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𝜇! 𝜎 =
1

𝑍 𝛽
exp −𝛽+

"∼$

𝟏 %!&%"

} Underlying geometry: finite Λ ⊂ ℤ'.
} Set of possible configurations:

Ω = ±1 !

(each site receives a plus/minus spin)
} Probability of a configuration 𝜎 ∈ Ω

given by the Gibbs distribution:

Ø 𝛽 ≥ 0: the inverse temperature
Ø 𝑍 𝛽 : the partition function
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Ø Underlying geometry: Λ = finite 2D grid.
Ø Set of possible configurations: Ω = ±1 !

Ø Probability of a configuration: 𝜇! 𝜎 = "
# $

exp −𝛽∑%∼'𝟏 (!)("

Local (nearest-neighbor) interactions have macroscopic effects:

𝛽 = 0. 75 𝛽 = 0.88 𝛽 = 1
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} Setting: Λ ⊂ ℤ0 is an 𝑛×𝑛 box with      -plus boundary.
Ø Draw a dual-edge 𝑢, 𝑣 ∗ if 𝜎" ≠ 𝜎#
Ø Bijection between a dual-loop collection 

and the Ising configuration 𝜎.
Ø Induced distribution on the dual-loops:

𝜇!1 𝛾2, 𝛾0, … = 2
3(5) 𝑒

75∑ 9#

} [Peierls ’36]: proof of a phase transition for 𝛽 > 𝛽::
1st moment argument on # of sites inside a     -“island” 
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} Setting: Λ ⊂ ℤ0 is an 𝑛×𝑛 box with     -plus boundary.
} For any 𝜎 containing 𝛾 flip all spins in the interior of 𝛾 :

⇒ 𝜇!1 γ belongs to loop collec+on ≤ 𝑒75|9|.
} For a site 𝑥: at most 𝑒<ℓ contours 𝛾 of length ℓ around 𝑥, 

and each such 𝛾 costs 𝑒75ℓ; overall:
𝜇!1 𝜎" = −1 ≤ 𝑒7> 57? .

bijection

𝜇!* 𝜎 = 𝑍 𝛽 +"𝑒, 𝜇!* 𝜎′ = 𝑍 𝛽 +"𝑒,*$|.|
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} What does the interface between the
and       phases look like at 𝛽 > 𝛽<?

} 𝜇!∓ : Ising model on
Ø 2D cylinder Λ = −𝑛, 𝑛 × (ℤ + $

%)

Ø Boundary conditions: 2− upper half−plane
+ lower half−plane

Ø Draw a dual-edge 𝑢, 𝑣 ∗ if 𝜎" ≠ 𝜎$.

} Interface: (max) connected set ℐ of dual-edges separating 
the infinite + and − components of the boundary.

+ -
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} What does the interface between the
and       phases look like at 𝛽 > 𝛽<?

} 2D Ising model w. Dobrushin’s boundary conditions 𝜇!&
∓ :

Ø Interface has a scaling limit:
ℐ 𝑥/𝑛
𝑐5𝑛

→ Brownian bridge

Ø Interface is rough: fluctuations of 𝑛
Ø Maximum 𝑀B is OC 𝑛 , and 
𝑀B − 𝔼[𝑀B] is also OC 𝑛 .

[Higuchi ‘79], [Dobrushin, Hryniv ‘97], [Hryniv ‘98], 
[Dobrushin, Kotecky, Shlosman ‘92]

+ -
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} 𝜇!∓ : Ising model on
Ø 3D cylinder Λ = −𝑛, 𝑛 0 × (ℤ + $

%)

Ø Boundary conditions: 7− upper half−space
+ lower half−space

Ø Draw a dual-face 𝑢, 𝑣 ∗ if 𝜎" ≠ 𝜎$.

} Interface: (max) connected set ℐ of faces separating 
the infinite + and − components of the boundary.
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} 𝜇!∓ : Ising model on
Ø 3D cylinder Λ = −𝑛, 𝑛 $ × (ℤ + !

")

Ø Boundary conditions: 7− upper half−space
+ lower half−space

} THEOREM: [Dobrushin ‘72] (rigidity of the interface)

} COROLLARY: [Dobrushin ‘72, ‘73] for 𝛽 > 𝛽::

There exists 𝛽: > 0 such that ∀𝛽 > 𝛽: and ∀𝑥2, 𝑥0, ℎ,
𝜇!∓ ℐ ∋ 𝑥2, 𝑥0, ℎ ≤ exp −2D 𝛽ℎ

1. ∃ non-translation invariant ℤD Gibbs measures
2. Maximum height of ℐ is 𝑂C log 𝑛 .
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} 𝑀B = maximum height of the interface ℐ in 3D Ising
with Dobrushin’s boundary conditions.
Ø [Dobrushin ‘72]: ∃𝐶5 s.t. 𝜇!∓ 𝑀B ≤ 𝐶5 log 𝑛 → 1.
Ø ⇒ (via straightforward matching order lower bound) 

the maximum of the interface has order log 𝑛.
} Asymptotics of the maximum (LLN)? Tightness?
} Structure of interface conditioned on LDs?

Ø conditioned on (𝑥2, 𝑥0, 0) belonging to a “pillar” 
reaching height ℎ, what can we say about that pillar, 
e.g., its surface area? its volume?
𝑥𝑦-coords of its tip?
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} Conj.: Roughening phase transition in 3D at 𝛽E ≈ 0.83:

“Evidence that 𝑇# < 𝑇$(3) strictly was obtained by Weeks et al. (1973) … 
To this day, there still appears to be no proof that 𝑇# < 𝑇$(3).“ [Abraham ‘86]

rough (delocalized)
Var(ht% ℐ ) → ∞

ℐ ≈DGFF

rigid (localized)
Var(ht% ℐ ) = 𝑂(1)
max
%
ht% ℐ ≍ log 𝑛
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} Alternative simpler argument by [van Beijeren ‘75] for [Dobrushin ‘72]’s 
result on the rigidity of the 3D Ising interface.

} Rigidity argument extended to
Ø Widom–Rowlinson model [Bricmont, Lebowitz, Pfister, Olivieri ’79a], 

[Bricmont, Lebowitz, Pfister ‘79b, ‘79c]
Ø Super-critical percolation / random cluster model conditioned to 

have interfaces [Gielis, Grimmett ‘02]
} Tilted interfaces: [Cerf, Kenyon ‘01] (zero temperature, 111 interface), 

[Miracle Sole ‘95] (1-step interface), [Sheffield ‘03] ( ∇𝜙 # models), 
many works on the conjectured behavior, related to the (non-)existence 
of non-translational invariant Gibbs measures

} Wulff shape, large deviations for the magnetization, 
surface tension [Pisztora ‘96], [Bodineau ‘96], 
[Cerf, Pisztora ‘00], [Bodineau ’05], [Cerf ‘06]

} Plus/minus phases away from the interface [Zhou ‘19]
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} DEFINITION: (2+1)-dimensional SOS above a wall [Temperley ‘52]

probability measure on height functions 𝜙 on Λ = 1,… , 𝐿 0

with Λ ∋ 𝑥 ↦ 𝜙" ∈ ℤ and 𝜙" = 0 for 𝑥 ∉ Λ given by

𝜋! 𝜙 =
1
𝑍5,!

exp −𝛽+
"∼$

𝜙" − 𝜙$

Ø no bubbles (distribution on interfaces)
Ø no overhangs (interface = height function)

} ∇𝜙 I model: 𝜋! 𝜙 ∝ 𝑒75 ∑!∼" J!7J"
(

for 𝑝 ≥ 1
(𝑝 = 1 is SOS; 𝑝 = 2 is the discrete Gaussian; 𝑝 = ∞ is RSOS)
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} (2+1)D surface delocalized (rough) at 𝛽 ≪ 1:
Var(𝜙") ≍ log 𝑛 , 𝔼 𝜙"𝜙$ ≍ log 𝑥 − 𝑦

[Fröhlich, Spencer (’81), (’83)]

} (2+1)D surface localized (rigid) at 𝛽 ≫ 1:
Var(𝜙") ≍ 1 , 𝔼𝜙"𝜙$ ≃ 𝑒7<|"7$|

[Gallavotti, Martin-Löf, Miracle-Solé (’73)], [Brandenberger, Wayne (’82)]

} Maximum 𝑀B of the rigid (2+1)D surface at 𝛽 ≫ 1:
Ø 𝔼 𝑀B ≍ 𝛽72 log 𝑛 [Bricmont, El-Mellouki, Fröhlich ‘86]

Ø 𝑀B =
2
05 log 𝑛 + 𝑂(1) (+shape theorem, with and w/o a floor)

[Caputo, L., Martinelli, Sly, Toninelli ‘12, ‘14, ‘16]
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} Maximum governed by ∞-volume large deviation rate

lim
K→M

−
1
ℎN
log 𝜋ℤ% 𝜙" ≥ ℎ

which is tied to the shape of tall pillars:
} [L., Martinelli, Sly ‘16]: general ∇𝜙 I surface models: 

4𝛽ℎ + 𝜀$

𝑐/𝛽 + 𝑜(1) ℎ/

2𝜋𝛽 + 𝑜 1
ℎ0

log ℎ
≍ 𝛽ℎ0

4𝛽 + 2 log 01"2+ 𝜀$ ℎ0

1

SOS
𝑝

DG RSOS

2 ∞
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} Recall: 𝑀* = maximum of the interface ℐ in 3D Ising with 
Dobrushin’s b.c.; [Dobrushin ‘72]: 𝑀* = 𝑂+ log 𝑛 .

} THEOREM: ([Gheissari, L. ‘19a])

Ø existence of the limit 𝛼 nontrivial: relies on new 
results on the interface shape conditioned on LD.

There exists 𝛽: such that for all 𝛽 > 𝛽:,

lim
B→M

𝑀B
log 𝑛

=
2
𝛼
, in probability,

where

𝛼 𝛽 = lim
K→M

−
1
ℎ log 𝜇ℤ)

∓ 0,0,0
1

ℝ0× ℎ

and satisfies 𝛼 𝛽 /𝛽 → 4 as 𝛽 → ∞.
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} THEOREM: ([Gheissari, L. ’19b])

} PROPOSITION: ([Gheissari, L. ’19b])

1. There exists 𝛽: such that for all 𝛽 > 𝛽:,
𝑀B−𝔼𝑀B = 𝑂C 1 .

2. There exist 𝐶, |𝛼, }𝛼 such that ∀ 𝑟 ≥ 1,

�
𝑒7(PQR1?) ≤ 𝜇B∓ 𝑀B ≥ 𝔼 𝑀B + 𝑟 ≤ 𝑒7 SQR7?

𝑒7T*+,-. ≤ 𝜇B∓ 𝑀B ≤ 𝔼 𝑀B − 𝑟 ≤ 𝑒7T/+,0.

where |𝛼/}𝛼 → 1 as 𝛽 → ∞.

There does not exist a deterministic sequence 𝑚B s.t.
𝑀B −𝑚B converges weakly to a nondegenerate law.  
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DEFINITION: [𝒫", the pillar at 𝑥 ∈ ℝ$× 0 ]
1. Fill in all the bubbles to obtain the interface ℐ
2. Discard ℝ$× (−∞, 0) from the sites below ℐ
3. The pillar 𝒫" is the remaining component above 𝑥.

Goal: second moment argument for 𝑀* = max
"
ht (𝒫")

𝒫$

𝒫%
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} DEFINITION: [cutpoint of the pillar]
a cell 𝑣V which is the only intersection 
of the pillar 𝒫" with a horizontal slab.

} DEFINITION: [pillar increment]
𝒳V = segment of 𝒫" bounded between 
the cutpoints 𝑣V, 𝑣V12 (inclusively).

} Decompose 𝒫" into:
1. increments 𝒳2, 𝒳0, … ,𝒳W
2. base 𝔅" = 𝒫" ∩ ℝ0× 0, ht v2
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𝒳&'

} Typical increments 
are perturbations 
(with exponential 
tails) of the trivial 
increment

} But: (rarely) 
they can be quite 
complex…

𝔅$
𝒳&

𝒳(

𝒳)
𝒳*

𝒳+
𝒳,
𝒳-

𝒳.

𝒳/
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} THEOREM: ([Gheissari, L. ‘19a,’19b]) 

} Used to decorrelate ht(𝒫") and ht(𝒫$) as 
part of the 2nd moment argument.

∃ 𝛽: s.t. for ∀𝛽 > 𝛽: and every 𝑥 = (𝑥2, 𝑥0, 0) is in the bulk 
(distance ≥ ℎ0 from 𝜕Λ), conditional on ht(𝒫") ≥ ℎ,
1. W.h.p. 𝒫" has at least 1 − 𝜖5 ℎ increments.
2. ∀𝑡, the size of the increment 𝒳Z has an exponential tail.
3. Base 𝔅" has an exponential tail on its diameter, height.
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} Peierls’ classical phase transition argument eliminates 
bubbles, but is not enough to ”flatten” the interface.

} Instead: do Peierls on interfaces via cluster expansion:
THEOREM: ([Minlos, Sinai ‘67], [Dobrushin ‘72])

} [Dobrushin ‘72] decomposed ℐ into groups of walls & ceilings, then 
defined a map that deletes a wall around 𝑥, flattening ℐ (2D analysis).

𝜇 ℐ ∝ exp −𝛽 ℐ ++
[∈ℐ

𝐠 𝑓, ℐ

where 𝐠 ≤ 𝐾𝟎 and 𝐠 𝑓, ℐ − 𝐠 𝑓_, ℐ_ ≤ 𝑒7 ̅< 𝐫([,ℐ,[1,ℐ1).



E. Lubetzky 23

Ψ",Z: ℐ: ht 𝒫" ≥ ℎ, 𝔅" ∨ 𝒳Z ≥ 𝑟 → ℐ: ht 𝒫" ≥ ℎ s.t.

1. Energy control:  𝜇 ℐ ≤ 𝑒7<5 ℐ 7 b!,3 ℐ 𝜇 Ψ",Z ℐ

2. Multiplicity control: at most 𝑒<ℓ many ℐ ∈ Ψ",Z72 ℐ_
such that ℐ − ℐ_ = ℓ.

Ψ$,1
𝒳1

𝑥
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} The map Ψ",Z induces
1. horizontal shifts
2. vertical shifts (down & up)

} The pillar 𝒫" to hit a nearby 𝒫$
(possibly making the map not well-defined)

} The pillar may get very close to a nearby 𝒫$
and heavily interact with it
(destroying the energy control).
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} Target the structure of 
the increment 𝒳Z by: 
Ø straightening 𝒳Z if 

its size is too large.
Ø straightening any 

other increment 𝒳d
for 𝑠 ≥ 𝑡 whose size 
is at least
𝑒<|d7Z|

(too large w.r.t. 𝒳Z).
𝒳1

𝒳2
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} Base is delicate: incorporates interaction with other 
nearby pillars in the interface…

} Trying to extend the definition of the base so as to rule 
out such interactions gives an 𝑂(log ℎ) error on its size: 
sufficient for LLN but not for tightness.
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} Defining Ψ",Z : 
Ø ∀ 𝑗 ≥ 1, determine whether 

to straighten 𝒫" at the 
increment 𝒳-. If so:
§ ∀𝑦 ≠ 𝑥, determine 

whether this action may 
cause 𝒫" to draw to 
closely to 𝒫$. If so, 
delete 𝒫$ as well.

} Delicate balance between 
deleting too little (energy 
control) and deleting too 
much (multiplicity control).
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} Important ingredient for the LLN: establishing

∃ lim
K→M

−
1
ℎ
log 𝜇!∓ ht 𝒫" ≥ ℎ .

} Natural route: establish sub/super-multiplicativity:
1. Move from ht 𝒫" ≥ ℎ to a comparable event in ℤD:

𝐴K = 𝑥
1
ℝ0× ℎ in ℝ0×[0,∞) .

2. If translation invariant, FKG can typically give
𝜇ℤ%
∓ 0

*
(0,0, ℎ" + ℎ0) ≥ 𝜇ℤ%

∓ 0
*
(0,0, ℎ") 𝜇ℤ%

∓ 0
*
(0,0, ℎ0) .

3. But 𝜇ℤ)
∓ is more negative at height ℎ2 then at height 0 !
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} To show that 𝜇ℤ)
∓ ht 𝒫" ≥ ℎ is sub-multiplicative:

1. Move from ht 𝒫" ≥ ℎ to a comparable event in ℤD:
𝐴K = 𝑥

1
ℝ0× ℎ in ℝ0×[0,∞) .

2. Condition on the +-cluster of 𝑥 in ℝ0×[0, ℎ2].
Note: this cluster contains positive information, 
notably in its intersection with ℝ0× 0 …

} Need to show:
Ø For LLN: effect of this positive information is 𝑒.(/!).
Ø For tightness: effect of this positive information is 𝑂(1) !

} Key: structure of 𝒫" conditioned on ht 𝒫" ≥ ℎ2 .
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} More refined info on shape conditional on ht(𝒫") ≥ ℎ:
THEOREM: ([Gheissari, L. ‘19a])
3. (mixing) ∀𝑖, 𝑗, Cov 𝒳V, 𝒳e ≤ 𝐶 𝑗 − 𝑖 72::.
4. (stationarity) ∃ stationary distribution 𝜈 on 𝔛ℤ such that

… ,𝒳K/072, 𝒳K/0, 𝒳K/012, … K→M
𝜈

mixing 2 → 2map

stationarity 2 → 2 map
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} THEOREM: ([Gheissari, L. ‘19a])

} Proof uses a Stein’s method treatment of stationary mixing 
sequences of random variables à la [Bolthausen ‘82].

For every 𝜅 there exists 𝛽:(𝜅) such that for all 𝛽 > 𝛽::
If 𝑓: 𝔛 → ℝ is a non-constant functional on increments s.t.

𝑓 𝑋 ≤ exp 𝜅 𝑋 ∀𝑋
and 𝑥 = (𝑥2, 𝑥0, 0) is in the bulk, then conditional on 𝒫"
having at least 1 ≪ 𝑇B ≪ 𝑛 increments,

1
𝑇B
+
VhW&

𝑓 𝒳V − 𝔼𝑓(𝑋V)
i
𝒩(0, 𝜎)

for some 𝜎(𝛽, 𝑓) > 0.
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} COROLLARY: ([Gheissari, L. ’19a])

} CLT also holds, e.g., for the 
surface area and volume of 𝒫".

Let 𝑌2, 𝑌0, ht 𝒫" be the location of the tip of the pillar 𝒫". 
Conditional on 𝒫" having at least 1 ≪ 𝑇B ≪ 𝑛 increments,

𝑌2, 𝑌0, ht 𝒫" − 𝑥2, 𝑥0, 𝜆𝑇B
𝑇B

i
𝒩 0,

for some 𝜎, 𝜎_ > 0.

𝝈𝟐 𝟎 𝟎
𝟎 𝝈𝟐 𝟎
𝟎 𝟎 𝝈" 𝟐
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} Open problems on 𝑀B :
Ø How does the LD quantity 𝛼 depend on 𝛽?

(know: 𝛼 = 4 ± 𝑜5 1 𝛽.)
Is 𝛼 < 4𝛽, so Ising interfaces are rougher than SOS?

Ø Asymptotics of 𝔼[𝑀B]? 
(know: 0

Q4
log 𝑛 + 𝑜B log 𝑛 .)

} Major open problems on the interface ℐ:
Ø Roughness of tilted interfaces? (conj.: Var(ht% ℐ ) ≍ log 𝑛)
Ø Roughening phase transition? (conj.: 𝛽5 > 𝛽6 ⟺ 𝑑 = 3).
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