AMS Fall Eastern Sectional

 Oct 2020Rigidity and LD of 3D Ising interfaces: an approximate Domain Markov property

Eyal Lubetzky
 Courant Institute (NYU)

based on joint works with Reza Gheissari (UC Berkeley)

3D Ising interfaces

- Consider surfaces generated as follows:
> 3D cylinder $\Lambda=[-n, n]^{2} \times\left(\mathbb{Z}+\frac{1}{2}\right)$
$>\sigma$ is a 2 -coloring of the vertices:
- boundary vertices:
(-) upper half-space
(ד) lower half-space
- internal vertices: arbitrarily (for now).
$>$ Draw a dual-face $(u, v)^{*}$ if $\sigma_{u} \neq \sigma_{v}$.
- Interface: (max) *-connected component J of dual-faces separating the boundary.

E. Lubetzky $巛$ NYU|COURANT

3D Ising interfaces (ctd.)

- Goal: understand random interfaces sampled via the distribution:

$$
\mu(\mathcal{J}) \propto \exp \left(-\beta|\mathcal{J}|+\sum_{f \in \mathcal{J}} \mathbf{g}(f, \mathcal{J})\right)
$$

> $\beta>0$: inverse temperature (large, fixed).
$>\mathbf{g}(, \cdot)$: some complicated function, yet satisfying

$$
\begin{aligned}
& \text { 1) } \quad \mathbf{g} \leq K_{\mathbf{0}} \\
& \text { 2) } \quad\left|\mathbf{g}(f, \mathcal{J})-\mathbf{g}\left(f^{\prime}, J^{\prime}\right)\right| \leq e^{-c_{0} \mathbf{r}} \text { if } B_{\mathbf{r}}(f, \mathcal{J}) \cong B_{\mathbf{r}}\left(f^{\prime}, J^{\prime}\right)
\end{aligned}
$$

for absolute constants c_{0}, K_{0}.

Definition: the classical Ising model

- Underlying geometry: finite $\Lambda \subset \mathbb{Z}^{d}$.
- Set of possible configurations: $\Omega=\{ \pm 1\}^{\Lambda}$
- Probability of a configuration $\sigma \in \Omega$ given by the Gibbs distribution:

$$
\mu_{\Lambda}(\sigma) \propto \exp \left(-\beta \sum_{x \sim y} \mathbf{1}_{\left\{\sigma_{x} \neq \sigma_{y}\right\}}\right)
$$

$\beta=0.75$

$\beta=0.88$

2D Ising interfaces

- μ_{Λ}^{\mp} : Ising model on 2D cylinder $\Lambda=[-n, n] \times\left(\mathbb{Z}+\frac{1}{2}\right)$
> Boundary conditions: $\left\{\begin{array}{l}\text { O upper half-plane } \\ \text { (H) lower half-plane }\end{array}\right.$
$>$ Draw a dual-edge $(u, v)^{*}$ if $\sigma_{u} \neq \sigma_{v}$.
- Interface: connected component \mathcal{J} of dual-edges that separates the the boundary components.
- Known [Higuchi '79], [Greenberg, Ioffe '95], [Dobrushin, Hryniv '97], [Hryniv '98],
[Dobrushin, Kotecký, Shlosman '92] :
$>$ Interface has a scaling limit: $\frac{\mathcal{J}(x / n)}{\sqrt{c_{\beta} n}} \rightarrow$ Brownian bridge
\Rightarrow Maximum M_{n} is $\mathrm{O}_{\mathrm{P}}(\sqrt{n})$, and $M_{n}-\mathbb{E}\left[M_{n}\right]$ is also $\mathrm{O}_{\mathrm{P}}(\sqrt{n})$.

3D Ising interfaces

μ_{Λ}^{\mp} : Ising model on 3D cylinder $\Lambda=[-n, n]^{2} \times\left(\mathbb{Z}+\frac{1}{2}\right)$
> Boundary conditions:
$>$ Draw a dual-face $(u, v)^{*}$ if $\sigma_{u} \neq \sigma_{v}$.

- Interface: maximal *-connected component J of dual-faces that separates the boundary components.
- [Minlos, Sinai '67],[Dobrushin '72]: (cluster expansion)

$$
\mu_{\Lambda}^{\mp}(\mathcal{J}) \propto e^{-\beta|\mathcal{J}|+\sum_{f \in \mathcal{J}} \mathbf{g}(f, \mathcal{J})} \quad \text { for large } \beta
$$

(for a uniformly bounded "local" \mathbf{g} as described above)
> Via this: Dobrushin showed the interface, unlike 2D, is rigid.

Related work on 3D Ising interfaces

- Alternative simpler argument by [van Beijeren '75] for [Dobrushin '72]'s result on the rigidity of the 3D Ising interface.
- Rigidity argument extended to
> Widom-Rowlinson model [Bricmont, Lebowitz, Pfister, Olivieri '79a], [Bricmont, Lebowitz, Pfister '79b, '79c]
> Super-critical percolation / random cluster model conditioned to have interfaces [Gielis, Grimmett '02]
- Tilted interfaces: [Cerf, Kenyon '01] (zero temp, 111 interface), [Miracle Sole '95] (1-step interface), [Sheffield '03] ($|\nabla \varphi|^{p}$ models), many works on the conjectured behavior, related to the (non-)existence of non-translational invariant Gibbs measures
- Wulff shape, large deviations for the magnetization, surface tension [Pisztora '96], [Bodineau '96], [Cerf, Pisztora '00], [Bodineau '05], [Cerf '06]

Plus/minus interface in 3D Ising

- Describing the 3D Ising interface \mathcal{J} :
> Height fluctuations at the origin (or in the bulk)?
> Correlation between height oscillations?
> Maximum height: Asymptotics (LLN)? Tightness?
- Our focus: (Approx) Domain Markov Property for I: What does the interface look like if we condition on its face set outside of a level line?

Motivation: entropic repulsion

- Despite the penalizing energy, if the interface is constrained to be nonnegative, it should propel itself to height $h_{n} \gg 1$ to gain entropy.
- [Caputo, L., Martinelli, Sly, Toninelli '14, '16]: detailed picture for the $(2+1)$ D Solid-On-Solid model which approximates low temperature 3D Ising; e.g., THEOREM [1:2:3 for the maximum with entropic repulsion]:
Let $M_{n}=$ max of the unconstrained surface.
Let $\widehat{H}_{n}=$ height of origin and $\widehat{M}_{n}=$ maximum when restricting the surface to be ≥ 0. Then $\exists h_{n}=\log n$ s.t.

$$
\widehat{H}_{n} / h_{n} \xrightarrow{\mathrm{p}} 1, \quad M_{n} / h_{n} \xrightarrow{\mathrm{p}} 2, \quad \widehat{M}_{n} / h_{n} \xrightarrow{\mathrm{p}} 3
$$

" In 3D Ising: a DMP for level lines would give "half the proof"

Domain Markov Property

- DMP: \forall subset of sites S, the conditional law of the model given the values on ∂S gives the same model on S with these boundary conditions (BC), independently of S^{c}.
- Holds for Ising spin configurations (MRF).
- Fundamental feature in many (2+1)D height function models (viewed as random surfaces) such as DGFF.
- Example: $|\nabla \varphi|^{p}$ model (Solid-On-Solid/Discrete Gaussian/ ...): $>\varphi:[-n, n]^{2} \rightarrow \mathbb{Z}$ height function.
$>\pi_{\Lambda}^{0}(\varphi) \propto \exp \left(-\beta \sum_{x \sim y}|\varphi(x)-\varphi(y)|^{p}\right)$ with BC 0.
$>$ Conditioning on $\varphi(\partial S) \equiv h$ gives $\pi_{S}^{h}(\mathrm{BC} h)$.

(No) DMP for Ising interfaces

- In SOS (etc.): conditioning on an h-level line shifts by h
- Fails to hold for Ising model interfaces: the finite components ("bubbles") of the Ising model, hidden from \mathcal{J}, carry the interaction through ∂S.
- 2D Ising interfaces : Ornstein-Zernike theory for approximate DMP at high temperature (low: duality).
- 3D Ising interfaces: no analog at low temperature (interfaces are surfaces rather than curves).
- We will show an approximate DMP for the height oscillations of J when ∂S is a level line.

Plus/minus interface in 3D Ising

- Rigidity of the interface ([Dobrushin '72]):

There exists $\beta_{0}>0$ such that $\forall \beta>\beta_{0}$ and $\forall x_{1}, x_{2}, k$,

$$
\mu_{\Lambda}^{\mp}\left(\mathcal{\jmath} \cap\left(x_{1}, x_{2}\right) \times[k, \infty) \neq \varnothing\right) \leq \exp \left(-\frac{1}{3} \beta k\right)
$$

- Consequently: $M_{n}=$ maximum height of \mathcal{J} satisfies
$>\mu_{\Lambda}^{\mp}\left(M_{n} \leq C_{\beta} \log n\right) \rightarrow 1$ for any $C_{\beta}>6 / \beta$.
- Recently: [Gheissari, L. '19a, '19b]
> Identified the correct exponential rate above:

$$
\exists \lim _{k \rightarrow \infty}-\frac{1}{k} \log \mu_{\Lambda}^{\mp}\left(\mathcal{J} \cap\left(x_{1}, x_{2}\right) \times[k, \infty) \neq \emptyset\right)=: \alpha
$$

$>$ Led to a LLN for the maximum M_{n}.
> Subsequently (via more subtle analysis): tightness.

LLN and tightness for the maximum

- $M_{n}=$ maximum of the interface \mathcal{J} in 3D Ising;
[Dobrushin '72]: $M_{n}=O_{\mathrm{P}}(\log n)$.
- THEOREM: ([Gheissari, L. '19a, '19b])

There exists β_{0} such that for all $\beta>\beta_{0}$,

1. $M_{n} / \log n \rightarrow 2 / \alpha$ in probability for

$$
\alpha(\beta)=\lim _{h \rightarrow \infty}-\frac{1}{h} \log \mu_{\mathbb{Z}^{3}}^{\mp}\left((0,0,0) \underset{\mathbb{R} \times[0, h]\}}{+}\left(\mathbb{R}^{2} \times\{h\}\right)\right)
$$

2. $M_{n}-\mathbb{E} M_{n}=O_{\mathrm{P}}(1)$, and $\mathbb{E} M_{n}=m_{n}^{*}+O(1)$ for an explicit deterministic sequence $\left(m_{n}^{*}\right)$.
3. $\exists C, c$ such that $\forall k \in \mathbb{Z}$,

$$
e^{-C e^{-(4 \beta+C) k}} \leq \mu_{n}^{\mp}\left(M_{n}<m_{n}^{*}-k\right) \leq e^{-c e^{-(4 \beta-C) k}}
$$

* existence of the limit α is nontrivial

Level lines in 3D Ising interface

- By [Dobrushin '72] : w.h.p., 0.99 of faces $x \in[-n, n]^{2}$ have exactly 1 horizontal face of \mathcal{J} in $x \times \mathbb{Z}$; gives rise to level sets.
- What if we condition on $\gamma=\partial S$ being a level line?

- Existing estimates fail (e.g., TV decorrelation [Dobrushin '72] [Bricmont, Lebowitz, Pfister '79], or viewing it as a tilt of $\mu_{S \times \mathbb{Z}}^{\mp}$ via cluster expansion/Pirogov-Sinai ([Holicky, Zahradnik '93]):
$>$ The $\mathrm{R}-\mathrm{N}$ derivative is $e^{C|\gamma|}$ (destroys the bound).

Approximate DMP for maximum

- THEOREM: ([Gheissari, L. '20+])

There exists β_{0} such that for all $\beta>\beta_{0}$, there exist C, c such that $\forall k \in \mathbb{Z}$, if γ_{n} has interior S with area $s>\left|\gamma_{n}\right|^{1.1}$, $e^{-C e^{-(4 \beta+C) k}} \leq \mu_{n}^{\mp}\left(M_{S}-h<m_{S}^{*}-k \mid \mathcal{F}_{\gamma}\right) \leq e^{-c e^{-(4 \beta-C) k}}$ where $\mathcal{F}_{\gamma}=\left\{\mathcal{J} \cap\left(S^{c} \times \mathbb{Z}\right) ; \gamma_{n}\right.$ is a height $-h$ level line $\}$.

Prerequisite: rigidity in a level line

- To address the maximum in a level line, first we would need an analog of Dobrushin's rigidity and exponential tails within the level line.
- THEOREM: ([Gheissari, L. '20+] $)$

There exists β_{0} such that for all $\beta>\beta_{0}$, if γ_{n} is a closed simple curve with interior S, then for $\forall\left(x_{1}, x_{2}\right) \in S$ and h, k,

$$
\mu_{\Lambda}^{\mp}\left(\mathcal{J} \cap\left(x_{1}, x_{2}\right) \times[h+k, \infty) \neq \emptyset \mid \mathcal{F}_{\gamma}\right) \leq \exp (-(4 \beta-C) k)
$$

where $\mathcal{F}_{\gamma}=\left\{\mathcal{J} \cap\left(S^{c} \times \mathbb{Z}\right) ; \gamma_{n}\right.$ is a height $-h$ level line $\}$.
$>$ Crucially: no restriction on $\left(x_{1}, x_{2}\right)$ to be far from ∂S.

Reviewing Dobrushin's argument

- Notation: $\mathcal{L}_{0}=\mathbb{R}^{2} \times\{0\} ; \pi=$ projection onto \mathcal{L}_{0}
- DEFINITION: [ceiling and walls]

1. Ceiling face : a horizontal face $f \in \mathcal{J}$ such that

$$
\pi\left(f^{\prime}\right) \neq \pi(f) \quad \forall f^{\prime} \neq f
$$

Ceiling \mathcal{C} : connected component of ceiling faces.
2. Wall face : all other faces.

Wall \mathcal{W} : connected component of wall faces.

Reviewing Dobrushin's argument

- DEFINITION: [ceiling and walls]

1. Ceiling face : a horizontal face $f \in \mathcal{J}$ with $\pi\left(f^{\prime}\right) \neq \pi(f) \forall f^{\prime} \neq f$. Ceiling \mathcal{C} : connected component of ceiling faces.
2. Wall face : all other faces.

Wall \mathcal{W} : connected component of wall faces.

- FACTS:

1. \forall ceiling \mathcal{C} has a single height.
2. \forall wall $\mathcal{W}: \pi(\mathcal{W})$ is connected.
3. \forall walls $\mathcal{W} \neq \mathcal{W}^{\prime}: \pi(\mathcal{W}) \cap \pi\left(\mathcal{W}^{\prime}\right)=\varnothing$.

Reviewing Dobrushin's argument

- A wall \mathcal{W} is standard if $\exists \mathcal{J}$ whose only wall is \mathcal{W}.
- FACT: 1:1 correspondence between interfaces and admissible* collections of standard walls.

Dobrushin's rigidity argument

- A wall \mathcal{W} is standard if $\exists \mathcal{J}$ whose only wall is \mathcal{W}.
- FACT: 1:1 correspondence between interfaces and admissible collections of standard walls.
- Basic idea: given $x \in \mathcal{L}_{0}$, construct a map Φ : > "standardize" every wall \mathcal{W} in \mathcal{J};
$>$ delete the wall \mathcal{W}_{x} of x;
> "reconstruct" J' from other standard walls.
- Goal: establish for this map Ф:

1. (Energy bound) $\quad \frac{\mu(\mathcal{J})}{\mu(\Phi(\mathcal{J}))} \leq e^{-c \beta\left|\mathcal{W}_{x}\right|}$
2. (Multiplicity bound) $\#\left\{\mathcal{J} \in \Phi^{-1}\left(\mathcal{J}^{\prime}\right):\left|\mathcal{W}_{x}\right|=\ell\right\} \leq e^{c \ell}$

Dobrushin's rigidity argument

- Basic idea: delete the wall \mathcal{W}_{x} of x.
- Energy bound $\left(\frac{\mu(\mathcal{J})}{\mu(\Phi(\mathcal{J}))} \leq e^{-c \beta\left|\mathcal{W}_{x}\right|}\right)$:
$>$ Gain $\beta\left|\mathcal{W}_{x}\right|$ from $\beta(|\mathcal{I}|-|\Phi(\mathcal{I})|)$
> Problem: effect on non-deleted faces that moved due to $\mathbf{g} .$.
- The effect of \mathbf{g} is local (decays exp. in distance).
- BUT: tall nearby walls can pick up a cost that cancels our $\beta\left|\mathcal{W}_{x}\right|$ gain.

Solution: also delete tall walls that are close to \mathcal{W}_{x}.

Dobrushin's rigidity argument

- Energy bound $\left(\frac{\mu(J)}{\mu(\Phi(J))} \leq e^{-c \beta\left|W_{x}\right|}\right)$:
$>\operatorname{Gain} \beta\left|\mathcal{W}_{x}\right|$ from $\beta(|\mathcal{I}|-|\Phi(\mathcal{J})|)$, but must handle $\mathbf{g} \ldots$
$>\ldots$ must also delete tall walls that are close.
- Multiplicity bound $\left(\#\left\{\mathcal{J} \in \Phi^{-1}\left(\mathcal{J}^{\prime}\right):\left|\mathcal{W}_{x}\right|=\ell\right\} \leq e^{c \ell}\right)$:
> Problem: accounting for the extra walls we deleted...
- Dobrushin's criterion: groups of walls: for $x, y \in \mathcal{L}_{0}$, $\mathcal{W}_{x} \sim \mathcal{W}_{y} \Leftrightarrow d(x, y)^{2} \leq \max \left\{\left|\pi^{-1}(x)\right|,\left|\pi^{-1}(y)\right|\right\}$. (a "tall" \mathcal{W}_{x} (many faces above x) is easier to group with)
- The map Φ deletes the entire group of walls of \mathcal{W}_{x} : analysis becomes 2D (but too crude for detailed questions).

Proof ideas: rigidity in a ceiling

- Dobrushin's argument is robust: extended to various models (Widom-Rowlinson/random cluster/ ...) BUT: his group-of-walls criterion is more delicate, used verbatim in all these extensions.
- This criterion will not respect a level line boundary; moreover, it might delete the level line wall as part of a group-of-walls (moving us out of our space of permitted interfaces), breaking the Peierls argument.
- New idea: a one-sided criterion: wall clusters (say \mathcal{W}_{1} is closely nested in a \mathcal{W}_{2} if there is a ceiling \mathcal{C} of \mathcal{W}_{2} nesting \mathcal{W}_{1} and $d\left(\partial \dot{\mathcal{C}}, \mathcal{W}_{1}\right) \leq\left|\mathcal{W}_{1}\right|$; the wall cluster is obtained by repeatedly adding closely nested walls.)

Proof ideas: rate function in a ceiling

- If Step I was showing rigidity within a level line, then Step II would be to obtain the correct rate function α.
- KEY: couple the conditional law of μ_{Λ}^{\mp} on pillars (local height oscillation of the interface about a point) to the unconditional distribution in $\mu_{\mathbb{Z}^{3}}^{\mp}$.
- To do so: we construct a family of isolated pillars which may be swapped in a pair of interfaces (a $2 \rightarrow 2$ map) for coupling $\mu_{\mathbb{Z}^{3}}^{\mp}$ to the conditional μ_{Λ}^{\mp}.

- Showing such pillars are typical requires much of the machinery of the shape theorem used for tightness.

Some open problems

- Understand the LD rate $\alpha(\beta)=\lim _{h \rightarrow \infty}-\frac{1}{h} \log \mu_{\mathbb{Z}^{3}}^{\mp}\left((0,0,0) \underset{\mathbb{R}^{\times 20}, \vec{\infty}, ~}{+}\left(\mathbb{R}^{2} \times\{h\}\right)\right)$:
$>$ Is it equal to $\lim _{h \rightarrow \infty}-\frac{1}{h} \log \mu_{\mathbb{Z}^{3}}^{-}\left((0,0,0) \stackrel{+}{\longleftrightarrow}\left(\mathbb{R}^{2} \times\{h\}\right)\right)$ (pure phase) ?
$>$ Is $\alpha<4 \beta$? ("Ising is rougher than SOS") [Known: $\alpha \in 4 \beta \pm C$].
- Extensions to other (including non-monotone) models, e.g. 3D Potts? (new results did not use on FKG).
- Interfaces under tilted BC?

Thank you!

