Uniformly X Intersecting Families

Noga Alon and Eyal Lubetzky

April 2007

\mathbb{X} Intersecting Families

Let \mathcal{A} , \mathcal{B} denote two families of subsets of [n]. The pair $(\mathcal{A},\mathcal{B})$ is called " ℓ -cross-intersecting" iff $|A \cap B| = \ell$ for all $A \in \mathcal{A}$, $B \in \mathcal{B}$.

• Q: What is $P_{\ell}(n)$, the maximum value of $|\mathcal{A}||\mathcal{B}|$ over all ℓ -X-intersecting pairs (\mathcal{A},\mathcal{B})?

Previous work: single family

- \circ What is the maximal size of $\mathcal{F} \subset 2^{[n]}$ with given pair-wise intersections?
- \circ Erdős-Ko-Rado '61: $|F \cap F'| \ge t$ and |F| = k for all $F, F' \in \mathcal{F}$, then: $|\mathcal{F}| \le {n-t \choose k-t}$
- \circ Katona's Thm '64: no restriction on |F|.
- Additional examples: Ray-Chaudhuri-Wilson '75, Frankl-Wilson '81, Frankl-Füredi '85.

Previous work: two families

 \circ <u>Conj</u> (Erdős '75): if $\mathcal{F} \subset 2^{[n]}$ has no pair-wise intersection of $\lfloor rac{n}{4}
floor$ then $|\mathcal{F}| \leq (2-arepsilon)^n$ • Settled by studying pairs of families: Frankl-Rödl '87: if $\mathcal{A}, \mathcal{B} \subset 2^{[n]}$ have a forbidden X-intersection $\eta n \leq l \leq (\frac{1}{2} - \eta)n$ then $|\mathcal{A}||\mathcal{B}| \leq (4 - \varepsilon(\eta))^n$ η < ¼ Frankl-Rödl '87 studied several notions of X-intersecting pairs, including $P_{\ell}(n)$.

Previous work: $P_{\ell}(n)$

$$|\mathcal{A}||\mathcal{B}| = \binom{2\ell}{\ell} 2^{n-2\ell} = (1+o(1))\frac{2^n}{\sqrt{\pi\ell}}$$

Previous work: $P_{\ell}(n)$

 \circ <u>Conj</u> (Ahlswede-Cai-Zhang '89): the above construction maximizes $P_{\ell}(n)$.

• True for $\ell{=}0$ and $\ell{=}1$.

o For general l: Gap = [⊖(^{2ⁿ}/_{√l}), ⊖(2ⁿ)]
○ Q (Sgall '99): does P_l(n) decrease with l?
○ Keevash-Sudakov '06: the above conj is true for l=2 as well.

Our results

• Confirmed the conj of Ahlswede-Cai-Zhang '89 for any sufficiently large ℓ . Characterized all the extremal pairs \mathcal{A}, \mathcal{B} which attain the maximum of $|\mathcal{A}||\mathcal{B}| = \binom{2\ell}{\ell} 2^{n-2\ell}$ This also provides a positive answer to the Q of Sgall '99.

Main Theorem

 $\begin{array}{l} \circ \text{ There exists some } \ell_0, \text{ such that, for} \\ \text{ all } \ell \geq \ell_0, \text{ every } \ell \text{-} \mathbb{X} \text{-intersecting pair} \\ \mathcal{A}, \mathcal{B} \subset 2^{[n]} \text{ satisfies:} \\ |\mathcal{A}||\mathcal{B}| \leq {\binom{2\ell}{\ell}} 2^{n-2\ell} \end{array}$

 \circ Furthermore, equality holds iff the pair \mathcal{A}, \mathcal{B} is w.l.o.g. as follows:

 $n = \tau + \kappa + M + N$

Ideas used in the Proof

- \circ Tools from Linear Algebra: study the vector spaces of the characteristic vectors of the sets in \mathcal{A}, \mathcal{B} over \mathbb{R}^n .
- Techniques from Extremal Combinatorics, including:
 - The Littlewood-Offord Lemma.
 - Extensions of Sperner's Theorem
 - Large deviation estimates.
- o Prove:

A weaker result

○ Upper bound tight up to a constant:
○ There exists some l₀, such that, for all l≥l₀, every l-X-intersecting pair A,B ⊂ 2^[n] satisfies: |A||B| ≤ ²ⁿ⁺³/_{√l}

Vector spaces over \mathbb{R}^n

• Define: $\mathcal{F}_{A} = \text{span} (\{\chi_{A} : A \in \mathcal{A}\}) \text{ over } \mathbb{R},$ $\mathcal{F}_{\mathcal{B}} = \text{span} (\{\chi_{B} : B \in \mathcal{B}\}) \text{ over } \mathbb{R}.$ o Set: $\mathcal{F'}_{\mathcal{B}} = \operatorname{span} (\{\chi_B - \chi_{B_1} : B \in \mathcal{B}\}) \text{ over } \mathbb{R},$ $k = \dim(\mathcal{F}_{A}), h = \dim(\mathcal{F}'_{\mathcal{B}}).$ $\circ \mathcal{A}, \mathcal{B} \text{ are } \ell \text{-} \mathbb{X} \text{-inter} \to \mathcal{F}_{A} \perp \mathcal{F}'_{\mathcal{B}}.$ $\circ \Rightarrow k + h < n$.

Vector spaces over \mathbb{R}^n

- \circ Let $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$ denote the matrices of bases for $\mathcal{F}_{\mathcal{A}}$ and $\mathcal{F}'_{\mathcal{B}}$ after performing Gauss elimination: $M_{\mathcal{A}} = \left(\begin{array}{c} I_k & | & * \end{array} \right) , M_{\mathcal{B}} = \left(\begin{array}{c} I_h & | & * \end{array} \right)$ \circ Since target vectors are in $\{0,1\}^n$: $|\mathcal{A}||\mathcal{B}| \leq 2^{k+h} \leq 2^n$.
- \circ If, say, $M_{\mathcal{A}}$ can produce at most $|\mathcal{A}| < \frac{8}{\sqrt{n}} \cdot 2^k \text{ sets, we are done.}$

What do $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$ look like?

• Can we indeed produce 2^d Iegal char. vectors from $M = (I_d | *)$?
• We get constraints if there are:
• Columns with many non-zero entry.
• Rows not in $\{0, \pm 1\}^n \setminus \{0, 1\}^n$.

The Littlewood-Offord Lemma (1D) Families are antichains by induction

The Littlewood-Offord Lemma (1D)

 \circ Q (Littlewood-Offord '43): Let $a_1, \ldots, a_n \in \mathbb{R}$ with $|a_i| > 1$ for all *i*. What is the max num of sub-sums $\sum_{i \in I} a_i$, $I \subset [n]$, which lie in a unit interval? ○ Lemma (Erdős '45): Let $a_1, \ldots, a_n \in \mathbb{R} \setminus \{-\delta, \delta\}$ and let U denote an interval of length $\leq \delta$. Then the number of sub-sums $\sum_{i\in I}a_i$, $I\subset [n]$, which belong to U, is at most $\binom{n}{\lfloor n/2 \rfloor}$

Erdős's Pf of the L-O Lemma (1D)

 \circ Without loss of generality, all the a_i -s are positive (o/w, shift the interval U).

 \circ A sub-sum which belongs to U is an antichain of [n] and the result follows from Sperner's Thm.

hm

Completing the proof of the Thm

- \circ Recall: each row of $M_{\mathcal{A}}$ is orthogonal to each row of $M_{\mathcal{B}}$.
- \circ Two $(1,\!-1,\!0,\ldots,\!0)$ rows are orthogonal only if the $(1,\!-1)$ indices are disjoint.

 $\circ M_{\mathcal{A}} \text{ gives } \frac{2}{5}n - O(\log n) \text{ pairs of indices.}$ $\circ M_{\mathcal{B}} \text{ gives } \frac{13}{40}n - O(\log n) \text{ pairs of indices.}$

 $\circ \frac{4}{5}n + \frac{13}{20}n > n \Rightarrow \text{contradiction}.$

Proof of Main result - some ideas

- $\circ \mbox{ If } M_{\mathcal{A}} \mbox{ is "far" from a structure which} \\ \mbox{ produces } 2^k \mbox{ sets for } \mathcal{A}, M_{\mathcal{B}} \mbox{ must be} \\ \mbox{ "close" to a structure producing } 2^h \mbox{ sets} \\ \mbox{ for } \mathcal{B} \mbox{ .} \\ \end{tabular}$
- \circ "Clean" the matrices gradually, using orthogonality to switch back and forth between $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$.
- An easy scenario to illustrate this:

Scenario: $\Omega(n)$ rows of $M_{\mathcal{A}}$ in $\{0,1\}^n$

Thank you!

