

Feb 2015 ICERM, Providence

# Harmonic Pinnacles in the Discrete Gaussian Model

Eyal Lubetzky Courant Institute (NYU)

Joint work with F. Martinelli, A. Sly

### The Discrete Gaussian model

• <u>DEFINITION</u>: (2D DG model) probability measure on  $\eta : \Lambda \rightarrow \mathbb{Z}$  for  $\Lambda = \{1, ..., L\}^2$  given by

$$\pi_{\Lambda}(\eta) = \frac{1}{Z_{\beta,\Lambda}} \exp\left(-\beta \sum_{x \sim y} |\eta_x - \eta_y|^2\right)$$

where  $\eta_x = 0$  for  $x \notin \Lambda$  (0 boundary condition).

- $\beta \ge 0$ : inverse temperature
- $Z_{\beta,\Lambda}$ : partition function
- $\pi = \lim_{L \to \infty} \pi_{\Lambda}$  :  $\infty$ -volume DG

## The Discrete Gaussian model

• <u>DEFINITION</u>: (2D DG model) probability measure on  $\eta : \Lambda \rightarrow \mathbb{Z}$  for  $\Lambda = \{1, ..., L\}^2$  given by

$$\pi_{\Lambda}(\eta) = \frac{1}{Z_{\beta,\Lambda}} \exp\left(-\beta \sum_{x \sim y} |\eta_x - \eta_y|^2\right)$$

where  $\eta_x = 0$  for  $x \notin \Lambda$  (0 boundary condition).

- $\succ$  E family of surfaces models introduced in the 1950's
- > dubbed Discrete Gaussian by [Chui-Weeks '76]
- > dual of the Villain XY model [Villain '75]
- related by a duality trans. to the Coulomb gas model
- > its  $\mathbb{R}$ -valued analogue:  $\beta$  scales out  $\longrightarrow$  DGFF

#### Detour for the connoisseur

• <u>DEFINITION</u>: (2D DG model) probability measure on  $\eta : \Lambda \rightarrow \mathbb{Z}$  for  $\Lambda = \{1, ..., L\}^2$  given by

$$\pi_{\Lambda}(\eta) = \frac{1}{Z_{\beta,\Lambda}} \exp\left(-\beta \sum_{x \sim y} |\eta_x - \eta_y|^2\right)$$

where  $\eta_x = 0$  for  $x \notin \Lambda$  (0 boundary condition).

 Suppose we restrict to |η<sub>x</sub> − η<sub>y</sub>| ≤ 1 for every x ~ y.
 Which {η: η₀ = h} maximize π<sub>V</sub>(η) ? (*i.e.*, what is the ground state of {η₀ = h}?)
 Hint: Alternating Sign Matrices (<sup>0 1 0 0</sup> (<sup>1 −1 0 1</sup>)

#### • Height profile:

- I. What are the height fluctuations at the origin (say), e.g., what is  $\mathbb{E}[\eta_0^2]$ ? Does it diverge with *L*?
- II. What is the maximum height  $X_L = \max_{y} \eta_x$ ?

- The effect of a floor:
- III. How are these affected by conditioning that  $\eta \ge 0$ ?
- rigorously studied in breakthrough papers from the 80's [Fröhlich, Spencer '81a, '81b, '83], [Brandenberger, Wayne '82],
   [Bricmont, Fontaine, Lebowitz '82], [Bricmont, El-Mellouki, Fröhlich '86], ...

## DG surface: predicted behavior

• Roughening phase transition at a critical  $\beta_R \approx 0.665$ :





Transition exclusive to dimension d = 2: surface is rough for d = 1 and rigid for  $d \ge 3$  [Temperley '52, '56] [Bricmont, Fontaine, Lebowitz '82] via [Fröhlich, Simon, Spencer '75]

## High temperature DG vs. the DGFF

#### • **DGFF profile:** What is $\mathbb{E}[\eta_0^2]$ ? What is $X_L = \max \eta_x$ ?

 $\gg$  Var $(\eta_0) \sim \frac{2}{\pi} \log L$ ,  $\mathbb{E} X_L \sim 2\sqrt{2/\pi} \log L$ , concentration [Bolthausen, Deuschel, Giacomin '01], [Bolthausen, Deuschel, Zeitouni '11], [Bramson, Zeitouni '12], [Ding, Bramson, Zeitouni '15+], ...

#### **DGFF above a floor:** (conditioning that $\eta \ge 0$ )

> Surface bulk concentrates around  $\mathbb{E}X_L$  and behaves  $\approx$  shifted DGFF:  $\mathbb{E}[X_L \mid \eta \ge 0] \sim 2 \mathbb{E}X_L \sim 4\sqrt{2/\pi} \log L$ , concentration

[Bolthausen, Deuschel, Giacomin '01]

Analogue for  $\mathbb{Z}^3$  due to [Bolthausen, Deuschel, Zeitouni '95]

#### **DG** for small enough $\beta$ :

> Indeed  $|Var(\eta_0) \approx \log L|$  [Fröhlich, Spencer '81a, '81b]

(proof via Coulomb gas model analysis)

 $\boldsymbol{\beta} \ll \boldsymbol{\beta}_R$ 

#### Low temperature DG

- Large enough β: surface is *rigid* by a Peierls argument ([Gallavotti, Martin-Lof, Miracle-Solé '73] [Brandenberger, Wayne '82])
- Bricmont, El-Mellouki, Fröhlich '86]:
  - > maximum:  $\mathbb{E}[X_L] \asymp \sqrt{\beta^{-1} \log L}$
  - ≻ average with floor:  $\mathbb{E}\left[\frac{1}{|\Lambda|}\sum_{x} \eta_x \mid \eta \ge 0\right] ≍ \sqrt{\beta^{-1} \log L}$
  - > analogous results for the Absolute-Value SOS model (Hamiltonian:  $\mathcal{H}(\eta) = \sum_{x \sim y} |\eta_x \eta_y|$ ) with order  $\beta^{-1} \log L$



 $\boldsymbol{\beta} \gg \boldsymbol{\beta}_R$ 

#### Intuition to the BEF'86 results

Bricmont, El-Mellouki, Fröhlich '86]:

- > maximum:  $\mathbb{E}[X_L] \asymp \sqrt{\beta^{-1} \log L}$
- → average with floor:  $\mathbb{E}\left[\frac{1}{|\Lambda|}\sum_{x} \eta_x \mid \eta \ge 0\right] \asymp \sqrt{\beta^{-1} \log L}$

Proof ideas:

- > maximum: LD governed by isolated spikes; a spike of height h costs  $\exp(-c\beta h^2)$ .
- *surface height* above a floor: at most 2E[X<sub>L</sub>]
- *lower bound* on this height: Pirogov-Sinaï theory (see [Koteckỳ '06])

### Progress for SOS in recent years

- [Caputo, L., Martinelli, Sly, Toninelli '12, '14, '15+]: Building on tools of [Dobrushin, Kotecky, Shlosman '92] and [Schonmann, Shlosman '95] for the Ising model:
  - > maximum concentrates on  $\frac{1}{2\beta} \log L$
  - > average height above a floor  $\sim \frac{1}{4\beta} \log L$
  - > deterministic scaling limit of level-line.
  - >  $L^{1/3+o(1)}$  fluctuations of level-lines.
- [Ioffe, Shlosman, Velenik '15]:

- the second second second
- > Law of fluctuations ( $L^{1/3} \times X$  involving Airy function)
- Central in SOS analysis: linearity of  $\mathcal{H}(\eta) = \sum_{x \sim y} |\eta_x - \eta_y|$ ; what about DG?

#### **Results: low temperature DG**

Previous work: [Bricmont, El-Mellouki, Fröhlich '86]:

> maximum:  $\mathbb{E}[X_L] \approx \sqrt{\beta^{-1} \log L}$ 

THEOREM [L., Martinelli, Sly]:  $\exists M = M(L) \sim \sqrt{\frac{1}{2\pi\beta} \log L \log \log L} \text{ such that w.h.p.}$   $X_L \in \{M, M + 1\}$ 

• <u>REMARK</u>: for a.e. L (log density)  $X_L = M$  w.h.p.

 Missing √log log L factor due to nature of LD: *"harmonic pinnacles"* preferable to spikes.

### Results: low temperature DG

Central ingredient: LD estimate on ∞-volume DG:

PROPOSITION [L., Martinelli, Sly]:

$$\pi(\eta_0 \ge h) = \exp\left[-(2\pi\beta + o(1))\frac{h^2}{\log h}\right]$$

(cf.  $\exp[-c\beta h^2]$  for the prob. of a spike of height *h*.)

•  $M = \max$  integer such that  $\pi(\eta_0 \ge M) \ge L^{-2} \log^5 L$ 

TIM

 $M \sim \sqrt{\frac{1}{2\pi\beta} \log L \log \log L}$ 

AND DESCRIPTION OF THE OWNER OF T

### Intuition: LD in DG

$$\log \pi(\eta_0 \ge h) \sim -2\pi\beta \frac{h^2}{\log h}$$

LD dominated by "harmonic pinnacles", integer approximations to the discrete Dirichlet problem:

$$\succ I_r(h) = \inf \{ \mathfrak{D}_{B_r}(\varphi) : \varphi|_{B_r^c} = 0, \varphi_0 = h \}$$

$$\Sigma_{x \sim y}(\varphi_x - \varphi_y)^2$$

> real solution: harmonic function  $\phi$ :

$$\phi_x = \mathbb{P}_x \left( \tau_0 < \tau_{\partial B_r} \right) h = \left( 1 - \frac{\log|x| + O(1)}{\log r} \right) h$$
$$I_r(h) = 4h^2 \frac{\sum_x \mathbb{P}_x (\tau_0 < \tau_{\partial B_r})}{\mathbb{E}_0 \tau_{\partial B_r}} \sim 2\pi \frac{h^2}{\log r}$$

1

YMM III

#### Intuition: LD in DG



- Real solution:  $\phi_x \approx \left(1 \frac{\log|x|}{\log r}\right)h$ ,  $I_r(h) \sim 2\pi \frac{h^2}{\log r}$
- Discrete approximation (rounding) ends once φ<sub>x</sub> < 1 :</li>
   Solving φ<sub>x</sub> = 1 for |x| = r − 1 gives r ~ h/log h
  - > Substituting in  $I_r(h)$  gives  $2\pi \frac{h^2}{\log h}$  (the sought LD rate).
- The volume of B<sub>r</sub> is O(h<sup>2</sup>/log<sup>2</sup> h), so the rounding cost (even when charging 2β per bond in B<sub>r</sub>) is negligible.
  > exploit exact formulas (φ harmonic)
  - main part: there is no benefit from larger domains.

Additional ingredients: control  
and 
$$\pi(\eta_z = h \mid \eta_0 = h)$$
 ...

 $\left(\frac{\pi(\eta_0 = h)}{\pi(\eta_0 = h - 1)}\right)$ 

## Results: shape of low temp DG

Previous work: [Bricmont, El-Mellouki, Fröhlich '86]:

≻ average with floor:  $\mathbb{E}\left[\frac{1}{|\Lambda|}\sum_{x} \eta_x \mid \eta \ge 0\right] ≍ \sqrt{\beta^{-1} \log L}$ 

• THEOREM [L., Martinelli, Sly]: conditioned on  $\eta \geq 0$ :  $\exists H = H(L) \sim \sqrt{\frac{1}{4\pi\beta} \log L \log \log L}$  so that w.h.p.  $\#\{x : \eta_x \in \{H, H+1\}\} \ge (1 - \varepsilon_\beta)L^2$ for an arbitrarily small  $\varepsilon_{\beta}$  as  $\beta$  increases; (i)  $\forall 1 \le h \le H - 1$ : single macro. loop; its area is  $(1 - o(1))L^2$ height *H* : single macro. loop; its area is at least  $(1 - \varepsilon_{\beta})L^2$ (ii) (iii) no (H + 2) macro. loops; no negative macro. loops. <u>**REMARK</u>**: for a.e. L (log density) almost all sites are at level H w.h.p.</u>

### Results: shape of low temp DG

- ▶ Roughly put: conditioned on  $\eta \ge 0$ , w.h.p.
  - > DG surface is a *plateau* at height  $H \sim (1/\sqrt{2})M$

M

> Plateau is  $\approx$  raised unconstrained surface.

(The floor effect increases  $X_L$  by factor of  $\sim 1 + \frac{1}{\sqrt{2}}$ .)

 $H \sim \frac{1}{\sqrt{2}} M \uparrow$ 

► <u>THEOREM</u> [L., Martinelli, Sly]: conditioned on  $\eta \ge 0$ :  $\exists M^* = M^*(L) \sim \frac{1+\sqrt{2}}{2\sqrt{\pi\beta}} \sqrt{\log L \log \log L}$  such that w.h.p.  $X_L \in \{M^*, M^* + 1, M^* + 2\}$ 

ΓM

### Generalizations to *p*-Hamiltonians

• Results extend to random surface models where  $\mathcal{H}(\eta) = \sum_{x \sim y} |\eta_x - \eta_y|^p$  for any  $p \in [1, \infty]$ .



## Generalizations to *p*-Hamiltonians

| Model               | Large deviation                                                     | Maximum                                                     |         | Height above floor                                 |         |
|---------------------|---------------------------------------------------------------------|-------------------------------------------------------------|---------|----------------------------------------------------|---------|
|                     | $-\log \pi(\eta_0 \ge h)$                                           | center $(M)$                                                | window  | center $(H)$                                       | window  |
| p = 1(SOS)          | $4\beta h + \varepsilon_{\beta}$                                    | $rac{1}{2eta}\log L$                                       | O(1)    | $\left\lceil \frac{1}{4\beta} \log L \right\rceil$ | $\pm 1$ |
| $1$                 | $(c_p\beta + o(1)) h^p$                                             | $\left(rac{2+o(1)}{c_p\beta}\log L ight)^{rac{1}{p}}$     | $\pm 1$ | $\left(\frac{1+o(1)}{2}\right)^{\frac{1}{p}}M$     | $\pm 1$ |
| p = 2(DG)           | $\left(2\pi\beta + o(1)\right)\frac{h^2}{\log h}$                   | $\sqrt{\frac{1+o(1)}{2\pi\beta}\log L\log\log L}$           | $\pm 1$ | $\frac{1+o(1)}{\sqrt{2}}M$                         | $\pm 1$ |
| $2$                 | $st \beta h^2$                                                      | $\asymp \sqrt{\frac{1}{\beta} \log L}$                      | $\pm 1$ | $\frac{1+o(1)}{\sqrt{2}}M$                         | ±1      |
| $p = \infty$ (RSOS) | $\left(4\beta + 2\log\frac{27}{16} + \varepsilon_{\beta}\right)h^2$ | $(1\pm\varepsilon_{\beta})\sqrt{rac{2}{c_{\infty}}\log L}$ | $\pm 1$ | $\frac{1+o(1)}{\sqrt{2}}M$                         | ±1      |
|                     |                                                                     |                                                             |         |                                                    |         |

$$\mathcal{H}(\eta) = \sum_{x \sim y} |\eta_x - \eta_y|^p \text{ for } p \in [1, \infty]$$

#### Detour for the connoisseur: revisited

 $\log \pi(\eta_0 \ge h) = \left(4\beta + 2\log\frac{27}{16} + \varepsilon_\beta\right)h^2$ 

Correspondence between RSOS optimal-energy surfaces, edge-disjoint walks and (via the square ice model) ASMs:



Eyal Lubetzky, Courant Institute

# **Open problems**

- Low temperature:
  - >  $L^{1/3+o(1)}$  fluctuations near center-sides?
  - > Critical behavior (exceptional *L*'s):
    - Wulff-shape scaling limit?
    - $L^{1/2+o(1)}$  fluctuations near corners?
- High temperature:
  - > DG ≈ DGFF...; tightness of maximum? asymptotics?
  - > *p*-Hamiltonian for *p* ≠ 1,2 :  $\mathbb{E}[\eta_0^2]$  =? Diverges?
- Understand  $\beta$  near  $\beta_R$ ...



>> BR

 $\beta \ll \beta_R$