#### MIT Dec 2019

# **Maximum of 3D Ising interfaces**



Eyal Lubetzky Courant Institute (NYU)

based on joint works with Reza Gheissari (UC Berkeley)

# Definition: the classical Ising model

- Underlying geometry: finite  $\Lambda \subset \mathbb{Z}^d$ .
- Set of possible configurations:

 $\Omega = \{\pm 1\}^{\Lambda}$ 

(each *site* receives a plus/minus *spin*)

• Probability of a configuration  $\sigma \in \Omega$  given by the *Gibbs distribution*:



$$\mu_{\Lambda}(\sigma) = \frac{1}{Z(\beta)} \exp\left(-\beta \sum_{x \sim y} \mathbf{1}_{\{\sigma_x \neq \sigma_y\}}\right)$$

β ≥ 0: the inverse temperature
Z(β): the partition function



# The Ising model phase transition

- > Underlying geometry:  $\Lambda$  = finite 2D grid.
- > Set of possible configurations:  $\Omega = \{\pm 1\}^{\Lambda}$
- > Probability of a configuration:  $\mu_{\Lambda}(\sigma) = \frac{1}{Z(\beta)} \exp\left(-\beta \sum_{x \sim y} \mathbf{1}_{\{\sigma_x \neq \sigma_y\}}\right)$

Local (nearest-neighbor) interactions have macroscopic effects:



#### Low temperature representation in 2D

- Setting:  $\Lambda \subset \mathbb{Z}^2$  is an  $n \times n$  box with O-plus boundary.
  - > Draw a dual-edge  $(u, v)^*$  if  $\sigma_x \neq \sigma_y$
- Bijection between a dual-loop collection and the Ising configuration  $\sigma$ .



> Induced distribution on the dual-loops:  $\mu_{\Lambda}^{+}(\{\gamma_{1},\gamma_{2},\ldots\}) = \frac{1}{Z(\beta)} e^{-\beta \sum |\gamma_{i}|}$ 

• [Peierls '36]: proof of a phase transition for  $\beta > \beta_0$ : 1st moment argument on # of sites inside a \_\_\_\_\_\_\_\_



## Peierls' phase transition argument

- Setting:  $\Lambda \subset \mathbb{Z}^2$  is an  $n \times n$  box with plus boundary.
- For any  $\sigma$  containing  $\gamma$  flip *all spins in the interior of*  $\gamma$  :



⇒ μ<sup>+</sup><sub>Λ</sub>(γ belongs to loop collection) ≤ e<sup>-β|γ|</sup>.
For a site *x*: at most e<sup>cℓ</sup> contours γ of length ℓ around *x*, and each such γ costs e<sup>-βℓ</sup>; overall: μ<sup>+</sup><sub>Λ</sub>(σ<sub>x</sub> = -1) ≤ e<sup>-4(β-C)</sup>.

# 2D Ising interfaces

What does the interface between the  $\bigcirc$  and  $\bigcirc$  phases look like at  $\beta > \beta_c$ ?



- μ<sub>Λ</sub><sup>∓</sup>: Ising model on
   2D cylinder Λ = [[−n, n]] × (ℤ + 1/2)
  - > Boundary conditions:  $\begin{cases}
     upper half-plane \\
    + lower half-plane
    \end{cases}$
  - > Draw a dual-edge  $(u, v)^*$  if  $\sigma_x \neq \sigma_y$ .
- Interface: (max) connected set J of dual-edges separating the infinite + and - components of the boundary.

#### 2D Ising interfaces: roughness

What does the interface between the  $\oplus$  and  $\bigcirc$  phases look like at  $\beta > \beta_c$ ?



2D Ising model w. Dobrushin's boundary conditions μ<sup>+</sup><sub>Λn</sub>:
Interface has a scaling limit: <sup>J</sup>(x/n)/<sub>√Cβn</sub> → Brownian bridge
Interface is *rough*: fluctuations of √n
Maximum M<sub>n</sub> is O<sub>P</sub>(√n), and M<sub>n</sub> - E[M<sub>n</sub>] is also O<sub>P</sub>(√n).
[Higuchi '79], [Dobrushin, Hryniv '97], [Hryniv '98], [Dobrushin, Kotecky, Shlosman '92]

### **3D Ising Interfaces**

- ▶ **Interface**: (max) connected set *J* of faces separating the infinite + and − components of the boundary.



## 3D Ising interfaces: rigidity

- 1.  $\exists$  non-translation invariant  $\mathbb{Z}^3$  Gibbs measures
- 2. Maximum height of  $\mathcal{I}$  is  $O_{\mathbb{P}}(\log n)$ .

### Plus/minus interface in 3D Ising

- M<sub>n</sub> = maximum height of the interface J in 3D Ising with Dobrushin's boundary conditions.
  - > [Dobrushin '72]:  $\exists C_{\beta} \text{ s.t. } \mu_{\Lambda}^{\mp} (M_n \leq C_{\beta} \log n) \rightarrow 1.$
  - >  $\Rightarrow$  (via straightforward matching order lower bound) the maximum of the interface has **order** log *n*.
- Asymptotics of the maximum (LLN)? Tightness?
- Structure of interface conditioned on LDs?
  - conditioned on (x<sub>1</sub>, x<sub>2</sub>, 0) belonging to a "pillar" reaching height h, what can we say about that pillar, e.g., its surface area? its volume? xy-coords of its tip?

# 3D Ising Roughening phase transition

#### • <u>Conj.</u>: *Roughening phase transition in* 3**D** at $\beta_R \approx 0.83$ :



"Evidence that  $T_R < T_c(3)$  strictly was obtained by Weeks et al. (1973) ... To this day, there still appears to be no proof that  $T_R < T_c(3)$ ." [Abraham '86]

# Related work on 3D Ising interfaces

- Alternative simpler argument by [van Beijeren '75] for [Dobrushin '72]'s result on the rigidity of the 3D Ising interface.
- Rigidity argument extended to
  - Widom-Rowlinson model [Bricmont, Lebowitz, Pfister, Olivieri '79a], [Bricmont, Lebowitz, Pfister '79b, '79c]
  - Super-critical percolation / random cluster model conditioned to have interfaces [Gielis, Grimmett '02]
- Tilted interfaces: [Cerf, Kenyon '01] (zero temperature, 111 interface), [Miracle Sole '95] (1-step interface), [Sheffield '03] (|∇φ|<sup>p</sup> models), many works on the conjectured behavior, related to the (non-)existence of non-translational invariant Gibbs measures
- Wulff shape, large deviations for the magnetization, surface tension [Pisztora '96], [Bodineau '96], [Cerf, Pisztora '00], [Bodineau '05], [Cerf '06]
- Plus/minus phases away from the interface [Zhou '19]



#### Approximating random surface models

- DEFINITION: (2+1)-dimensional SOS above a wall [Temperley '52] probability measure on height functions  $\phi$  on  $\Lambda = \{1, ..., L\}^2$ with  $\Lambda \ni x \mapsto \phi_x \in \mathbb{Z}$  and  $\phi_x = 0$  for  $x \notin \Lambda$  given by  $\pi_{\Lambda}(\phi) = \frac{1}{Z_{\beta,\Lambda}} \exp\left(-\beta \sum_{x \sim y} |\phi_x - \phi_y|\right)$ > no bubbles (distribution on interfaces) > no overhangs (interface = height function)
- $|\nabla \phi|^p$  model:  $\pi_{\Lambda}(\phi) \propto e^{-\beta \sum_{x \sim y} |\phi_x \phi_y|^p}$  for  $p \ge 1$ (p = 1 is SOS; p = 2 is the discrete Gaussian;  $p = \infty$  is RSOS)

### SOS: roughening transition

• (2+1)**D** surface *delocalized* (rough) at  $\beta \ll 1$ :  $Var(\phi_x) \approx \log n$ ,  $\mathbb{E} \phi_x \phi_y \approx \log |x - y|$ [Fröhlich, Spencer ('81), ('83)]

• (2+1)**D** surface *localized* (rigid) at  $\beta \gg 1$ : Var $(\phi_x) \approx 1$ ,  $\mathbb{E}\phi_x \phi_y \simeq e^{-c|x-y|}$ 



[Gallavotti, Martin-Löf, Miracle-Solé ('73)], [Brandenberger, Wayne ('82)]

Maximum  $M_n$  of the rigid (2+1)**D** surface at  $\beta \gg 1$ :  $\geq \mathbb{E}[M_n] \approx \beta^{-1} \log n$  [Bricmont, El-Mellouki, Fröhlich '86]  $\geq M_n = \frac{1}{2\beta} \log n + O(1)$  (+*shape theorem, with and w/o a floor*) [Caputo, L., Martinelli, Sly, Toninelli '12, '14, '16]

## Maximum dominated by LD at origin

- Maximum governed by  $\infty$ -volume large deviation rate  $\lim_{h \to \infty} -\frac{1}{h^a} \log \pi_{\mathbb{Z}^2}(\phi_x \ge h)$ which is tied to the shape of *tall pillars*:
- [L., Martinelli, Sly '16]: general  $|\nabla \phi|^p$  surface models: SOS **RSOS** p $\left(2\pi\beta + o(1)\right)\frac{h^2}{\log h}$  $(4\beta + 2\log\frac{27}{16} + \varepsilon_{\beta})h^2$  $4\beta h + \varepsilon_{\beta}$  $(c_p\beta + o(1))h^p$  $=\beta h^2$

## LLN for the maximum

- Recall:  $M_n$  = maximum of the interface  $\mathcal{I}$  in 3D Ising with Dobrushin's b.c.; [Dobrushin '72]:  $M_n = O_P(\log n)$ .
- <u>THEOREM</u>: ([Gheissari, L. '19a])

There exists  $\beta_0$  such that for all  $\beta > \beta_0$ ,

$$\lim_{n \to \infty} \frac{M_n}{\log n} = \frac{2}{\alpha} , \qquad in \text{ probability,}$$

where

$$\alpha(\beta) = \lim_{h \to \infty} -\frac{1}{h} \log \mu_{\mathbb{Z}^3}^{\mp} \left( (0,0,0) \stackrel{+}{\longleftrightarrow} (\mathbb{R}^2 \times \{h\}) \right)$$
  
and satisfies  $\alpha(\beta)/\beta \to 4$  as  $\beta \to \infty$ .

> existence of the limit  $\alpha$  nontrivial: relies on new results on the interface shape conditioned on LD.

LLN

## Tightness and tails for the maximum

• <u>THEOREM</u>: ([Gheissari, L. '19b])

- 1. There exists  $\beta_0$  such that for all  $\beta > \beta_0$ ,  $M_n - \mathbb{E}M_n = O_{\mathbf{P}}(1).$
- Tightness Gumbel tails 2. There exist C,  $\overline{\alpha}$ ,  $\alpha$  such that  $\forall r \geq 1$ ,  $\begin{cases} e^{-(\overline{\alpha}r+C)} \leq \mu_n^{\overline{+}}(M_n \geq \mathbb{E}[M_n] + r) \leq e^{-(\underline{\alpha}r-C)} \\ e^{-e^{\overline{\alpha}r+C}} \leq \mu_n^{\overline{+}}(M_n \leq \mathbb{E}[M_n] - r) \leq e^{-e^{\underline{\alpha}r-C}} \end{cases}$ where  $\bar{\alpha}/\alpha \to 1$  as  $\beta \to \infty$ .

#### PROPOSITION: ([Gheissari, L. '19b])

There *does not* exist a deterministic sequence  $(m_n)$  s.t.  $(M_n - m_n)$  converges weakly to a nondegenerate law.

## Pillars in the 3D Ising interface



Goal: second moment argument for  $M_n = \max_{x} \operatorname{ht} (\mathcal{P}_x)$ 

# Decomposition of pillars

- <u>DEFINITION</u>: [cutpoint of the pillar] a cell  $v_i$  which is the only intersection of the pillar  $\mathcal{P}_x$  with a horizontal slab.
- <u>DEFINITION</u>: [pillar **increment**]  $\chi_i$  = segment of  $\mathcal{P}_x$  bounded between the cutpoints  $v_i, v_{i+1}$  (inclusively).
- Decompose  $\mathcal{P}_x$  into:
  - 1. *increments*  $(X_1, X_2, ..., X_T)$
  - 2. *base*  $\mathfrak{B}_x = \mathcal{P}_x \cap (\mathbb{R}^2 \times [0, \operatorname{ht}(v_1)])$

#### Decomposition of pillars

- Typical increments are perturbations (with exponential tails) of the trivial increment
- But: (rarely) they can be quite complex...

 $\chi_8$ 

 $\chi_6$ 

 $\chi_4$ 

 $\chi_2$ 

 $X_{q}$ 

 $X_{7}$ 

 $\chi_{10}$ 

# Key ingredient: shape of tall pillars

• THEOREM: ([Gheissari, L. '19a,'19b])

 $\exists \beta_0$  s.t. for  $\forall \beta > \beta_0$  and every  $x = (x_1, x_2, 0)$  is in the bulk (distance  $\geq h^2$  from  $\partial \Lambda$ ), conditional on  $ht(\mathcal{P}_x) \geq h$ ,

- 1. W.h.p.  $\mathcal{P}_{x}$  has at least  $(1 \epsilon_{\beta})h$  increments.
- 2.  $\forall t$ , the size of the increment  $X_t$  has an exponential tail.
- 3. Base  $\mathfrak{B}_{\chi}$  has an exponential tail on its diameter, height.

• Used to decorrelate  $ht(\mathcal{P}_x)$  and  $ht(\mathcal{P}_y)$  as part of the 2nd moment argument.



#### Cluster expansion & Dobrushin's approach

- Peierls' classical phase transition argument eliminates bubbles, but is not enough to "flatten" the interface.
- Instead: do Peierls on *interfaces* via *cluster expansion*: <u>THEOREM</u>: ([Minlos, Sinai '67], [Dobrushin '72])

$$\mu(\mathcal{I}) \propto \exp\left[-\beta|\mathcal{I}| + \sum_{f \in \mathcal{I}} \mathbf{g}(f, \mathcal{I})\right]$$

where  $\mathbf{g} \leq K_{\mathbf{0}}$  and  $|\mathbf{g}(f,\mathcal{I}) - \mathbf{g}(f',\mathcal{I}')| \leq e^{-\bar{c} \mathbf{r}(f,\mathcal{I},f',\mathcal{I}')}$ .

• [Dobrushin '72] decomposed  $\mathcal{I}$  into groups of walls & ceilings, then defined a map that deletes a wall around x, flattening  $\mathcal{I}$  (2D analysis).

#### The interface map $\Psi_{x,t}$



 $\Psi_{x,t}: \{\mathcal{I}: \operatorname{ht}(\mathcal{P}_x) \ge h, |\mathfrak{B}_x| \lor |\mathcal{X}_t| \ge r\} \to \{\mathcal{I}: \operatorname{ht}(\mathcal{P}_x) \ge h\} \text{ s.t.}$ 

- 1. Energy control:  $\mu(\mathcal{I}) \leq e^{-c\beta(|\mathcal{I}| |\Psi_{x,t}(\mathcal{I})|)} \mu(\Psi_{x,t}(\mathcal{I}))$
- 2. Multiplicity control: at most  $e^{c\ell}$  many  $\mathcal{I} \in \Psi_{x,t}^{-1}(\mathcal{I}')$  such that  $|\mathcal{I}| |\mathcal{I}'| = \ell$ .

## Challenges due to interacting pillars

- The map  $\Psi_{x,t}$  induces
  - 1. horizontal shifts
  - 2. vertical shifts (down & up)



- The pillar P<sub>x</sub> to hit a nearby P<sub>y</sub>
   (possibly making the map not well-defined)
- The pillar may get very close to a nearby P<sub>y</sub> and heavily interact with it (destroying the energy control).

## A basic $\Psi_{x,t}$ for controlling increments

- Target the structure of the increment X<sub>t</sub> by:
  - > straightening  $X_t$  if its size is too large.
  - > straightening any
    other increment X<sub>s</sub>
    for s ≥ t whose size
    is at least
     e<sup>c|s-t|</sup>
    (too large w.r.t. X<sub>t</sub>).



# A basic $\Psi_{x,t}$ for controlling increments

- Base is delicate: incorporates interaction with other nearby pillars in the interface...
- Trying to extend the definition of the base so as to rule out such interactions gives an O(log h) error on its size: sufficient for LLN but not for tightness.



# An algorithmic procedure to define $\Psi_{x,t}$

#### • Defining $\Psi_{x,t}$ :

- ∀ *j* ≥ 1, determine whether
   to straighten  $\mathcal{P}_x$  at the
   increment  $\mathcal{X}_j$ . If so:
  - $\forall y \neq x$ , determine whether this action may cause  $\mathcal{P}_x$  to draw to closely to  $\mathcal{P}_y$ . If so, delete  $\mathcal{P}_y$  as well.
- Delicate balance between deleting too little (energy control) and deleting too much (multiplicity control).

#### Algorithm 1: The map $\Psi_{x,t}$

| Let $\{\tilde{W}_y : y \in \mathcal{L}_{0,n}\}$ be the standard wall representation of the inter-     | rface $\mathcal{I} \setminus \mathcal{S}_x$ . Also let $\mathcal{O}_{v_1}$ be the |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| nested sequence of walls of $v_1$ , so that $\theta_{ST}O_{v_1} = \tilde{\mathfrak{W}}_{v_1}$ .       |                                                                                   |
| // Base modification                                                                                  |                                                                                   |
| 2 Mark $[x] = \{x\} \cup \partial_0 x$ and $\rho(v_1)$ for deletion (where $\partial_0 x$ denotes the | e four faces in $\mathcal{L}_0$ adjacent to $x$ ).                                |

- - Let  $y^{\dagger}$  be the index of a wall that intersects  $(\mathcal{P}_x \setminus \mathcal{O}_{v_1}) \cap \mathcal{L}_{h^{\dagger}}$  and mark  $y^{\dagger}$  for deletion.

// Spine modification (A): the 1st increment

| Set $\mathfrak{s}_1 \leftarrow 0$ and $y_A^* \leftarrow \emptyset$ .                                                                    |         |
|-----------------------------------------------------------------------------------------------------------------------------------------|---------|
| for $j = 1$ to $\mathscr{T} + 1$ do                                                                                                     |         |
| Let $s \leftarrow \mathfrak{s}_j$ and $\mathfrak{s}_{j+1} \leftarrow \mathfrak{s}_j$ .                                                  |         |
| $ \qquad \qquad$ | // (A1) |
| $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                |         |
| if $\mathfrak{D}_x(\tilde{W}_y, j, -v_{s+1}, 0) \leq \mathfrak{m}(\tilde{W}_y)$ for some y then                                         | // (A2) |
| Let $\mathfrak{s}_{j+1} \leftarrow j$ and mark for deletion every y for which (A2) holds.                                               |         |
| if $\mathfrak{D}_x(\tilde{W}_u, j, -v_{s+1}, 0) \le (j-1)/2$ for some $y$ then                                                          | // (A3) |
| Let $\mathfrak{s}_{j+1} \leftarrow j$ and let $y_A^*$ be the minimal index y for which (A3) holds.                                      |         |
| Let it is and more at fan deletion                                                                                                      |         |

#### Let $j^* \leftarrow \mathfrak{s}_{\mathscr{T}+2}$ and mark $y^*_A$ for deletion.

// Spine modification (B): the t-th increment

| if $t > j^*$ then                                                                                             |         |
|---------------------------------------------------------------------------------------------------------------|---------|
| Set $\mathfrak{s}_t \leftarrow t-1$ and $y_B^* \leftarrow \emptyset$ .                                        |         |
| $\mathbf{for}\;k=t\;\mathbf{to}\;\mathscr{T}+1\;\mathbf{do}$                                                  |         |
| Let $s \leftarrow \mathfrak{s}_k$ and $\mathfrak{s}_{k+1} \leftarrow \mathfrak{s}_k$ .                        |         |
| $ \text{if}  \mathfrak{m}(\mathscr{X}_k) \geq k-t  \textbf{then} $                                            | // (B1) |
| Let $\mathfrak{s}_{k+1} \leftarrow k$ .                                                                       |         |
| if $\mathfrak{D}_x(\tilde{W}_y, j, -v_{s+1}, v_t - v_{j^*+1}) \leq \mathfrak{m}(\tilde{W}_y)$ for some y then | // (B2) |
| Let $\mathfrak{s}_{k+1} \leftarrow k$ and mark for deletion every y for which (B2) holds.                     |         |
| if $\mathfrak{D}_x(\tilde{W}_y, j, -v_{s+1}, v_t - v_{i^*+1}) \leq (k-t)/2$ for some y then                   | // (B3) |
| Let $\mathfrak{s}_{k+1} \leftarrow k$ and let $y_B^*$ be the minimal index y for which (B3) holds.            |         |
|                                                                                                               |         |
| Let $k^- \leftarrow \mathfrak{s}_{\mathcal{T}+2}$ and mark $y_B^-$ for deletion.                              |         |
| else                                                                                                          |         |
| Let $k^* \leftarrow j^*$ .                                                                                    |         |

6 for each index  $y \in \mathcal{L}_{0,n}$  marked for deletion do delete  $\tilde{\mathfrak{F}}_y$  from the standard wall representation  $(\tilde{W}_y)$ .

- 7 Add a standard wall  $W_x^{\mathcal{J}}$  consisting of  $ht(v_1) \frac{1}{2}$  trivial increments above x.
- ${\bf s}\,$  Let  ${\cal K}$  be the (unique) interface with the resulting standard wall representation.

9 Denoting by  $(\mathscr{X}_i)_{i\geq 1}$  the increment sequence of  $\mathcal{S}_x$ , set

$$\mathcal{S} \leftarrow \begin{cases} \underbrace{\left(\underbrace{X_{\mathcal{S}}, X_{\mathcal{S}}, \dots, X_{\mathcal{S}}}_{ht(v_{j^*+1})-ht(v_1)}, \underbrace{X_{j^*+1}, \dots, X_{t-1}, \underbrace{X_{\mathcal{S}}, X_{\mathcal{S}}, \dots, X_{\mathcal{S}}}_{ht(v_{k^*+1})-ht(v_t)}, \underbrace{X_{\mathcal{S}}, X_{\mathcal{S}}, \dots, X_{\mathcal{S}}}_{ht(v_{j^*+1})-ht(v_t)}, \underbrace{X_{\mathcal{S}}, X_{\mathcal{S}}, \dots, X_{\mathcal{S}}, \underbrace{X_{\mathcal{S}}, X_{\mathcal{S}}, \dots, X_{\mathcal{S}}, \underbrace{X_{\mathcal{S}}, \dots, X_{\mathcal{S}}}_{ht(v_{j^*+1})-ht(v_t)}, \underbrace{X_{\mathcal{S}}, X_{\mathcal{S}}, \dots, X_{\mathcal{S}}, \underbrace{X_{\mathcal{S}}, \dots, X_{\mathcal{S}}, \underbrace{X_{\mathcal$$

10 Obtain  $\Psi_{x,t}(\mathcal{I})$  by appending the spine with increment sequence  $\mathcal{S}$  to  $\mathcal{K}$  at  $x + (0, 0, \operatorname{ht}(v_1))$ .

#### LLN: sub/super-multiplicativity?

• Important ingredient for the LLN: establishing  $\exists \lim_{h \to \infty} -\frac{1}{h} \log \mu_{\Lambda}^{\mp}(\operatorname{ht}(\mathcal{P}_{x}) \ge h).$ 

Natural route: establish sub/super-multiplicativity: 1. Move from {ht( $\mathcal{P}_x$ )  $\geq h$ } to a comparable event in  $\mathbb{Z}^3$ :  $A_h = \left\{ x \stackrel{+}{\leftrightarrow} \mathbb{R}^2 \times \{h\} \text{ in } \mathbb{R}^2 \times [0, \infty) \right\}.$ 

2. If translation invariant, FKG can typically give  $\mu_{\mathbb{Z}^3}^{\mp} \left( 0 \stackrel{+}{\leftrightarrow} (0,0,h_1 + h_2) \right) \ge \mu_{\mathbb{Z}^3}^{\mp} \left( 0 \stackrel{+}{\leftrightarrow} (0,0,h_1) \right) \mu_{\mathbb{Z}^3}^{\mp} \left( 0 \stackrel{+}{\leftrightarrow} (0,0,h_2) \right).$ 3. But  $\mu_{\mathbb{Z}^3}^{\mp}$  is more negative at height  $h_1$  then at height 0 !

#### LLN: sub-multiplicativity

- To show that  $\mu_{\mathbb{Z}^3}^{\mp}(\operatorname{ht}(\mathcal{P}_x) \ge h)$  is sub-multiplicative:
  - 1. Move from {ht( $\mathcal{P}_{\chi}$ )  $\geq h$ } to a comparable event in  $\mathbb{Z}^3$ :  $A_h = \left\{ x \stackrel{+}{\leftrightarrow} \mathbb{R}^2 \times \{h\} \text{ in } \mathbb{R}^2 \times [0, \infty) \right\}.$
  - Condition on the +-cluster of x in R<sup>2</sup>×[0, h<sub>1</sub>].
     Note: this cluster contains positive information, notably in its intersection with R<sup>2</sup>×{0} ...
- Need to show:
  - > For LLN: effect of this positive information is  $e^{o(h_1)}$ .
  - > *For tightness:* effect of this positive information is *O*(1) !
- Key: structure of  $\mathcal{P}_x$  conditioned on  $\{ht(\mathcal{P}_x) \ge h_1\}$ .

#### $2 \rightarrow 2$ maps: mixing and stationarity

▶ More refined info on shape conditional on  $ht(\mathcal{P}_x) \ge h$ : <u>THEOREM</u>: ([Gheissari, L. '19a])

3. (mixing)  $\forall i, j, \operatorname{Cov}(\mathcal{X}_i, \mathcal{X}_j) \leq C|j-i|^{-100}$ .

4. (stationarity)  $\exists$  stationary distribution  $\nu$  on  $\mathfrak{X}^{\mathbb{Z}}$  such that  $(\dots, \mathcal{X}_{h/2-1}, \mathcal{X}_{h/2}, \mathcal{X}_{h/2+1}, \dots) \xrightarrow[h \to \infty]{} \nu$ 



## CLT for pillar increments

#### • <u>THEOREM</u>: ([Gheissari, L. '19a])

For every  $\kappa$  there exists  $\beta_0(\kappa)$  such that for all  $\beta > \beta_0$ : If  $f: \mathfrak{X} \to \mathbb{R}$  is a non-constant functional on increments s.t.  $f(X) \le \exp[\kappa |X|] \quad \forall X$ 

and  $x = (x_1, x_2, 0)$  is in the bulk, then conditional on  $\mathcal{P}_x$  having at least  $1 \ll T_n \ll n$  increments,

$$\frac{1}{\sqrt{T_n}} \sum_{i \le T_n} (f(\mathcal{X}_i) - \mathbb{E}f(X_i)) \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0, \sigma)$$

for some  $\sigma(\beta, f) > 0$ .

Proof uses a Stein's method treatment of stationary mixing sequences of random variables à la [Bolthausen '82].

#### CLT for location of tip, volume, surface area

#### COROLLARY: ([Gheissari, L. '19a])

Let  $(Y_1, Y_2, ht(\mathcal{P}_x))$  be the location of the tip of the pillar  $\mathcal{P}_x$ . Conditional on  $\mathcal{P}_x$  having at least  $1 \ll T_n \ll n$  increments,  $(Y_1, Y_2, ht(\mathcal{P}_x)) - (x_1, x_2, \lambda T_n) \xrightarrow{d} \mathcal{N}(0, \begin{pmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & (\sigma')^2 \end{pmatrix})$ for some  $\sigma, \sigma' > 0$ .

• CLT also holds, e.g., for the surface area and volume of  $\mathcal{P}_x$ .



#### Open problems

- Open problems on  $M_n$ :
  - > How does the LD quantity  $\alpha$  depend on  $\beta$ ?

 $(know: \alpha = (4 \pm o_{\beta}(1))\beta.)$ 

Is  $\alpha < 4\beta$ , so Ising interfaces are **rougher** than SOS?

- > Asymptotics of  $\mathbb{E}[M_n]$ ? (know:  $\frac{2}{\alpha_{\beta}} \log n + o_n(\log n)$ .)
- Major open problems on the interface *J*:
  - > **Roughness** of *tilted* interfaces? (*conj*.:  $Var(ht_x(\mathcal{I})) \approx \log n$ )
  - > *Roughening phase transition*? (*conj.*:  $\beta_{\rm R} > \beta_c \Leftrightarrow d = 3$ ).

