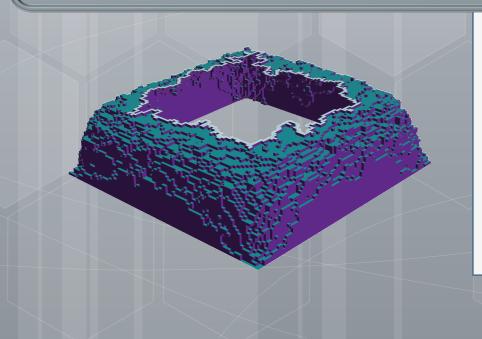
AMS Fall Eastern Sectional Oct 2020

Rigidity and LD of 3D Ising interfaces: an approximate Domain Markov property



Eyal Lubetzky Courant Institute (NYU)

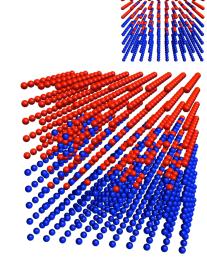
based on joint works with Reza Gheissari (UC Berkeley)

3D Ising interfaces

Consider surfaces generated as follows: > 3D cylinder $\Lambda = [-n, n]^2 \times (\mathbb{Z} + \frac{1}{2})$

 $\succ \sigma$ is a 2-coloring of the vertices:

- internal vertices: arbitrarily (*for now*).
- > Draw a **dual-face** $(u, v)^*$ if $\sigma_u \neq \sigma_v$.
- Interface: (max) *-connected component *I* of dual-faces separating the boundary.



3D Ising interfaces (ctd.)

Goal: understand random interfaces sampled via the distribution:

$$\mu(\mathcal{I}) \propto \exp\left(-\beta|\mathcal{I}| + \sum_{f \in \mathcal{I}} \mathbf{g}(f, \mathcal{I})\right)$$

- > β > 0: inverse temperature (large, fixed).
- > $\mathbf{g}(\cdot, \cdot)$: some complicated function, yet satisfying

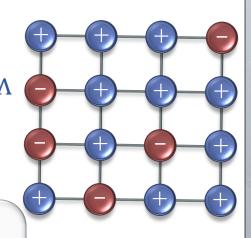
1) $\mathbf{g} \leq K_{\mathbf{0}}$

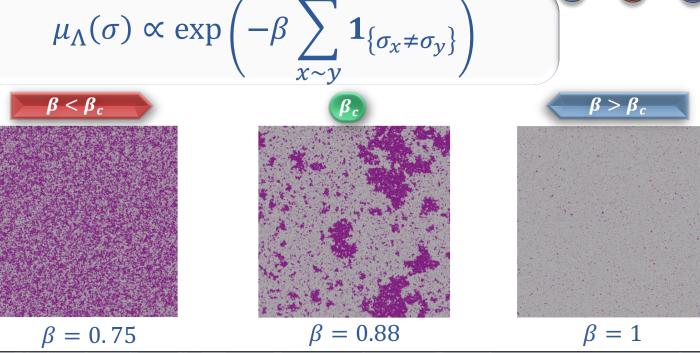
2) $|\mathbf{g}(f,\mathcal{I}) - \mathbf{g}(f',\mathcal{I}')| \le e^{-c_0 \mathbf{r}} \text{ if } B_{\mathbf{r}}(f,\mathcal{I}) \cong B_{\mathbf{r}}(f',\mathcal{I}')$

for **absolute** constants c_0, K_0 .

Definition: the classical Ising model

- Underlying geometry: finite $\Lambda \subset \mathbb{Z}^d$.
- Set of possible configurations: $\Omega = \{\pm 1\}^{\Lambda}$
- Probability of a configuration $\sigma \in \Omega$ given by the *Gibbs distribution*:





2D Ising interfaces

- ▶ μ_{Λ}^{\mp} : Ising model on 2D cylinder $\Lambda = [-n, n] \times (\mathbb{Z} + \frac{1}{2})$

Boundary conditions:
 upper half-plane
 lower half-plane

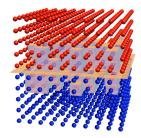
- > Draw a dual-edge $(u, v)^*$ if $\sigma_u \neq \sigma_v$.
- ▶ **Interface**: connected component *J* of dual-edges that separates the boundary components.
- Known [Higuchi '79], [Greenberg, Ioffe '95], [Dobrushin, Hryniv '97], [Hryniv '98], [Dobrushin, Kotecký, Shlosman '92]:
 - > Interface has a scaling limit: $\frac{\mathcal{I}(x/n)}{\sqrt{c_B n}} \rightarrow$ Brownian bridge
 - > Maximum M_n is $O_P(\sqrt{n})$, and $M_n \mathbb{E}[M_n]$ is also $O_P(\sqrt{n})$.

3D Ising interfaces

▶ μ_{Λ}^{\mp} : Ising model on 3D cylinder $\Lambda = [-n, n]^2 \times (\mathbb{Z} + \frac{1}{2})$

Boundary conditions:
 upper half-plane
 lower half-plane

> Draw a dual-face $(u, v)^*$ if $\sigma_u \neq \sigma_v$.



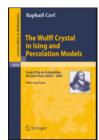
- ▶ Interface: maximal *-connected component *J* of dual-faces that separates the boundary components.
- Minlos, Sinai '67], [Dobrushin '72]: (cluster expansion)

 $\mu_{\Lambda}^{\mp}(\mathcal{I}) \propto e^{-\beta|\mathcal{I}| + \sum_{f \in \mathcal{I}} \mathbf{g}(f, \mathcal{I})} \quad \text{for large } \beta$

(for a uniformly bounded "local" **g** as described above) > Via this: Dobrushin showed the interface, unlike 2D, is **rigid**.

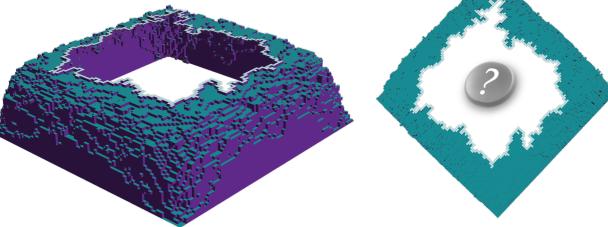
Related work on 3D Ising interfaces

- Alternative simpler argument by [van Beijeren '75] for [Dobrushin '72]'s result on the rigidity of the 3D Ising interface.
- Rigidity argument extended to
 - Widom-Rowlinson model [Bricmont, Lebowitz, Pfister, Olivieri '79a], [Bricmont, Lebowitz, Pfister '79b, '79c]
 - Super-critical percolation / random cluster model conditioned to have interfaces [Gielis, Grimmett '02]
- Tilted interfaces: [Cerf, Kenyon '01] (zero temp, 111 interface),
 [Miracle Sole '95] (1-step interface), [Sheffield '03] (|∇φ|^p models),
 many works on the conjectured behavior, related to the
 (non-)existence of non-translational invariant Gibbs measures
- Wulff shape, large deviations for the magnetization, surface tension [Pisztora '96], [Bodineau '96], [Cerf, Pisztora '00], [Bodineau '05], [Cerf '06]



Plus/minus interface in 3D Ising

- Describing the 3D Ising interface *J* :
 - > Height fluctuations at the origin (or in the bulk)?
 - > Correlation between height oscillations?
 - > Maximum height: Asymptotics (LLN)? Tightness?
- Our focus: (Approx) Domain Markov Property for J: What does the interface look like if we condition on its face set outside of a level line?



Motivation: entropic repulsion

- Despite the penalizing energy, if the interface is constrained to be **nonnegative**, it should a propel itself to height *h_n* >> 1 to gain entropy.
- [Caputo, L., Martinelli, Sly, Toninelli '14, '16]: detailed picture for the (2+1)D Solid-On-Solid model which approximates low temperature 3D Ising; e.g., <u>THEOREM</u> [1:2:3 for the maximum with entropic repulsion]:

Let $M_n = \max$ of the unconstrained surface. Let $\hat{H}_n =$ height of origin and $\hat{M}_n = \max$ maximum when restricting the surface to be ≥ 0 . Then $\exists h_n \approx \log n$ s.t. $\hat{H}_n / h_n \xrightarrow{p} 1$, $M_n / h_n \xrightarrow{p} 2$, $\hat{M}_n / h_n \xrightarrow{p} 3$

▶ In 3D Ising: a DMP for level lines would give "half the proof"

Domain Markov Property

- DMP: ∀ subset of sites S, the conditional law of the model given the values on ∂S gives the same model on S with these boundary conditions (BC), independently of S^c.
- Holds for Ising spin configurations (MRF).
- Fundamental feature in many (2+1)D height function models (viewed as random surfaces) such as DGFF.
- Example: $|\nabla \varphi|^p$ model (Solid-On-Solid/Discrete Gaussian/...):
 - > φ : [−*n*, *n*]² → \mathbb{Z} height function.
 - $\succ \pi^0_\Lambda(\varphi) \propto \exp \left(-\beta \sum_{x \sim y} |\varphi(x) \varphi(y)|^p \right) \text{ with BC 0.}$
 - > Conditioning on $\varphi(\partial S) \equiv h$ gives π_S^h (BC *h*).

(No) DMP for Ising interfaces

- ▶ In SOS (etc.): conditioning on an *h*-level line shifts by *h*
- Fails to hold for Ising model interfaces: the finite components ("bubbles") of the Ising model, hidden from J, carry the interaction through ∂S.
- 2D Ising interfaces : Ornstein–Zernike theory for approximate DMP at high temperature (low: duality).
- 3D Ising interfaces: no analog at low temperature (interfaces are surfaces rather than curves).
- ► We will show an approximate DMP for the height oscillations of J when ∂S is a level line.

Plus/minus interface in 3D Ising

Rigidity of the interface ([Dobrushin '72]):

There exists $\beta_0 > 0$ such that $\forall \beta > \beta_0$ and $\forall x_1, x_2, k$, $\mu_{\Lambda}^{\pm}(\mathcal{I} \cap (x_1, x_2) \times [k, \infty) \neq \emptyset) \le \exp\left(-\frac{1}{3}\beta k\right)$

- Consequently: M_n = maximum height of *J* satisfies
 μ_Λ[∓](M_n ≤ C_β log n) → 1 for any C_β > 6/β.
 Recently: [Gheissari, L. '19a, '19b]
 - > Identified the correct exponential rate above:
 - $\exists \lim_{k \to \infty} -\frac{1}{k} \log \mu_{\Lambda}^{\mp} (\mathcal{I} \cap (x_1, x_2) \times [k, \infty) \neq \emptyset) =: \alpha$
 - > Led to a LLN for the maximum M_n .
 - > Subsequently (via more subtle analysis): tightness.

LLN and tightness for the maximum

- M_n = maximum of the interface \mathcal{I} in 3D Ising; [Dobrushin '72]: $M_n = O_P(\log n)$.
- <u>THEOREM</u>: ([Gheissari, L. '19a, '19b])

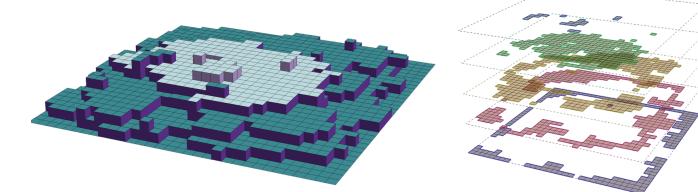
There exists β_0 such that for all $\beta > \beta_0$, 1. $M_n / \log n \rightarrow 2/\alpha$ in probability for LLN $\alpha(\beta) = \lim_{h \to \infty} -\frac{1}{h} \log \mu_{\mathbb{Z}^3}^{\mp} ((0,0,0) \stackrel{+}{\underset{\mathbb{R}^2 \times [0,h]}{\leftarrow}} (\mathbb{R}^2 \times \{h\}))$ 2. $M_n - \mathbb{E}M_n = O_P(1)$, and $\mathbb{E}M_n = m_n^* + O(1)$ for an explicit deterministic sequence (m_n^*) . Tightness 3. $\exists C, c \text{ such that } \forall k \in \mathbb{Z},$

 $e^{-Ce^{-(4\beta+C)k}} \le \mu_n^{\mp}(M_n < m_n^* - k) \le e^{-Ce^{-(4\beta-C)k}}$ Gumbel tails

* existence of the limit α is nontrivial

Level lines in 3D Ising interface

- By [Dobrushin '72] : w.h.p., 0.99 of faces x ∈ [-n, n]² have exactly 1 horizontal face of J in x×Z; gives rise to level sets.
- What if we condition on $\gamma = \partial S$ being a **level line**?



 Existing estimates fail (e.g., TV decorrelation [Dobrushin '72] [Bricmont, Lebowitz, Pfister '79], or viewing it as a tilt of μ[∓]_{S×Z} via cluster expansion/Pirogov–Sinai ([Holicky, Zahradnik '93]):
 The R–N derivative is e^{C|γ|} (destroys the bound).

Approximate DMP for maximum

THEOREM: ([Gheissari, L. '20+])

There exists β_0 such that for all $\beta > \beta_0$, there exist *C*, *c* such that $\forall k \in \mathbb{Z}$, if γ_n has interior *S* with area $s > |\gamma_n|^{1.1}$, $e^{-Ce^{-(4\beta+C)k}} \le \mu_n^{\mp} (M_S - h < m_S^* - k \mid \mathcal{F}_{\gamma}) \le e^{-Ce^{-(4\beta-C)k}}$ where $\mathcal{F}_{\gamma} = \{\mathcal{I} \cap (S^c \times \mathbb{Z}); \gamma_n \text{ is a height} - h \text{ level line}\}$.

Prerequisite: rigidity in a level line

- To address the maximum in a level line, first we would need an analog of Dobrushin's rigidity and exponential tails within the level line.
- THEOREM: ([Gheissari, L. '20+])

There exists β_0 such that for all $\beta > \beta_0$, if γ_n is a closed simple curve with interior *S*, then for $\forall (x_1, x_2) \in S$ and *h*, *k*,

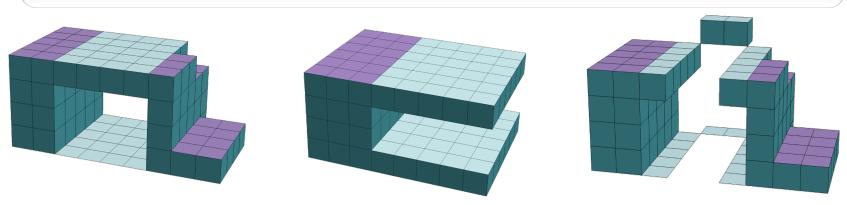
 $\mu_{\Lambda}^{\mp} \left(\mathcal{I} \cap (x_1, x_2) \times [h + k, \infty) \neq \emptyset \mid \mathcal{F}_{\gamma} \right) \le \exp(-(4\beta - C)k)$

where $\mathcal{F}_{\gamma} = \{\mathcal{I} \cap (S^c \times \mathbb{Z}); \gamma_n \text{ is a height} -h \text{ level line} \}$.

> Crucially: no restriction on (x_1, x_2) to be far from ∂S .

Reviewing Dobrushin's argument

- Notation: $\mathcal{L}_0 = \mathbb{R}^2 \times \{0\}$; π = projection onto \mathcal{L}_0
- DEFINITION: [ceiling and walls]
 - 1. *Ceiling face* : a horizontal face $f \in \mathcal{I}$ such that $\pi(f') \neq \pi(f) \quad \forall f' \neq f$.
 - *Ceiling* \mathcal{C} : connected component of ceiling faces.
 - 2. Wall face : all other faces.Wall W : connected component of wall faces.



Reviewing Dobrushin's argument

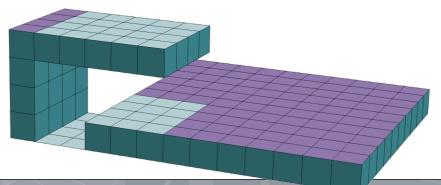
DEFINITION: [ceiling and walls]

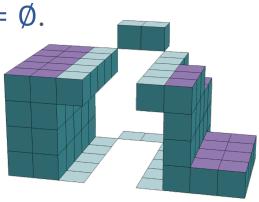
- 1. *Ceiling face* : a horizontal face $f \in \mathcal{I}$ with $\pi(f') \neq \pi(f) \quad \forall f' \neq f$. *Ceiling* \mathcal{C} : connected component of ceiling faces.
- 2. *Wall face* : all other faces.

Wall \mathcal{W} : connected component of wall faces.

FACTS:

- 1. \forall ceiling C has a single height.
- 2. \forall wall \mathcal{W} : $\pi(\mathcal{W})$ is connected.
- 3. \forall walls $\mathcal{W} \neq \mathcal{W}'$: $\pi(\mathcal{W}) \cap \pi(\mathcal{W}') = \emptyset$.





Reviewing Dobrushin's argument

- A wall \mathcal{W} is **standard** if $\exists \mathcal{J}$ whose only wall is \mathcal{W} .
- <u>FACT</u>: 1: 1 correspondence between interfaces and *admissible** collections of standard walls.

** admissible: walls are disjoint components and so are their projections*

Dobrushin's rigidity argument

- A wall \mathcal{W} is **standard** if $\exists \mathcal{J}$ whose only wall is \mathcal{W} .
- <u>FACT</u>: 1: 1 correspondence between interfaces and *admissible* collections of standard walls.
- ▶ Basic idea: given $x \in \mathcal{L}_0$, construct a map Φ :
 - > "standardize" every wall W in J;
 - > delete the wall \mathcal{W}_x of x;
 - *"reconstruct" J'* from other standard walls.

Goal: establish for this map Φ:

- 1. (Energy bound) $\frac{\mu(\mathcal{I})}{\mu(\Phi(\mathcal{I}))} \leq e^{-c\beta|\mathcal{W}_{X}|}$
- 2. (Multiplicity bound) # $\{\mathcal{I} \in \Phi^{-1}(\mathcal{I}') : |\mathcal{W}_x| = \ell\} \le e^{c\ell}$

Dobrushin's rigidity argument

- Basic idea: delete the wall \mathcal{W}_x of x.
- Energy bound $\left(\frac{\mu(\mathcal{I})}{\mu(\Phi(\mathcal{I}))} \le e^{-c\beta|\mathcal{W}_{X}|}\right)$:
 - > Gain $\beta |\mathcal{W}_x|$ from $\beta (|\mathcal{I}| |\Phi(\mathcal{I})|)$
 - Problem: effect on non-deleted faces that moved due to g...
 - The effect of g is local (decays exp. in distance).
 - **BUT**: tall nearby walls can pick up a cost that cancels our $\beta |W_x|$ gain.

Solution: also delete **tall** walls that are **close** to \mathcal{W}_x .

recall $\mu^+_{\Lambda}(\mathcal{I}) \propto e^{-\beta |\mathcal{I}| + \sum_{f \in \mathcal{I}} \mathbf{g}(f, \mathcal{I})}$

Dobrushin's rigidity argument

recall $\mu_{\Lambda}^{\mp}(\mathcal{I}) \propto e^{-\beta |\mathcal{I}| + \sum_{f \in \mathcal{I}} \mathbf{g}(f, \mathcal{I})}$

- Energy bound $\left(\frac{\mu(\mathcal{I})}{\mu(\Phi(\mathcal{I}))} \leq e^{-c\beta|\mathcal{W}_x|}\right)$:
 - ≻ Gain β|W_x| from β(|J| − |Φ(J)|), but must handle g...
 ≻ ... must also delete tall walls that are close.
- Multiplicity bound (#{J ∈ Φ⁻¹(J') : |W_x| = ℓ} ≤ e^{cℓ}):
 Problem: accounting for the extra walls we deleted...
- Dobrushin's criterion: groups of walls: for x, y ∈ L₀, *W_x* ~ *W_y* ⇔ d(x, y)² ≤ max{|π⁻¹(x)|, |π⁻¹(y)|}. (a "tall" *W_x* (many faces above x) is easier to group with)
 The map Φ deletes the entire group of walls of *W_x*: analysis becomes 2D (but too crude for detailed questions).

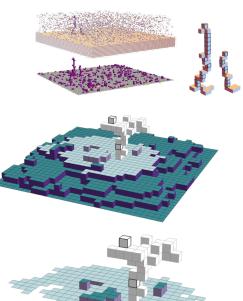
Proof ideas: rigidity in a ceiling

- Dobrushin's argument is robust: extended to various models (Widom–Rowlinson/random cluster/...)
 BUT: his group-of-walls criterion is more delicate, used verbatim in all these extensions.
- This criterion will not respect a level line boundary; moreover, it might *delete the level line wall* as part of a group-of-walls (moving us out of our space of permitted interfaces), breaking the Peierls argument.

New idea: a one-sided criterion: wall clusters (say W_1 is closely nested in a W_2 if there is a ceiling C of W_2 nesting W_1 and $d(\partial \dot{C}, W_1) \leq |W_1|$; the wall cluster is obtained by repeatedly adding closely nested walls.)

Proof ideas: rate function in a ceiling

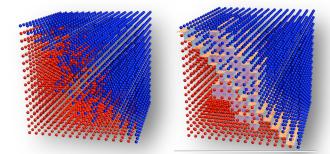
- If Step I was showing rigidity within a level line, then
 Step II would be to obtain the correct rate function *α*.
- KEY: couple the conditional law of μ_{Λ}^{\mp} on **pillars** (local height oscillation of the interface about a point) to the unconditional distribution in μ_{π}^{\mp} .
- To do so: we construct a family of *isolated pillars* which may be **swapped** in a pair of interfaces (a 2 → 2 map) for coupling μ[∓]_{Z³} to the conditional μ[∓]_Λ.



Showing such pillars are typical requires much of the machinery of the shape theorem used for tightness.

Some open problems

- Understand the LD rate $\alpha(\beta) = \lim_{h \to \infty} -\frac{1}{h} \log \mu_{\mathbb{Z}^3}^{\mp} ((0,0,0) \stackrel{+}{\longleftrightarrow} (\mathbb{R}^2 \times \{h\})) :$ • Is it equal to $\lim_{h \to \infty} -\frac{1}{h} \log \mu_{\mathbb{Z}^3}^{-} ((0,0,0) \stackrel{+}{\longleftrightarrow} (\mathbb{R}^2 \times \{h\}))$ (pure phase) ?
 - > Is $\alpha < 4\beta$? ("*Ising is rougher than SOS*") [Known: $\alpha \in 4\beta \pm C$].
- Extensions to other (including non-monotone) models, e.g. 3D Potts? (new results did not use on FKG).
- Interfaces under tilted BC?



Thank you!