}\left(0,0, h_{1}\right)\right) \mu_{\mathbb{Z}^{3}}^{\mp}\left(0 \stackrel{+}{\leftrightarrow}\left(0,0, h_{2}\right)\right) .
$$

3. But $\mu_{\mathbb{Z}^{3}}^{\mp}$ is more negative at height h_{1} then at height 0 !

LLN: sub-multiplicativity

- To show that $\mu_{\mathbb{Z}^{3}}^{\mp}\left(\operatorname{ht}\left(\mathcal{P}_{x}\right) \geq h\right)$ is sub-multiplicative:

1. Move from $\left\{\operatorname{ht}\left(\mathcal{P}_{x}\right) \geq h\right\}$ to a comparable event in \mathbb{Z}^{3} :

$$
A_{h}=\left\{x \stackrel{+}{\leftrightarrow} \mathbb{R}^{2} \times\{h\} \text { in } \mathbb{R}^{2} \times[0, \infty)\right\}
$$

2. Condition on the + -cluster of x in $\mathbb{R}^{2} \times\left[0, h_{1}\right]$. Note: this cluster contains positive information, notably in its intersection with $\mathbb{R}^{2} \times\{0\} \ldots$

- Need to show:
$>$ For LLN: effect of this positive information is $e^{o\left(h_{1}\right)}$.
$>$ For tightness: effect of this positive information is $O(1)$!
- Key: structure of \mathcal{P}_{x} conditioned on $\left\{\operatorname{ht}\left(\mathcal{P}_{x}\right) \geq h_{1}\right\}$.

$2 \rightarrow 2$ maps: mixing and stationarity

- More refined info on shape conditional on $\operatorname{ht}\left(\mathcal{P}_{x}\right) \geq h$: THEOREM: ([Gheissari, L. '19a])

3. (mixing) $\forall i, j, \operatorname{Cov}\left(X_{i}, X_{j}\right) \leq C|j-i|^{-100}$.
4. (stationarity) \exists stationary distribution v on $\mathfrak{X}^{\mathbb{Z}}$ such that

$$
\left(\ldots, x_{h / 2-1}, x_{h / 2}, x_{h / 2+1}, \ldots\right) \underset{h \rightarrow \infty}{\longrightarrow} v
$$

mixing $2 \rightarrow 2$ map
stationarity $2 \rightarrow 2$ map

CLT for pillar increments

THEOREM: ([Gheissari, L. '19a])

For every κ there exists $\beta_{0}(\kappa)$ such that for all $\beta>\beta_{0}$: If $f: \mathfrak{X} \rightarrow \mathbb{R}$ is a non-constant functional on increments s.t.

$$
f(X) \leq \exp [\kappa|X|] \quad \forall X
$$

and $x=\left(x_{1}, x_{2}, 0\right)$ is in the bulk, then conditional on \mathcal{P}_{x} having at least $1 \ll T_{n} \ll n$ increments,

$$
\frac{1}{\sqrt{T_{n}}} \sum_{i \leq T_{n}}\left(f\left(X_{i}\right)-\mathbb{E} f\left(X_{i}\right)\right) \xrightarrow{\mathrm{d}} \mathcal{N}(0, \sigma)
$$

for some $\sigma(\beta, f)>0$.

- Proof uses a Stein's method treatment of stationary mixing sequences of random variables à la [Bolthausen '82].

CLT for location of tip, volume, surface area

- COROLLARY: ([Gheissari, L. '19a])

Let $\left(Y_{1}, Y_{2}, \operatorname{ht}\left(\mathcal{P}_{x}\right)\right)$ be the location of the tip of the pillar \mathcal{P}_{x}. Conditional on \mathcal{P}_{x} having at least $1 \ll T_{n} \ll n$ increments,

$$
\frac{\left(Y_{1}, Y_{2}, \operatorname{ht}\left(\mathcal{P}_{x}\right)\right)-\left(x_{1}, x_{2}, \lambda T_{n}\right)}{\sqrt{T_{n}}} \xrightarrow{d} \mathcal{N}\left(0,\left(\begin{array}{ccc}
\left.\left(\begin{array}{cc}
a & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & \left(\sigma^{2}\right)^{2}
\end{array}\right)\right)
\end{array}\right.\right.
$$

for some $\sigma, \sigma^{\prime}>0$.

- CLT also holds, e.g., for the surface area and volume of \mathcal{P}_{x}.

Open problems

- Open problems on M_{n} :
$>$ How does the LD quantity α depend on β ?
(know: $\alpha=\left(4 \pm o_{\beta}(1)\right) \beta$.)
Is $\alpha<4 \beta$, so Ising interfaces are rougher than SOS?
$>$ Asymptotics of $\mathbb{E}\left[M_{n}\right]$?
(know: $\frac{2}{\alpha_{\beta}} \log n+o_{n}(\log n)$.)
- Major open problems on the interface J:
$>$ Roughness of tilted interfaces? $\left(\right.$ conj.: $\left.\operatorname{Var}\left(\mathrm{ht}_{x}(\mathcal{J})\right)=\log n\right)$
$>$ Roughening phase transition? (conj.: $\beta_{\mathrm{R}}>\beta_{c} \Leftrightarrow d=3$).

