Feb 2015

ICERM, Providence

Harmonic Pinnacles in the Discrete Gaussian Model

Eyal Lubetzky
Courant Institute (NYU)
Joint work with F. Martinelli, A. Sly

The Discrete Gaussian model

- DEFINITION: (2D DG model) probability measure on $\eta: \Lambda \rightarrow \mathbb{Z}$ for $\Lambda=\{1, \ldots, L\}^{2}$ given by

$$
\pi_{\Lambda}(\eta)=\frac{1}{Z_{\beta, \Lambda}} \exp \left(-\beta \sum_{x \sim y}\left|\eta_{x}-\eta_{y}\right|^{2}\right)
$$

where $\eta_{x}=0$ for $x \notin \Lambda$ (0 boundary condition).

- $\beta \geq 0$: inverse temperature
- $Z_{\beta, \Lambda}$: partition function
- $\pi=\lim _{L \rightarrow \infty} \pi_{\Lambda}: \infty$-volume DG

The Discrete Gaussian model

- Definition: (2D DG model) probability measure on $\eta: \Lambda \rightarrow \mathbb{Z}$ for $\Lambda=\{1, \ldots, L\}^{2}$ given by

$$
\pi_{\Lambda}(\eta)=\frac{1}{Z_{\beta, \Lambda}} \exp \left(-\beta \sum_{x \sim y}\left|\eta_{x}-\eta_{y}\right|^{2}\right)
$$

where $\eta_{x}=0$ for $x \notin \Lambda$ (0 boundary condition).
> \in family of surfaces models introduced in the 1950's
> dubbed Discrete Gaussian by [Chui-Weeks '76]
> dual of the Villain XY model [Villain '75]
$>$ related by a duality trans. to the Coulomb gas model
$>$ its \mathbb{R}-valued analogue: β scales out $m \rightarrow$ DGFF

Detour for the connoisseur

- Definition: (2D DG model) probability measure on $\eta: \Lambda \rightarrow \mathbb{Z}$ for $\Lambda=\{1, \ldots, L\}^{2}$ given by

$$
\pi_{\Lambda}(\eta)=\frac{1}{Z_{\beta, \Lambda}} \exp \left(-\beta \sum_{x \sim y}\left|\eta_{x}-\eta_{y}\right|^{2}\right)
$$

where $\eta_{x}=0$ for $x \notin \Lambda$ (0 boundary condition).

- Suppose we restrict to $\left|\eta_{x}-\eta_{y}\right| \leq 1$ for every $x \sim y$.
$>$ Which $\left\{\eta: \eta_{0}=h\right\}$ maximize $\pi_{V}(\eta)$?
(i.e., what is the ground state of $\left\{\eta_{0}=h\right\}$?)
> Hint: Alternating Sign Matrices

$$
\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right)
$$

DG surface: basic questions

- Height profile:
I. What are the height fluctuations at the origin (say), e.g., what is $\mathbb{E}\left[\eta_{0}^{2}\right]$? Does it diverge with L ?
II. What is the maximum height $X_{L}=\max _{x} \eta_{x}$?

The effect of a floor:
iII. How are these affected by conditioning that $\eta \geq 0$?

- rigorously studied in breakthrough papers from the 80's [Fröhlich, Spencer ‘81a, '81b, ‘83], [Brandenberger, Wayne '82], [Bricmont, Fontaine, Lebowitz '82], [Bricmont, El-Mellouki, Fröhlich '86], ...

DG surface: predicted behavior

- Roughening phase transition at a critical $\beta_{\mathrm{R}} \approx 0.665$:

$\boldsymbol{\beta}<\boldsymbol{\beta}_{R}$	$\beta>\beta_{R}$
rough (delocalized)	rigid (localized)
- fluctuations at origin $\xrightarrow[L \rightarrow \infty]{ }$	- O (1) fluctuations at origin
- discreteness minor, \approx DGFF	discreteness relevant

- Transition exclusive to dimension $d=2$: surface is rough for $d=1$ and rigid for $d \geq 3$ [Temperley '52, '56] [Bricmont, Fontaine, Lebowitz '82] via [Fröhlich, Simon, Spencer '75]

High temperature DG vs. the DGFF

D DGFF profile: What is $\mathbb{E}\left[\eta_{0}^{2}\right]$? What is $X_{L}=\max _{x} \eta_{x}$?
$\Rightarrow \operatorname{Var}\left(\eta_{0}\right) \sim \frac{2}{\pi} \log L, \mathbb{E} X_{L} \sim 2 \sqrt{2 / \pi} \log L$, concentration
[Bolthausen, Deuschel, Giacomin '01], [Bolthausen, Deuschel, Zeitouni '11], [Bramson, Zeitouni '12], [Ding, Bramson, Zeitouni '15+], ...

DGFF above a floor: (conditioning that $\eta \geq 0$)
> Surface bulk concentrates around $\mathbb{E} X_{L}$ and behaves \approx shifted DGFF: $\mathbb{E}\left[X_{L} \mid \eta \geq 0\right] \sim 2 \mathbb{E} X_{L} \sim 4 \sqrt{2 / \pi} \log L$, concentration [Bolthausen, Deuschel, Giacomin '01]
Analogue for \mathbb{Z}^{3} due to [Bolthausen, Deuschel, Zeitouni '95]

- DG for small enough β :
> Indeed $\operatorname{Var}\left(\eta_{0}\right)=\log L$ (proof via Coulomb gas model analysis)

Low temperature DG

- Large enough β : surface is rigid by a Peierls argument ([Gallavotti, Martin-Lōf, Miracle-Solé '73] [Brandenberger, Wayne '82])
[Bricmont, El-Mellouki, Fröhlich '86]: $\quad \boldsymbol{\beta} \gg \boldsymbol{\beta}_{R}$
maximum: $\mathbb{E}\left[X_{L}\right]=\sqrt{\beta^{-1} \log L}$
> average with floor: $\mathbb{E}\left[\left.\frac{1}{|\Lambda|} \sum_{x} \eta_{x} \right\rvert\, \eta \geq 0\right]=\sqrt{\beta^{-1} \log L}$
$>$ analogous results for the Absolute-Value SOS model (Hamiltonian: $\left.\mathcal{H}(\eta)=\Sigma_{x \sim y}\left|\eta_{x}-\eta_{y}\right|\right)$ with order $\beta^{-1} \log L$

Intuition to the BEF' 86 results

- [Bricmont, El-Mellouki, Fröhlich '86]:
$>$ maximum: $\mathbb{E}\left[X_{L}\right]=\sqrt{\beta^{-1} \log L}$
> average with floor: $\mathbb{E}\left[\left.\frac{1}{|\Lambda|} \sum_{x} \eta_{x} \right\rvert\, \eta \geq 0\right]=\sqrt{\beta^{-1} \log L}$
- Proof ideas:
> maximum: LD governed by isolated spikes; a spike of height h costs $\exp \left(-c \beta h^{2}\right)$.
> surface height above a floor: at most $2 \mathbb{E}\left[X_{L}\right]$
$>$ lower bound on this height:
Pirogov-Sinaï theory (see [Koteckỳ '06])

Progress for SOS in recent years

- [Caputo, L., Martinelli, Sly, Toninelli '12, '14,'15+]: Building on tools of [Dobrushin, Koteckỳ, Shlosman '92] and [Schonmann, Shlosman '95] for the Ising model:
> maximum concentrates on $\frac{1}{2 \beta} \log L$
$>$ average height above a floor $\sim \frac{1}{4 \beta} \log L$
> deterministic scaling limit of level-line.
$>L^{1 / 3+o(1)}$ fluctuations of level-lines.
- [Ioffe, Shlosman, Velenik '15]:
> Law of fluctuations ($L^{1 / 3} \times X$ involving Airy function)
- Central in SOS analysis:
linearity of $\mathcal{H}(\eta)=\sum_{x \sim y}\left|\eta_{x}-\eta_{y}\right|$; what about DG?

Results: low temperature DG

Previous work: [Bricmont, El-Mellouki, Fröhlich '86]:
$>$ maximum: $\mathbb{E}\left[X_{L}\right]=\sqrt{\beta^{-1} \log L}$

- THEOREM [L., Martinelli, Sly]:

$$
\begin{aligned}
& \exists M=M(L) \sim \sqrt{1 / 2 \pi \beta} \log L \log \log L \\
& \text { such that w.h.p. } \\
& X_{L} \in\{M, M+1\}
\end{aligned}
$$

(REMARK: for a.e. L (log density) $X_{L}=M$ w.h.p.

- Missing $\sqrt{\log \log L}$ factor due to nature of LD: "harmonic pinnacles" preferable to spikes.

Results: low temperature DG

- Central ingredient: LD estimate on ∞-volume DG:

Proposition [L., Martinelli, Sly]:

$$
\pi\left(\eta_{0} \geq h\right)=\exp \left[-(2 \pi \beta+o(1)) \frac{h^{2}}{\log h}\right]
$$

(cf. $\exp \left[-c \beta h^{2}\right]$ for the prob. of a spike of height h.)

- $M=$ max integer such that $\pi\left(\eta_{0} \geq M\right) \geq L^{-2} \log ^{5} L$

Intuition: LD in DG

$$
\log \pi\left(\eta_{0} \geq h\right) \sim-2 \pi \beta \frac{h^{2}}{\log h}
$$

- LD dominated by "harmonic pinnacles", integer approximations to the discrete Dirichlet problem:

$$
\left.>I_{r}(h)=\inf _{\Sigma_{\Sigma_{x-y}\left(\varphi_{x}-\varphi_{y}\right)^{2}}^{\mathcal{D}_{B_{r}}(\varphi)}}^{B_{B_{r}}}:\left.\varphi\right|_{B_{r}^{c}}=0, \varphi_{0}=h\right\}
$$

$>$ real solution: harmonic function ϕ :

$$
\begin{aligned}
& \phi_{x}=\mathbb{P}_{x}\left(\tau_{0}<\tau_{\partial B_{r}}\right) h=\left(1-\frac{\log |x|+O(1)}{\log r}\right) h, \\
& I_{r}(h)=4 h^{2} \frac{\Sigma_{x} \mathbb{P}_{x}\left(\tau_{0}<\tau_{\left.\partial B_{r}\right)}\right.}{\mathbb{E}_{0} \tau_{\partial B_{r}}} \sim 2 \pi \frac{h^{2}}{\log r}
\end{aligned} .
$$

Intuition: LD in DG

$$
\log \pi\left(\eta_{0} \geq h\right) \sim-2 \pi \beta \frac{h^{2}}{\log h}
$$

- Real solution: $\phi_{x} \approx\left(1-\frac{\log |x|}{\log r}\right) h, \quad I_{r}(h) \sim 2 \pi \frac{h^{2}}{\log r}$
- Discrete approximation (rounding) ends once $\phi_{x}<1$:
$>$ Solving $\phi_{x}=1$ for $|x|=r-1$ gives $r \sim h / \log h$
$>$ Substituting in $I_{r}(h)$ gives $2 \pi \frac{h^{2}}{\log h}$ (the sought LD rate).
- The volume of B_{r} is $O\left(h^{2} / \log ^{2} h\right)$, so the rounding cost (even when charging 2β per bond in B_{r}) is negligible.
$>$ exploit exact formulas (ϕ harmonic)
> main part: there is no benefit from larger domains.
- Additional ingredients: control

$$
\frac{\pi\left(\eta_{0}=h\right)}{\pi\left(\eta_{0}=h-1\right)}
$$

Results: shape of low temp DG

Previous work: [Bricmont, El-Mellouki, Fröhlich '86]:
> average with floor: $\mathbb{E}\left[\left.\frac{1}{|\Lambda|} \sum_{x} \eta_{x} \right\rvert\, \eta \geq 0\right]=\sqrt{\beta^{-1} \log L}$

- Theorem [L., Martinelli, Sly]: conditioned on $\eta \geq 0$:

$$
\begin{aligned}
& \exists H=H(L) \sim \sqrt{1 / 4 \pi \beta \log L \log \log L} \text { so that w.h.p. } \\
& \quad \#\left\{x: \eta_{x} \in\{H, H+1\}\right\} \geq\left(1-\varepsilon_{\beta}\right) L^{2}
\end{aligned}
$$

for an arbitrarily small ε_{β} as β increases;
(i) $\forall 1 \leq h \leq H-1$: single macro. loop; its area is $(1-o(1)) L^{2}$
(ii) height H : single macro. loop; its area is at least $\left(1-\varepsilon_{\beta}\right) L^{2}$
(iii) no $(H+2)$ macro. loops; no negative macro. loops.

- REMARK: for a.e. L (log density) almost all sites are at level H w.h.p.

Results: shape of low temp DG

- Roughly put: conditioned on $\eta \geq 0$, w.h.p.
$>$ DG surface is a plateau at height $H \sim(1 / \sqrt{2}) M$
\rightarrow Plateau is \approx raised unconstrained surface.
(The floor effect increases X_{L} by factor of $\sim 1+\frac{1}{\sqrt{2}}$.)

- THEOREM [L., Martinelli, Sly]:
conditioned on $\eta \geq 0$:
$\exists M^{*}=M^{*}(L) \sim \frac{1+\sqrt{2}}{2 \sqrt{\pi \beta}} \sqrt{\log L \log \log L}$ such that w.h.p.
$X_{L} \in\left\{M^{*}, M^{*}+1, M^{*}+2\right\}$

Generalizations to \boldsymbol{p}-Hamiltonians

- Results extend to random surface models where $\mathcal{H}(\eta)=\sum_{x \sim y}\left|\eta_{x}-\eta_{y}\right|^{p}$ for any $p \in[1, \infty]$.

- Example: LD in ∞-volume: $-\log \pi\left(\eta_{0} \geq h\right)$

Generalizations to \boldsymbol{p}-Hamiltonians

Model	Large deviation	Maximum		Height above floor	
	$-\log \pi\left(\eta_{0} \geq h\right)$	center (M)	window	center (H)	window
$p=1$ $($ SOS $)$	$4 \beta h+\varepsilon_{\beta}$	$\frac{1}{2 \beta} \log L$	$O(1)$	$\left\lceil\frac{1}{4 \beta} \log L\right\rceil$	± 1
$1<p<2$	$\left(c_{p} \beta+o(1)\right) h^{p}$	$\left(\frac{2+o(1)}{c_{p} \beta} \log L\right)^{\frac{1}{p}}$	± 1	$\left(\frac{1+o(1)}{2}\right)^{\frac{1}{p}} M$	± 1
$p=2$ (DG)	$(2 \pi \beta+o(1)) \frac{h^{2}}{\log h}$	$\sqrt{\frac{1+o(1)}{2 \pi \beta} \log L \log \log L}$	± 1	$\frac{1+o(1)}{\sqrt{2}} M$	± 1
$2<p<\infty$	$\simeq \beta h^{2}$	$\asymp \sqrt{\frac{1}{\beta} \log L}$	± 1	$\frac{1+o(1)}{\sqrt{2}} M$	± 1
$p=\infty$ (RSOS)	$\left(4 \beta+2 \log \frac{27}{16}+\varepsilon_{\beta}\right) h^{2}$	$\left(1 \pm \varepsilon_{\beta}\right) \sqrt{\frac{2}{c_{\infty}} \log L}$	± 1	$\frac{1+o(1)}{\sqrt{2}} M$	± 1
$\mathcal{H}(\eta)=\sum_{x \sim y}\left\|\eta_{x}-\eta_{y}\right\|^{p}$ for $p \in[1, \infty]$					

Detour for the connoisseur: revisited

$$
\log \pi\left(\eta_{0} \geq h\right)=\left(4 \beta+2 \log \frac{27}{16}+\varepsilon_{\beta}\right) h^{2}
$$

> Correspondence between RSOS optimal-energy surfaces, edge-disjoint walks and (via the square ice model) ASMs:

$>$ \# of ASM's of order h is $\frac{1!4!\cdots(3 h-2)!}{h!(h+1)!\cdots(2 h-1)!}=\left(\frac{3 \sqrt{3}}{4}\right)^{(1+o(1)) h^{2}}$ [Zeilberger '96]
$>$ translates into an entropy term of $\exp \left[2 \log \left(\frac{27}{16}\right) h^{2}\right]$

Open problems

- Low temperature:

$>L^{1 / 3+o(1)}$ fluctuations near center-sides?
> Critical behavior (exceptional L 's):
- Wulff-shape scaling limit?
- $L^{1 / 2+o(1)}$ fluctuations near corners?
- High temperature:
$>\mathrm{DG} \approx \mathrm{DGFF} . .$. ; tightness of maximum? asymptotics?
$>p$-Hamiltonian for $p \neq 1,2: \mathbb{E}\left[\eta_{0}^{2}\right]=$? Diverges?
- Understand β near $\beta_{R} \ldots$

Thanix you

