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3D Ising interfaces

» Consider surfaces generated as follows:
- _ 2
> 3D cylinder A = [-n,n]* X (Z +2)
> 0 is a 2-coloring of the vertices:
@ upper half-space

= boundary vertices: {

@ lower half-space

= internal vertices:  arbitrarily (for now).

» Draw a dual-face (u,v)* if o, # o,.

» Interface: (max) *-connected component
J of dual-faces separating the boundary.
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3D Ising interfaces (ctd.)

sampled via the distribution:

o) xexp (=191 + ) g(/.9)

fed

B > B > 0: inverse temperature (large, fixed). B
> 8(+,-): some complicated function, yet satisfying

2) 18(f,7) —g(f", 90| < e if B.(f,7) = B.(f',9")

for absolute constants Co, K-




Definition: the classical Ising model

» Underlying geometry: finite A c Z%.

» Set of possible configurations: Q = {+1}*

» Probability of a configuration o € Q)
given by the Gibbs distribution: I

( .UA(O-) oK exp( b 2 1{0'x-‘#0'y} W

x~y

B <Bc

B =0.75 B =0.88




2D Ising interfaces

» uf : Ising model on 2D cylinder A = [-n,n] x (Z + )

iy half-pl
> Boundary conditions: {e upper half-plane

@ lower half-plane

> Draw a dual-edge (u,v)* if g, # 0,.

» Interface: connected component 7 of dual-edges that
separates the the boundary components. :

» Known [Higuchi ‘79], [Greenberg, loffe “95], ST
[Dobrushin, Hryniv ‘97], [Hryniv ‘98], ‘
| Dobrushin, Kotecky, Shlosman “92] :

J(x/n)

> Interface has a scaling limit:

— Brownian bridge

CBTL

» Maximum M,, is Op(y/n), and M,, — E[M,,] is also Op(1/n).




3D Ising interfaces

» uf : Ising model on 3D cylinder A = [-n,n]? x (Z + >

e half—pl
> Boundary conditions: © upper half-plane
@ lower half-plane

» Draw a dual-face (u,v)* if o, # o,,.

» Interface: maximal *-connected component J of
dual-faces that separates the boundary components.

» [Minlos, Sinai “67],[Dobrushin “72]: (cluster expansion)
[ Mi(j) x e PlUt2res8(F7) £y large 1

(for a uniformly bounded “local” g as described above)
> Via this: Dobrushin showed the interface, unlike 2D, is rigid.




Related work on 3D Ising interfaces

» Alternative simpler argument by [van Beijeren "75] for
|Dobrushin “72]’s result on the rigidity of the 3D Ising interface.

» Rigidity argument extended to

> Widom-Rowlinson model [Bricmont, Lebowitz, Pfister, Olivieri "79a],
[Bricmont, Lebowitz, Pfister “79b, “79c]

> Super-critical percolation / random cluster model conditioned to
have interfaces [Gielis, Grimmett “02]

» Tilted interfaces: [Cerf, Kenyon ‘01] (zero temp, 111 interface),
[Miracle Sole “95] (1-step interface), [Sheffield ‘03] (|Ve|P models),
many works on the conjectured behavior, related to the
(non-)existence of non-translational invariant Gibbs measures

/

» Wulff shape, large deviations for the magnetization,
surface tension [Pisztora ‘96|, [Bodineau "96],
|Cerf, Pisztora ‘00], [Bodineau "05], [Cerf “06]




Plus/minus interface in 3D Ising

» Describing the 3D Ising interface J :
> Height fluctuations at the origin (or in the bulk)?
> Correlation between height oscillations?
> Maximum height: Asymptotics (LLN)? Tightness?

» Our focus: (Approx) Domain Markov Property for J:
What does the interface look like if we condition on its
face set outside of a level line?




Motivation: entropic repulsion

» Despite the penalizing energy, if the interface 4 .
is constrained to be nonnegative, it should @\\e\

propel itself to height h,, > 1 to gain entropy. ‘*“\%&%
» [Caputo, L., Martinelli, Sly, Toninelli ‘14, “16]: T
detailed picture for the (2+1)D Solid-On-Solid model

which approximates low temperature 3D Ising; e.g.,
THEOREM [1:2:3 for the maximum with entropic repulsion)]:

' Let M,, = max of the unconstrained surface.
Let H,, = height of origin and M,, = maximum when
restricting the surface to be > 0. Then 3 h,= logn s.t.

Ay [hy—1,  Myp/hy—2, My/hy—3

» In 3D Ising: a DMP for level lines would give “half the proof”




Domain Markov Property

» DMP: V subset of sites S, the conditional law of the model
qiven the values on 0S gives the same model on S with these
boundary conditions (BC), independently of S°.

» Holds for Ising spin configurations (MRF).

» Fundamental feature in many (2+1)D height function
models (viewed as random surfaces) such as DGFF.

4 Example: |Vg0|p model (Solid—On—Solid/ Discrete Gaussian/ )

> ¢ : [-n,n]* > Z height function.

> (@) < exp(—p Lyl (x) — (»)|P) with BC 0.
> Conditioning on ¢ (dS) = h gives n? (BC h)



(No) DMP for Ising interfaces

» In SOS (etc.): conditioning on an h-level line shifts by h

» Fails to hold for Ising model interfaces:
the finite components (“bubbles”) of the Ising model,
hidden from 7, carry the interaction through 9S.

» 2D Ising interfaces : Ornstein-Zernike theory for ‘
approximate DMP at high temperature (low: duality). I

» 3D Ising interfaces: no analog at low temperature
(interfaces are surfaces rather than curves).

» We will show an approximate DMP for the height
oscillations of 3 when 98§ is a level line.




Plus/minus interface in 3D Ising

» Rigqidity of the interface ([Dobrushin “72]): -

There exists o > 0 such that Vf > [y and Vx4, x5, k,
1AW 0 G, x) X[k, 0) # 8) < exp(—5 Bk) |

» Consequently: M;, = maximum height of 7 satisfies
| > ,uj_{(Mn < (g logn) — 1 for any Cp>6/B. l‘
I » Recently: [Gheissari, L. “19a, “19b] |

> Identified the correct exponential rate above:

1 _
3 lim ——logux (7 N (xq,x,) X[k, ) # @) =:a B
\/ k—oo k 4
= > Led to a LLN for the maximum M,,.

> Subsequently (via more subtle analysis): tightness.




LLN and tightness for the maximum

» M, = maximum of the interface 7 in 3D Ising;
|Dobrushin ‘72]: M,, = Op(logn).

» THEOREM: (|Gheissari, L. “19a, “19b])

There exists [ such that for all 5 > [,

1. M, /logn — 2/a in probability for %
1

— +
a(B) = }11—{?0 —Elog ‘Ll%_3 ((O,O,O)@M(sz{h}))
2. M, —EM, = 0p(1),and EM,, = m; + O(1) for an

explicit deterministic sequence (1m;,).
3. 3dC,csuchthatV k € Z,

o —(4B+0)k - .
g=Ce (FTO) <ut(M,<m};—k)<e

_Ce_(4‘B_C)k

*existence of the limit a is nontrivial

~ - Eluberk



Level lines in 3D Ising interface

» By [Dobrushin '72] : w.h.p., 0.99 of faces x € [—n,n]* have
exactly 1 horizontal face of 7 in xXZ; gives rise to level sets.

» What if we condition on y = 0§ being a level line?

» Existing estimates fail (e.g., TV decorrelation [Dobrushin "72]
|[Bricmont, Lebowitz, Pfister 79], or viewing it as a tilt of ,u;fxz via
cluster expansion/Pirogov-Sinai ([Holicky, Zahradnik "93]):

> The R-N derivative is e¢?! (destroys the bound).




i

Approximate DMP for maximum

» THEOREM: (|Gheissari, L. "20+])

There exists [, such that for all f > [, there exist C, ¢
such that V k € Z, if y,, has interior S with area s > |y, |**,

oG L _ce-@B-Ok

<put(Mg—h<mi;—k|F )<e
where 7, = {J N (S°XZ); vy, is a height—h level line} .




Prerequisite: rigidity in a level line

» To address the maximum in a level line, first we *
would need an analog of Dobrushin’s rigidity
and exponential tails within the level line.

» THEOREM: (|Gheissari, L. "20+])

There exists [, such that for all § > 5, if ,, 1s a closed simple
curve with interior S, then for V(x,,x,) € S and h, k,

Ui (90 (e, x)X[h + k,0) = @ | F,) < exp(—(48 — C)k)
where 7, = {7 N (§°XZ); v, is a height=h level line} .

\ \

/I

@ > Crucially: no restriction on (xq, x5)to be far from 0S.




Reviewing Dobrushin’s argument

» Notation: L, = R* x {0} ; © = projection onto LO o
» DEFINITION: [ceiling and walls]
(1. Ceiling face : a horizontal face f € 7 such that

n(f) % f) V' # f.

Ceiling C : connected component of ceiling faces.

C 5 Wall face : all other faces. \
Wall W : connected component of wall faces.

\

(e R




Reviewing Dobrushin’s argument

» DEFINITION: [ceiling and walls]

(1 Ceiling face : a horizontal face f € J with n(f") # n(f) Vf' # f. ’
Ceiling C : connected component of ceiling faces.

2. Wall face : all other faces.
Wall W : connected component of wall faces.

» FACTS:

1. V ceiling C has a single height.

2. Vwall W: m(W) is connected.

3. Vwallsw = W' (W) nn(W') = .

- \




Reviewing Dobrushin’s argument

» A wall W is standard if 3 7 whose only wall is W.
» FACT: 1: 1 correspondence between interfaces — |

* admissible: walls are disjoint components and so are their projections




Dobrushin’s rigidity argument

» A wall W is standard if 3 7 whose only wallis W.

standardzze every wall W in J;
> delete the wall W, of x;
> “reconstruct” J' from other standard walls.
» Goal: establish for this map ®:

H(j) —C,B| W, |
< e X
ﬂ(q)(j))

1. (Energy bound)

2. (Multiplicity bound) #{J € ®71(3") : |[W,| = £} < et




Dobrushin’s rigidity argument

| recall uf(7) o e P+ Zrer 847 |

» Basic idea: delete the wall W, of x. &
» Energy bound (% < e~ FWxl )
> Gain B[W| from B(I7] — [®(@)])

> Problem: effect on non-deleted
faces that moved due to g...

= The effect of g is local
(decays exp. in distance). |

= BUT: tall nearby walls
can pick up a cost that
cancels our B|W,| gain.

|
o
~



Dobrushin’s rigidity argument

{ vecall ‘u/-l_\-(g) e PlI+Zre; 80F7) \

» Energy bound (% < e FWxl)

» Gain B|Wy| from B(|J] — [®(J)]), but must handle g... }

> ... must also delete tall walls that are close.

» Multiplicity bound (#{7 € ®71(7") : |[W,| =€} <e): 1

> Problem: accounting for the extra walls we deleted...

| » Dobrushin’s criterion: groups of walls: for x,y € L,
Wy ~W, < dlxy)* <max{In ()] [t ()}

a “tall” W, (many faces above x) is easier to group with
y group

» The map P deletes the entire group of walls of W, :
analysis becomes 2D (but too crude for detailed questions).




Proof ideas: rigidity in a ceiling

» Dobrushin’s argument is robust: extended to various
models (Widom-Rowlinson/random cluster/ ...)

BUT: his group-of-walls criterion is more delicate,
used verbatim in all these extensions.

» This criterion will not respect a level line boundary;
l moreover, it might delete the level line wall as part of a i
B group-of-walls (moving us out of our space of

permitted interfaces), breaking the Peierls argument.

» New idea: a one-sided criterion: wall clusters
(say W; is closely nested in a W, if there is a ceiling C of W, B
nesting W, and d(aé, Wl) < |W;|; the wall cluster is obtained
by repeatedly adding closely nested walls.)




Proof ideas: rate function in a ceiling

» If Step I was showing rigidity within a level line, then
Step II would be to obtain the correct rate function a.
» KEY: couple the conditional law of

wt on pillars (local height oscillation
of the interface about a point) to the

| unconditional distribution in /,1%3.

~ | » To doso: we construct a family of
1solated pillars which may be swapped
in a pair of interfaces (a 2 —» 2 map)

» Showing such pillars are typical requires much of the

3 for coupling ‘Ug3 to the conditional /,tf\.
~  machinery of the shape theorem used for tightness.




Some open problems

» Understand the LD rate a(f) = lim —+loguj: ((O,O,O)R%h](ﬂ%zx{h})) ;
> Is it equal to lim — -loguy: ((0,0,0) (R2x{h})) (pure phase) ?
> Is a < 4p7? (“Ising is rougher than SOS”) [Known: a € 4p + C].

» Extensions to other (including non-monotone) models,
e.g. 3D Potts? (new results did not use on FKG).

» Interfaces under tilted BC?




