

























































































The q state POTTS Motel q 2 integer

Underlying geometry

An C 23

Main focus Ah E h LIX t's

Set of configurations

43 g

Probability of a configuration T

ICT
I

chip exp P
E Tix rlyx y

for
p o the inverse temperature

Boundary conditions b c fixed coloring of Ai

Main focus

b c B in lower half space 1H
b c R in upper half space 1H

low temperature 137ps fixed large

Q What can we say about the

random interfaces between the
B and R of the boundary





































































Background Ising model the case q 2

Spins are either B on R

Dobrushin in the early 1970 s

studied the Interface
f ex g dual forTale Ff x y sit Tex Tty

I is the o connected component of faces

in Fr touching the boundary

f f are O adjacent for adjacent

if f f to lever via a corner

Theorem Dobrushin 72,173 RIGIDITY OF THE INTERFACE

In 3D Ising on An at popo for V x six xa h

P ex xs h e Ils e tph
W Lp I flat at height 0 above 0.99h faces Xe Ah LD

Corollaries

I non translation invariant 73 Gills measures

Max Min height of I are s flag w h p





































































Some of the follow up works
on LowTEMP ISING

var Beijerer 75
alternative simpler argument fin rigidity
Bricmont Lebowitz Pfister Olivieri 739 793 Dc

extension of the rigidity argument to
the Widen Rawlinson model

Gielis Grimmett 02

extension of rigidity argument to super critical

percolation Random Cluster model conditioned to

have interfaces

many other works on the Wulff stupe
LD fu magnetization surface tension

Pisztora 96 CB dinean 367 Cerf Pisztora
00

Bodine an 05 Cerf 06





































































Recent progress Ising model the case q 2

Gheissari and L C 21 22 identified the

correct exponential rate

P ex xa h e I e
h as hay

for an explicit X E 413 IC

Led to the following result on Max Min of I

Theorem Gheissari L 21 22 Tightness of
MAX MIN of I

Mn the max heightof I satisfies
Mn EMn Op 1

and
EMn 3 063 log h

the interface I
a s separates the Nld
two b c phases
finite bubbles
aren't drawn

Q Analogue in Potts





































































Interfaces in the Potts model

I cars unique if RED component

Reb MEICars unique if Blue component

BLUE O 8
Equiv say Vre v I path of red vertices

connecting it to 2h
anana

Vising v F path of blue vertices
connecting it to an

Augment the components

Reb Vee u finite components of Vie

Blue Blue u finite components of Vizag

000

y yo
manInnes f cu for IgfL

BLUE

analogously

Ike f cu v7 for EDRED

r
RED




































Ike f cu for
EDRED Itunes f cu for EVBly
Rey

VBLUE





































































New results jointly with Joseph Chen Ntu

Theorem I Chen L

Consider q state Potts on Aus Ah LD 17 2

w Dobrushin b c 832 and 13 po fixed

Let Mn MIN height of Blue

M MAX height of IBlue

Then
Mn E Mn Op 1

tightnessMi E Mi Op 1

Moreover I 2,2 0 S.t

E Mn 3 told lgL E Min 3 told lgL
and 2 t for q 2 2 21 for q 2

000
FRED

witVBlue

Dy Mn





































































The Random Cluster model q 1 sepal

Underlying geometry j
An c 713

Main focus An I n LD x 2 ÉÉÉ

Set of configurations

w Ws ECA

Probabiliyt of a configuration W

IElwl 121W
Mcw Feng P ll p q

Cohn

open edges
closededges components

in w in w in w

Boundary conditions a partition of the

vertices of ann to conn comp conn outsideof Aa

Main focus all corn

b c wired in lower half space 1H
b c wired in upper half space 1H

low temperature p l E fixed large

I





































































Edwards Sokal 887 coupling D Ets

p is l e P

Pp q Tw ftp.g P Tl rustyXy EW

air a
ip

1 2 To pcwyaptwla.ph qkcw7

moving between
Swendsen Wang87

color t conn comp
g p percolation on g W IID Unille if

wcolorclusters

Via this coupling Potts R

B

corresponds to Rc wired ant
wired 2h5

conditioned on janions ani Dn
É

ie I an interface I





































































Interfaces in the RC model

I last unique it top component V8 ÉnÉxj
I ca s unique if Bot component V Boy

É 3
Augment the components

Top Vtop u finite components of Vfp

Bot
V
Boy u finite components of Vigo

Interfaces inniii

Top
f cu for

kettop

analogously

Ipo f cu for UE Bot

r
Bot

Last but not least
f e s.t.ee w

I I connected comp of dual closed faces

touching the boundary






























Ipp f cu v7 for Etter Ipo f cu for
UEDBot

r Pep Bot





































































New results on RC p t éP

Theorem 2 Chen L

Consider the RC model on Aus Ah 25 17 2

w Dobrushin b c q 1 and 13 po fixed
condition on the existence of I

Let Mn MIN height of Ipo
Min Max height of Ipo

Then
Mn E Mn Op 1

tightnessMi E Mi OpC1

Moreover I 2 2 so sit

E Mn 2 047 loge E Min 3 told lzL
and a d

he
ÉÉmY
yÉg

jj

Ma
r

Mu





































































A Tale of Four Rates

We can compare the rates as fallers

Theorem Chen L

The rates from Thms 1,2 satisfy

413 C S s 4ps

r a I Ep e P

r a ite g Det

a a
creep get

RC Potts

I l
zig

ÉÉ































































































How did the Ising pf work and wh does

it fail for Potts

Step Cluster expansion Mi dos Sinai 67
D brushin 72

IP I I e B
Il t Egolf I

faces in I interaction fucc g
uniformly bdd local

Step Dobrushin's rigidity framework

classify conc sets of excess faces in I as WALLS

rest are CEILINGS

to show rigidity
attempt to delete a wall W

gaining plwl
the tricky part controlling g
E g deleting W

may shift other
parts of I
which accumulate
interaction terns

Must continue deleting nearby walls

Dobrushin grouped walls together via

size is distance to make this any work





































































Step From WALLS to PILLARS

Dobrushin's deletion of complete groups of walls
is too crude to recover LD rates

Instead Gheissari L looked at the

PILLAR Px

the conn comp in 1H

of spins containing X

Conditional on the event

EE ht Pa h

it should behave as a directed Rw in 73

with regeneration pts

Break it into increments

Goal

a Show that a given increment tends to

be trivial a cube 14 side faces

b Including 1st exceptional incremet





































































How do we show cat

By straightening Px

replacing i th increment Xi
by a trivial one

doing so for any j th incr Xj
whose size is too large
compared to dist Xi Xj

How do we show b

Complicated algorithm for modify I

Step The LD rate 2

Px concerns a component of t

Can't we use FRG for SUPER MULTIPLICATIVITY

n
Ns due to the b c

at height h we are

ymore negative hi

Instead SUB MULTIPLICATIVITY a la BK inequality

h
Use monotonicity and properties a lb

I.gg





































































Random Cluster to the rescue

The toolkit to handle pillars is robust

but without the sub malt argument of no value
While PCIe in Ising does not sat FRG

the Ising dist on configurations does

monotonicity used in a crucial way
Standard remedy to Potts nonmonotonicity RC

Gielis Grimmett 102 extended the framework of
D brushin to RC cond on an interface

call this measure

In pal I Da top b c 215
DISCONNECTED from
bottom b c on

Still No montonicity because of the cond
on the exponentially unlikely event In

However at least the RC measure pen
is monotone

Cluster expansion and rigidity pf give us the

foundations for studying I in fun





































































The RC interface I
f e s.t.ee w

I I connected comp of dual closed faces

touching the boundary

Not the interface we'd want to study
but the one GG 023 developed tools for

No longer just a surface

But many complications

Cluster Expansion

f I i et at
qkzep.li tIgcf

I
FEI

open clusters
dual open faces in the conf

dual to I1 conn to I
but not in I

open
cop

closed dipIn accordance with the RC p q

Walls Ceilings done v rt

extending I into It via some open faces

I I v f e SI horizontal














































































































The RC PILLAR Px

the A conn comp in 1H
Recall Ising PILLAR of t spins containing X

RC PILLAR Px the Ah conn comp in

Espn lit containing x

Its faces def by taking
F f cu u we Px ve Itt Ipx

and adding to it any 1 conn coup
of faces e

in Il Iep sit En P n 1H X
Kop

in

Kop

Added hairs necessary
to deal with 21

in the GG 02 cluster expansion
But now separate pillars can

Jfktouch each other





































































Suppose we could control the pillar Px
What about the SUB MULTIPLICATIVITY argument

The goal show

f Ahrens s f Ah f Aha
In Ising we exposed a t component

by def surrounded by s

Here much more delicate to def

faces of I we expose to support
a Domain Markov Property

starting from the open faces 21

Last but not least the
missing

bar

Even if this recipe gave

Inc Here I Jy Ah Malala
then the last tern on the RHS

is it a graph with different b c

no longer the fin measure





































































Some of the ideas to bypass these obstacles

Px affects Pg via hairs Idf
establish that typically

Px E cone

devoid of other walls

Offset the new terms I éP at
qkI

in the GG 02J cluster expansion
via deleted faces in the straightening of Px

Approximate the event EÉ ht Px h

by a suitable Af that is

h
amenable to exposing

certain

faces of I forming a b c

on the graph above height h
not
very sensitive to Da at large h

then add it to RHS by monotonicity

f Aha s flag
Only works for a DECREASING Ah





































































Carrying out the
program

Max height of Igp ÉÉynÉ
governed by É8 j
a lin ta log Ju ht Px h

box J

What about its Min height
proof breaks
down

What about Potts

Promising approach

Cord on tht a 3h in the RC model it

behaves like a RW is that its increments

are asymp stationary 3
measure

mixing or

By the CES coupling we

need to consider the

coloring of its interior

hog PC is tht E 3h will be approx
a sum of k l'D ri ri's log RG EX





































































The retrospectively obvious fault

A typical Px in pit ht Pash has

the above structure

But the Max of Ione might and will

come from an atypical Px
Most increments should be trivial still

Complicated optimization shape of Px wants

to minimize surface area but also give

many options for BLUE paths climbing to h

Solution show existence of the rate

rather than what its value is

by another SUB MULTIPLICATIVITY argument

4 http zhths ht Px73hitha

sCipn ht Pt73h lhtCPx73h

off http zha ht Px73h

BUT How





































































The 3 to 3
map

PT 2 at

PB
t t

I
2T PB

PT
QB t

want to show that
cannot afford additive

errors we're cond
on Eet

V P Pt S Ite V PB U2 PT

write

UCP PT 2 Pg V2 Pt

Ep
P P A D IP A 8218,1727

UCP x Pt A V 103 A 82101,172
A Al Az
QB QT V 23 2 A D IP A V2 PtAz





































































V 23 2 A D IP A 8218,172
A Al A2
QB QT V PB x Pt A V 103 A 82101,172

V 23 2 A D IP A ValptAz

Control via cluster expansion e
with the 3 to 3 map

S E V PB Uz PT





































































Recovering the LD rates N M r

modulo Pa givesWith the 3 3 map
we can recover

IEsid
the rates relative to x

BLUE path dominated by for Max of Ione

PC P
pta pqtptikptq.iq 1 q Det

Non RED path dominated by Ifor Mic of Ibu

PC P
pop ftp.tgq ai et

Éed

w Conn path dominated by Ifor Mic of Igp
PC o P

ptapiq get


