GLAUBER DYNAMICS FOR SPIN SYSTEMS AT HIGH & **CRITICAL TEMPERATURES Eyal Lubetzky Microsoft Research**

Aug 2009

XVI International Congress on Mathematical Physics

Ising model

 Underlying geometry: finite graph G=(V,E).
 Set of possible configurations: Ω = {±1}^V (assignments of +/- *spins* to the vertices).
 Probability of a configuration σ∈Ω is given by the *Gibbs distribution* (no external field):

$$\mu(\sigma) = \frac{1}{Z(\beta)} \exp \beta \sum_{xy \in E} \sigma(x) \sigma(y)$$

■ *Ferromagnetic* with inverse-temperature β : as β \uparrow the measure μ favors configurations with aligned neighboring spins.

Heat-bath Glauber dynamics

MC sampler for the Gibbs distribution:

• Update each $u \in V$ via an independent Poisson(1) clock, replacing it by a new spin $\sim \mu$ conditioned on $V \setminus \{u\}$. Ergodic reversible MC with stationary measure μ . How fast is the convergence to equilibrium? • Measuring convergence in $L^2(\mu)$: <u>Spectral gap</u> : $gap = 1 - \lambda$ (where λ = largest nontrivial eigenvalue of the kernel *H*). Measuring convergence in L¹: Mixing time :

 $t_{\min}(\varepsilon) = \inf t: \max_{\sigma} \left\| H_t \ \sigma, \cdot - \mu \right\|_{\mathrm{TV}} \le \varepsilon$

General (believed) picture for Glauber dynamics

- Setting: Ising model on the lattice $(\mathbb{Z}/n\mathbb{Z})^d$. Belief: For some critical inverse-temperature β_c :
- Low temperature $(\beta > \beta_c)$: gap⁻¹ and t_{mix} are *exponential* in the surface area.
- Critical temperature $(\beta = \beta_c)$: gap⁻¹ and t_{mix} are *polynomial* in the surface area.
- High temperatures:
 - 1. **Rapid** mixing: gap⁻¹=O(1) and $t_{mix} \approx \log n$
 - 2. Mixing occurs abruptly, i.e., there is *cutoff*.

🗡 The Cutoff Phenomenon

 Describes a sharp transition in the convergence of finite ergodic Markov chains to stationarity.

Steady convergence it takes a while to reach distance $\frac{1}{2}$ from π , then a while longer to reach distance $\frac{1}{4}$, etc. Abrupt convergence the distance from π quickly drops from 1 to 0

The importance of cutoff

- Suppose we run Glauber dynamics for the Ising Model satisfying $t_{mix} \approx f(n)$ for some f(n).
- Cutoff $\Leftrightarrow \exists$ some $c_0 > 0$ so that:
 - Must run the chain for at least
 ~ c₀ · f(n) steps to even reach
 distance (1 ε) from μ.
 - Running it any longer than that is essentially redundant.

Proofs usually require (and thus provide) a deep understanding of the chain (its reasons for mixing).
 Many natural chains are *believed* to have cutoff, yet proving cutoff can be extremely challenging.

Cutoff: formal definition

 Recall: $t_{\min}(\varepsilon) = \inf t : \max_{\sigma} \|H_t \sigma, \cdot -\mu\|_{TV} \le \varepsilon$, $\|\mu - \nu\|_{TV} = \sup_{A \in \Omega} [\mu \ A - \nu \ A]$.
 The chain has *cutoff* if the following holds: $\lim_{n \to \infty} \frac{t_{\min}(\varepsilon)}{t_{\min}(1 - \varepsilon)} = 1$ for any $0 < \varepsilon < 1$.

• That is, for any $0 < \alpha$, $\beta < 1$ we have $t_{\min}(\alpha) = (1 + o(1)) t_{\min}(\beta)$.

Cutoff example: Glauber dynamics for Ising at $\beta = 0$

- No interactions: Uniform {±1} updates on the *n* sites
 [the discrete-time analogue of the chain is the lazy random walk on the hypercube]
- The magnetization is a Markov Chain (analogous to the classical "Ehrenfest's Urn" birth & death chain).
- The Coupon Collector approach: $t_{\min}(\varepsilon) \leq \log n + c_{\varepsilon}$, whereas $t_{\min}(1-\varepsilon) \geq \frac{1}{2}\log n - c'_{\varepsilon}$.

• [Aldous '83]: lower bound is tight: $\frac{1}{2} \log n + O(1)$ time suffices!

Picture for Glauber dynamics on the square lattice $(\mathbb{Z}/n\mathbb{Z})^2$

Known:

- $\beta > \beta_c \circ$ Low temperature:
 - $ext{gap}^{-1} \geq \exp(c \ n) ext{ and } \overline{t_{ ext{mix}}} \ \geq \exp(c \ n) ext{ for some } c > 0 ext{ .}$

$\leq \beta_e$ • High temperatures: gap⁻¹=O(1) and $t_{mix} \approx \log n$

- Open: Polynomial gap⁻¹, t_{mix} at the critical β=β_c?
 Static critical μ already highly involved...
- *Open*: Cutoff at high temperatures?
 - Cutoff unknown even in 1-dimension (Q. of Peres)...
 - To this date, no proof of cutoff for any chain whose
 - stationary distribution is not completely understood...

Ising on other geometries

- 1. Complete graph (Curie-Weiss model):
 - Believed to predict the behavior of the Ising model on high-dimensional tori.
 - Size of the system plays the role of surface-area.
- 2. **Regular tree** (Bethe lattice):
 - Canonical example of a non-amenable graph (with boundary proportional to its volume).
 - Height of tree plays the role of surface-area.

The Curie Weiss model: (mean field Ising model)

- Rescaling β : $\mu(\sigma) \propto \exp(\beta/n) \sum_{x < y} \sigma(x) \sigma(y)$
- □ [Griffiths, Weng, Langer '66], [Ellis '87]),...: For $\beta > 1$: gap⁻¹, t_{mix} exponential in n.
- □ [Aizenman, Holley '84], [Bubley, Dyer '97]),...: For $\beta < 1$: gap⁻¹ = O(1), $t_{mix} \approx \log n$.
- I [Levin, Luczak, Peres '07], [Ding, L., Peres '09]: For $\beta = 1$: gap⁻¹, $t_{mix} \approx n^{1/2}$ For $\beta < 1$: *cutoff*: $t_{mix} = \frac{1}{2(1-\beta)} \log n + O(1)$

Critical window around β_c is of order $\frac{1}{\sqrt{n}}$ Picture completely *verified*.

The Curie Weiss model: complete picture

□ <u>Theorem</u> [Ding, L., Peres '09]:

 $eta = 1 - \delta \text{ with } \delta^2 n \to \infty :$ *Cutoff* at $\frac{1}{2\delta} \log(\delta^2 n)$ with a window of $1/\delta$. $\operatorname{gap}^{-1} = (1+o(1))/\delta.$

 $\beta = 1 \pm \delta$ with $\delta = O(n^{-1/2})$: gap⁻¹, $t_{\text{mix}} \approx n^{1/2}$ and there is no cutoff.

$$\begin{split} \beta &= 1 + \delta \text{ with } \delta^2 n \to \infty :\\ \operatorname{gap}^{-1}, \, t_{\operatorname{mix}} \asymp \frac{1}{\delta} \exp[\frac{n}{2} \int_0^{\zeta} \log(\frac{1+g(x)}{1-g(x)}) dx], \quad \text{where}\\ \zeta \text{ is the unique positive root of } g(x) &= \frac{\tanh(\beta x) - x}{1 - x \tanh(\beta x)} \end{split}. \end{split}$$
There is no cutoff.

Curie-Weiss model: (mean-field Ising model) Scaling window in the gap/mixing-time evolution

Mean field Ising model (ctd.)

Key element in the analysis:
 By the complete symmetry, the magnetization is in fact a birth-and-death Markov Chain.

Its mixing governs the mixing of the full dynamics.

 Proof involves a delicate analysis of certain hitting times to establish the precise point of reaching the "center of mass".

Stationary distribution of the magnetization chain for the dynamics on n = 500 vertices.

Same picture for the *q*-state Potts model ?

- Potts model: $\Omega = [q]^V$ (assigning *colors* to the sites) $\mu(\sigma) = Z^{-1}(\beta) \exp -\beta \sum_{xy \in E} \mathbf{1}_{\{\sigma(x) \neq \sigma(y)\}}$
- [Ellis '87]: Mean-Field Potts has a phase transition in the structure of the μ around $\beta_c = 2\frac{q-1}{q-2}\log(q-1)$:
 - *Disordered phase* for β < β_c: Each of the *q* spins appears roughly the same # of times.
 - Ordered phase for $\beta > \beta_c$: One of the spins dominates.

 [Gore, Jerrum '96]: Mixing is exponentially slow at β = β_c even for (faster) Swendsen-Wang dynamics...
 No power-law of gap⁻¹, t_{mix} at criticality !?!

Mean-field Potts model

Cuff, Ding, L., Louidor, Peres, Sly]: confirm the picture w.r.t. a new critical point $\beta_{\rm m} < \beta_{\rm c}$! • The smallest β such that $g(x) = \frac{e^{\beta x}}{e^{\beta x} + (q-1)e^{\beta(1-x)/(q-1)}} - x$ has a non-trivial root in $(\frac{1}{q}, 1]$. • Analogous behavior to Ising around β_m , e.g.: • Rapid mixing (log *n*) with cutoff at $\beta < \beta_{\rm m}$. • Power law at criticality: gap⁻¹, $t_{\text{mix}} \simeq n^{1/3}$ for $\beta = \beta_{\text{m}}$. • Critical window has order $n^{-2/3}$. • Exp. mixing, yet fast "essential mixing" in (β_m, β_c) .

Mean-field Potts model, q=3

 $\beta < \beta_m \approx 2.746$: Rapid mixing with cutoff $\beta = \beta_m$: Power law mixing $(n^{1/3})$

Between (β_m, β_c) : Exponential mixing, yet fast "essential mixing" with cutoff.

$\beta \geq \beta_c \approx 2.773$: Exponential mixing

Ising on the Bethe lattice

- Underlying graph = b-ary tree of height h.
- \square μ has a constructive representation (free boundary):
 - Assign a uniform spin to the root
 - Scan the tree top to bottom: Every site inherits the spin of its parent with probability ¹/₂(1 + tanh β) and mutates o/w.

Two critical temperatures:

- 1. $\beta_1 = \operatorname{arctanh}(1/b)$:Uniqueness threshold (does the effect of a plus boundary on the root vanish as $h \to \infty$).
- 2. $\beta_c = \operatorname{arctanh}(1/\sqrt{b})$: Purity threshold (does the effect of a "typical" boundary on the root vanish as $h \to \infty$).
- \square β_c coincides with critical spin-glass parameter.

Glauber for Ising on trees

 \square β_c is the critical mixing parameter :

 [Kenyon, Mossel, Peres '01], [Berger, Kenyon, Mossel, Peres '05]: Under free boundary:

• For $\beta < \beta_{e}$: gap⁻¹ = O(1), $t_{\text{mix}} \asymp h$ • For $\beta > \beta_{e}$: log(gap⁻¹) $\asymp h$

 At criticality: No upper bound; shown that gap⁻¹ is at least linear in *h* and conjectured that this is tight.

[Martinelli, Sinclair, Weitz '04]:
 Under all-plus BC: gap⁻¹ = O(1), t_{mix} × h for all β > 0.
 What is the behavior at the critical β_c?

Mixing for Ising on critical trees

□ <u>Theorem</u> [Ding, L., Peres '09]:

Fix $b \ge 2$ and let $\beta_c = \operatorname{arctanh}(b^{-1/2})$ be the critical inversetemperature for the Ising model on the *b*-ary tree of height *h*. There exist *C*, c_1 , $c_2 > 0$ independent of *b* such that : 1. For any boundary condition τ : gap^{-1} , $t_{\min} = O(h^C)$. 2. In the free boundary case: $\operatorname{gap}^{-1} \ge c_1 h^2$, $t_{\min} \ge c_2 h^3$.

 (first geometry other than the complete graph where power-law mixing at criticality is verified)

Main ingredients in the proof

Use block dynamics [Martinelli '97] r to form a recursion on the tree: h r $\inf\{\operatorname{gap}_{h}^{\tau}\} \geq \frac{1}{2}\inf\{\operatorname{gap}_{B}^{\tau}\} \cdot \inf\{\operatorname{gap}_{r}^{\tau}\}$ Reduces to estimating a quantity that, in the free boundary case, corresponds to a reconstruction-type result of [Pemantle, Peres '05] ("propagate a spin at the root down to level ℓ , then reconstruct it back"). • In our case: we have τ , an arbitrary boundary condition (greatly complicates the proof)... • Still open: Is there cutoff for $\beta \leq \beta_c$?

Recent progress: Ising on lattices

Theorem [L., Sly]:

Let $\beta_c = \frac{1}{2}\log(1+\sqrt{2})$ be the critical inverse-temperature for the Ising model on \mathbb{Z}^2 . Then the continuous-time Glauber dynamics for the Ising model on $(\mathbb{Z}/n\mathbb{Z})^2$ with periodic boundary conditions at $0 \le \beta < \beta_c$ has cutoff at $(1/\lambda) \log n$, where λ is the spectral gap of the dynamics on the infinite volume lattice.

■ Analogous result holds for *any* dimension $d \ge 1$. [e.g., for d = 1 there is cutoff at $\frac{1}{2(1-\tanh(2\beta))}\log n$ for any temperature].

Recent progress on lattices (ctd.)

- Main result hinges on an L¹-L² reduction, enabling the application of log-Sobolev inequalities.
- Generic method that gives further results on:
 - Arbitrary external field and non-uniform interactions.
 - Boundary conditions (including free, all-plus, mixed).
 - Other spin system models:
 - Anti-ferromagnetic Ising
 - Gas Hard-core
 - Potts (ferromagnetic / anti-ferromagnetic)
 - Coloring
 - Spin-glass

Other lattices (e.g., triangular, graph products).

THANK YOU.

Aug 2009

XVI International Congress on Mathematical Physics