Uniformly \mathbb{X} Intersecting
 Families

Noga Alon and Eyal Lubetzky

\mathbb{X} Intersecting Families

- Let \mathcal{A}, \mathcal{B} denote two families of subsets of $[n]$. The pair $(\mathcal{A}, \mathcal{B})$ is called

$$
\text { " } \ell \text {-cross-intersecting" }
$$

iff

$$
|A \cap B|=\ell \text { for all } A \in \mathcal{A}, B \in \mathcal{B} .
$$

- Q: What is $P_{\ell}(n)$, the maximum value of $|\mathcal{A}||\mathcal{B}|$ over all ℓ-X-intersecting pairs $(\mathcal{A}, \mathcal{B})$?

Previous work: single family

- What is the maximal size of $\mathcal{F} \subset 2^{[n]}$ with given pair-wise intersections?
- Erdös-Ko-Rado '61: $\left|F \cap F^{\prime}\right| \geq t$ and $|F|=k$ for all $F, F^{p} \in \mathcal{F}$, then: $|\mathcal{F}| \leq\binom{ n-t}{k-t}$
- Katona's Thm '64: no restriction on $|F|$.
- Additional examples:

Ray-Chaudhuri-Wilson '75, Frankl-Wilson '81, Frankl-Füredi ' 85.

Previous work: two families

- Conj (Erdős '75): if $\mathcal{F} \subset 2^{[n]}$ has no pair-wise intersection of $\left\lfloor\frac{n}{4}\right\rfloor$ then $|\mathcal{F}| \leq(2-\varepsilon)^{n}$
- Settled by studying pairs of families:

Frankl-Rödl '87: if $\mathcal{A}, \mathcal{B} \subset 2^{[n]}$ have a forbidden \mathbb{X}-intersection $\eta n \leq l \leq\left(\frac{1}{2}-\eta\right) n$ then $|\mathcal{A}||\mathcal{B}| \leq(4-\varepsilon(\eta))^{n}$

$$
\eta<1 / 4
$$

- Frankl-Rödl ' 87 studied several notions of \mathbb{X}-intersecting pairs, including $P_{\ell}(n)$.

Previous work: $P_{\ell}(n)$

- Frankl-Rödl '87: $\quad P_{0}(n) \leq 2^{n}$, and for all $\ell \geq 1, \quad P_{\ell}(n) \leq 2^{n-1}$.
- Ahlswede-Cai-Zhang '89:

Linear algebra over $\left(\mathbb{Z}_{p}\right)^{n}$ lower bound: take $n \geq 2 \ell$, and:

$$
|\mathcal{A}||\mathcal{B}|=\binom{2 \ell}{\ell} 2^{n-2 \ell}=(1+o(1)) \frac{2^{n}}{\sqrt{\pi \ell}}
$$

Previous work: $P_{\ell}(n)$

- Conj (Ahlswede-Cai-Zhang '89): the above construction maximizes $P_{\ell}(n)$.
- True for $\ell=0$ and $\ell=1$.
- For general $\ell:$ Gap $=\left[\Theta\left(\frac{2^{n}}{\sqrt{\ell}}\right), \Theta\left(2^{n}\right)\right]$
- \underline{Q} (Sgall '99): does $P_{\ell}(n)$ decrease with ℓ ?
- Keevash-Sudakov '06: the above conj is true for $\ell=2$ as well.

Our results

- Confirmed the conj of Ahlswede-Cai-Zhang '89 for any sufficiently large ℓ.
- Characterized all the extremal pairs \mathcal{A}, \mathcal{B} which attain the maximum of $|\mathcal{A}||\mathcal{B}|=\binom{2 \ell}{\ell} 2^{n-2 \ell}$
- This also provides a positive answer to the Q of Sgall '99.

Main Theorem

- There exists some ℓ_{0}, such that, for all $\ell \geq \ell_{0}$, every ℓ - \mathbb{X}-intersecting pair $\mathcal{A}, \mathcal{B} \subset 2^{[n]}$ satisfies:

$$
|\mathcal{A}||\mathcal{B}| \leq\binom{ 2 \ell}{\ell} 2^{n-2 \ell}
$$

o Furthermore, equality holds iff the pair \mathcal{A}, \mathcal{B} is w.l.o.g. as follows:

The construction of Ahlswede et al. fits the special case $\tau=0, \kappa=2 \ell$
$|\mathcal{A}||\mathcal{B}|=\binom{\kappa}{\ell} 2^{n-\kappa}=\binom{2 \ell}{\ell} 2^{n-2 \ell}$

Extremal pairs \mathcal{A}, \mathcal{B}
 $$
\begin{aligned} & \tau \leq \kappa, \\ & \kappa \in\{2 \ell-1,2 \ell\} \end{aligned}
$$

$$
|\mathcal{A}|=\binom{\kappa}{\ell} 2^{M} \frac{a^{M} y}{n=\tau+\kappa+M+N}
$$

Ideas used in the Proof

- Tools from Linear Algebra: study the vector spaces of the characteristic vectors of the sets in \mathcal{A}, \mathcal{B} over \mathbb{R}^{n}.
- Techniques from Extremal Combinatorics, including:
- The Littlewood-Offord Lemma.
- Extensions of Sperner's Theorem
- Large deviation estimates.
o Prove:

A weaker resul \dagger

- Upper bound tight up to a constant:
- There exists some ℓ_{0}, such that, for all $\ell \geq \ell_{0}$, every ℓ - \mathbb{X}-intersecting pair $\mathcal{A}, \mathcal{B} \subset 2^{[n]}$ satisfies:

$$
|\mathcal{A}||\mathcal{B}| \leq \frac{2^{n+3}}{\sqrt{\ell}}
$$

Vector spaces over \mathbb{R}^{n}

- Define:
$\mathcal{F}_{\mathcal{A}}=\operatorname{span}\left(\left\{\chi_{A}: A \in \mathcal{A}\right\}\right)$ over \mathbb{R}, $\mathcal{F}_{\mathcal{B}}=\operatorname{span}\left(\left\{\chi_{B}: B \in \mathcal{B}\right\}\right)$ over \mathbb{R}.
- Set:
$\mathcal{F}^{\prime}{ }_{B}=\operatorname{span}\left(\left\{\chi_{B}-\chi_{B 1}: B \in \mathcal{B}\right\}\right)$ over \mathbb{R}, $k=\operatorname{dim}\left(\mathcal{F}_{\mathcal{A}}\right), h=\operatorname{dim}\left(\mathcal{F}^{\prime}{ }_{\mathcal{B}}\right)$.
- \mathcal{A}, \mathcal{B} are ℓ - \mathbb{X}-inter $\rightarrow \mathcal{F}_{\mathcal{A}} \perp \mathcal{F}^{\prime}{ }_{\mathcal{B}}$.
$0 \Rightarrow k+h \leq n$.

Vector spaces over \mathbb{R}^{n}

- Let $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$ denote the matrices of bases for $\mathcal{F}_{\mathcal{A}}$ and $\mathcal{F}_{\mathcal{B}}$ after performing Gauss elimination:

$$
M_{\mathcal{A}}=\left(I_{k} \mid *\right), M_{\mathcal{B}}=\left(I_{h} \mid *\right)
$$

- Since target vectors are in $\{0,1\}^{n}$:
$|\mathcal{A}||\mathcal{B}| \leq 2^{k+h} \leq 2^{n}$.
- If, say, $M_{\mathcal{A}}$ can produce at most $|\mathcal{A}|<\frac{8}{\sqrt{n}} \cdot 2^{k}$ sets, we are done.

What do $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$ look like?

- Can we indeed produce 2^{d} legal char. vectors from $M=\left(I_{d} \mid *\right)$? - We get constraints if there are:

The Littlewood-Offord Lemma (1D)

Families are antichains by induction

The Littlewood-Offord Lemma (1D)

- Q (Littlewood-Offord '43):

Let $a_{1}, \ldots, a_{n} \in \mathbb{R}$ with $\left|a_{i}\right|>1$ for all i. What is the max num of sub-sums $\sum_{i \in I} a_{i}$, $I \subset[n]$, which lie in a unit interval?

- Lemma (Erdős '45):

Let $a_{1}, \ldots, a_{n} \in \mathbb{R} \backslash\{-\delta, \delta\}$ and let U denote an interval of length $\leq \delta$.
Then the number of sub-sums $\sum_{i \in I} a_{i}$ $I \subset[n]$, which belong to U, is at most $\binom{n}{\lfloor n / 2\rfloor}$

Erdős's Pf of the L-O Lemma (10)

- Without loss of generality, all the a_{i}-s are positive ($0 / \mathrm{w}$, shift the interval U).
- A sub-sum which belongs to U is an antichain of $[n]$ and the result follows from Sperner's Thm.

What do $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$ look like?

Oither $|\mathcal{A}||\mathcal{B}| \leq \frac{2^{n+3}}{\sqrt{\ell}}$, or w.I.o.g. :

$$
\begin{aligned}
& \left.M_{\mathcal{A}}=\left(\begin{array}{c|c|c}
I_{k^{\prime}} & -I_{k^{\prime}} & 0 \\
\hline * & * & *
\end{array}\right)\right\} k^{\prime}=\frac{2}{5} n-O(\log n) \\
& M_{\mathcal{B}}=\left(\begin{array}{c|c|c}
I_{h^{\prime}} & -I_{h^{\prime}} & 0 \\
\hline * & * & *
\end{array}\right)
\end{aligned}
$$

Completing the proof of the Thm

- Recall: each row of $M_{\mathcal{A}}$ is orthogonal to each row of $M_{\mathcal{B}}$.
- Two ($1,-1,0, \ldots, 0$) rows are orthogonal only if the $(1,-1)$ indices are disjoint.
- $M_{\mathcal{A}}$ gives $\frac{2}{5} n-O(\log n)$ pairs of indices.
- $M_{\mathcal{B}}$ gives $\frac{13}{40} n-O(\log n)$ pairs of indices.
- $\frac{4}{5} n+\frac{13}{20} n>n \Rightarrow$ contradiction.
\square Qed

Proof of Main result - some ideas

- If $M_{\mathcal{A}}$ is "far" from a structure which produces 2^{k} sets for $\mathcal{A}, M_{\mathcal{B}}$ must be "close" to a structure producing 2^{h} sets for \mathcal{B}.
- "Clean" the matrices gradually, using orthogonality to switch back and forth between $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$.
- An easy scenario to illustrate this:

Scenario: $\Omega(n)$ rows of $M_{\mathcal{A}}$ in $\{0,1\}^{n}$

Optimal family with $\kappa=k, \tau=h, n=\kappa+\tau$.

Thank you!

