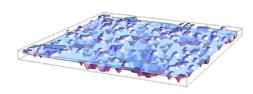


Q: What can we say about the random intenfraces between the B and R of the boundary?



* Theorem (Dobrushin, 't2, 't3) RIGIDITY OF THE INTERFACE In 3D Ising on Nn at $|3>\beta_0$, for $\forall x = (x_1, x_2)$, h $\mathbb{P}((x_1, x_2, k) \in \mathbb{I}) \leq e^{-\frac{1}{3}\beta k}$.

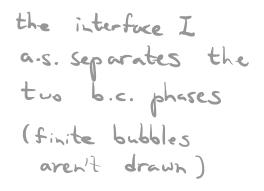
W.h.p. : I flat at height 0 above 0.99 n² faces XE [-n,n]². * Corollarics

- ① ∃ hon-trunslation invariant Z³ Gibls measures.
- De Max & Min height of I are $\leq \frac{10}{\beta} \log n$ w.h.p.

- * Some of the follow-up works on Low TEMP ISING:
- [vær Beijerer '75]:
 alternative sigeler argument for rigidity.
 [Brienont, Lebowitz, Pfister, Olivieni '79a, '79b, '79c]
 extension of the rigidity argument to
 - the Widom-Rowlingon model.
 - [Gielis, Grimmett 102]: extension of rigidity argument to super-critical percolation/Random Chuster model conditioned to have interfaces.
 - many other works on the Wulff shipe, LD for magnetization, surface tension (Pisztora '96], (Bodineau '96], (Cerf, Pisztora '00] [Bodineau '05], (Cerf '06], ...

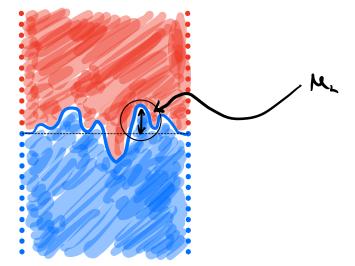
Theorem: (Gheissari, L. '21, '22):
Tightless if
M_n the max height of Z satisfied
M_n -
$$\mathbb{E}M_n = O_p(1)$$

and
 $\mathbb{E}M_n = (\frac{a}{\alpha} + o(i)) \log n$.



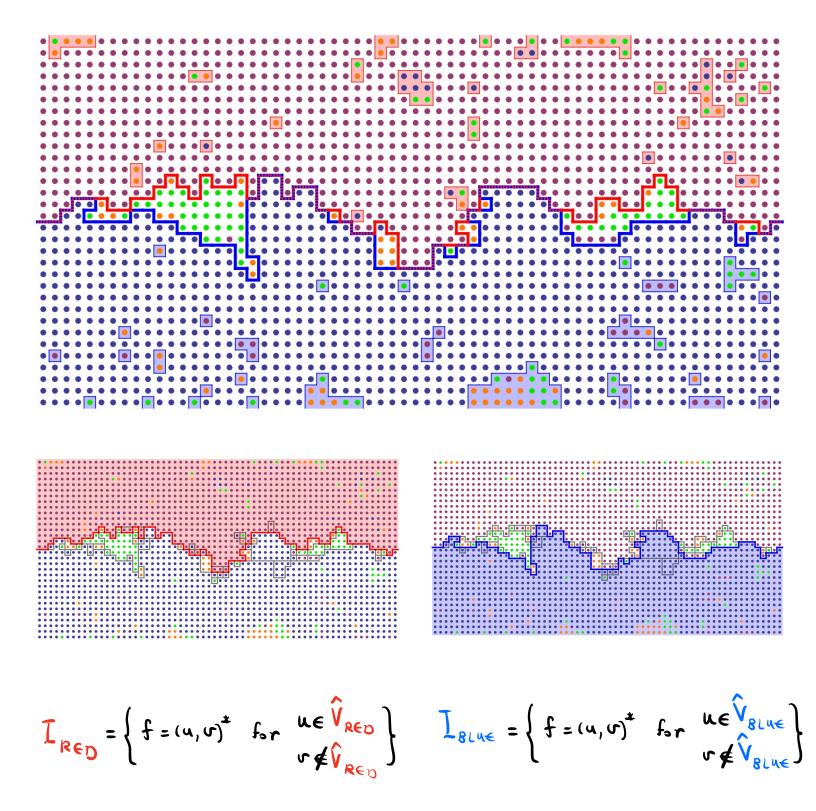
Aualogue in

Q:



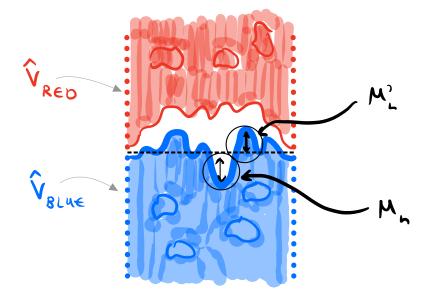
Patts ??

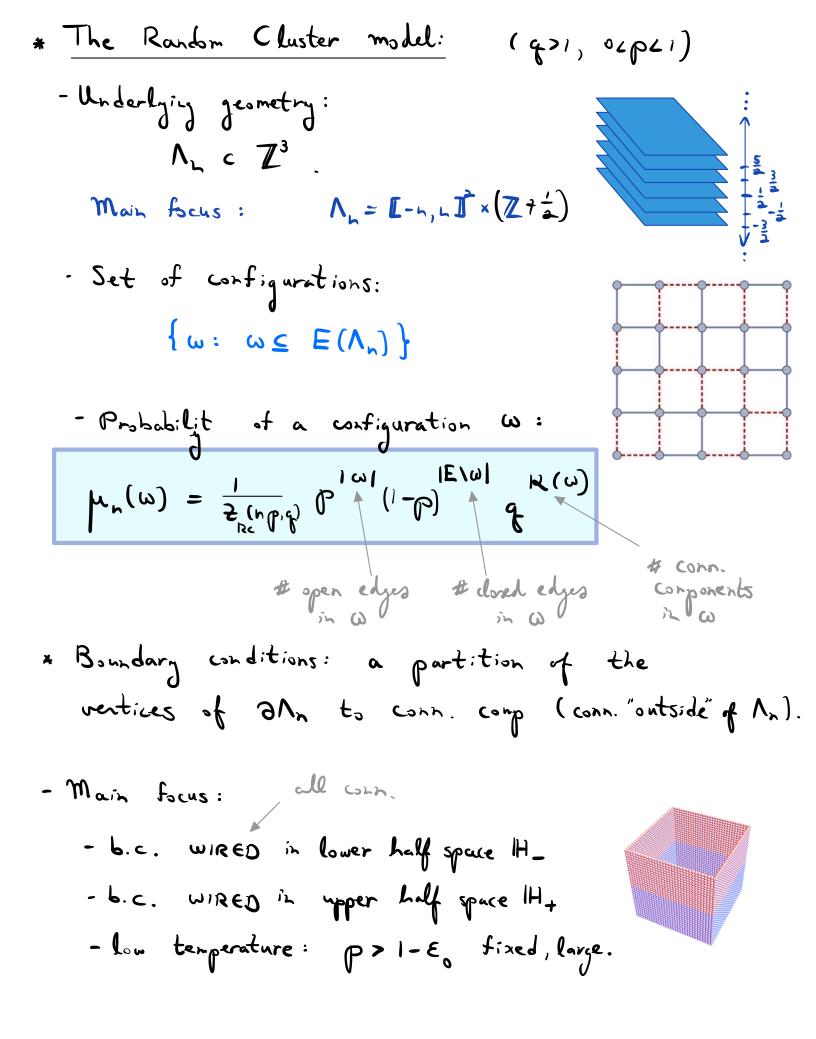
$$\begin{array}{c} \exists (a.s.) & unique ist RED component: \\ & RED \\ \exists (a.s.) & unique ist Blue component: \\ & V_{RED} \\ & V_{RED} = \{v: \exists path of red vertices \} \\ & V_{RLWE} \\ & V_{REW} = \{v: \exists path of low vertices \} \\ & V_{RLWE} = \{v: \exists path of low vertices \} \\ & V_{RLWE} = \{v: \exists path of low vertices \} \\ & V_{RLWE} = \{v: \exists path of low vertices \} \\ & V_{REW} = \{v: de vertices \} \\ & V$$

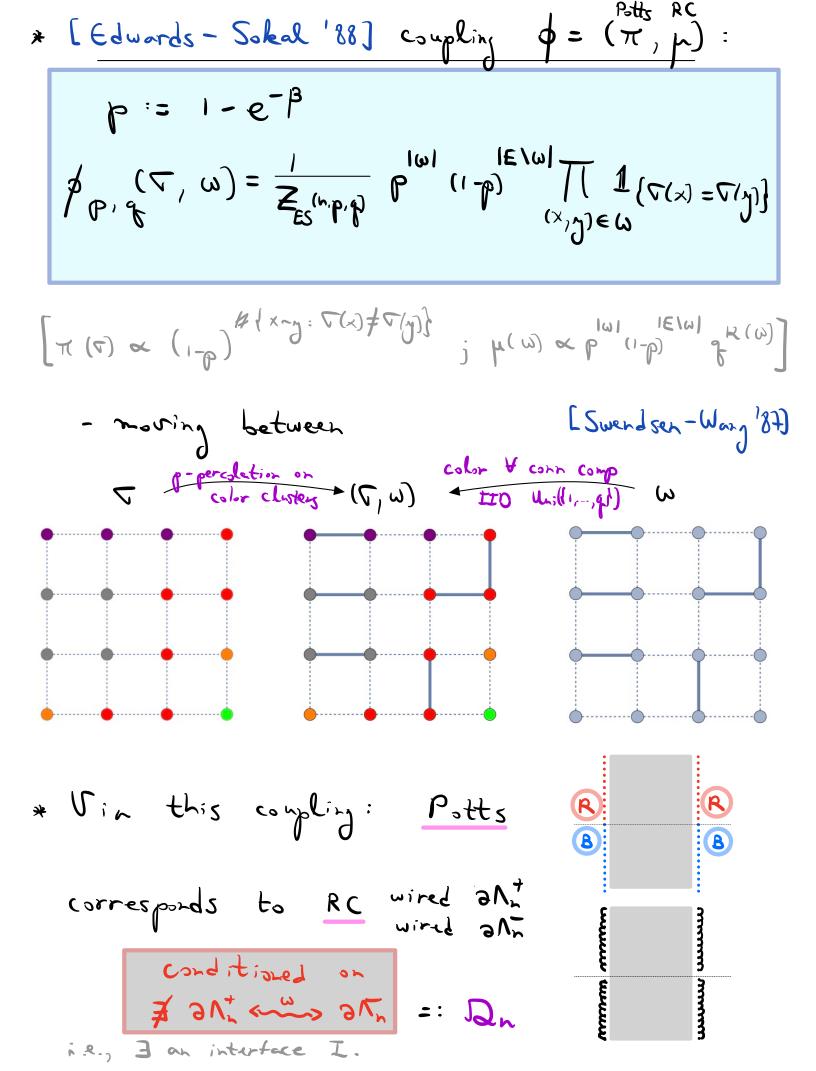


Theorem 1: [Chen, L.]
Consider q-state Potts on
$$N_{\mu} = [I - \mu, \mu]^{2} \times (\mathbb{Z} + \frac{1}{2})$$

w. Dobrushin b.c., $q \ge 2$ and $\beta \ge \beta \circ (fixed)$.
Let $M_{\mu} = MiN$ height of I_{BLNE}
 $M_{\mu}^{2} = MAX$ height of I_{BLNE}
Then:
 $M_{\mu} - \mathbb{E}[M_{\mu}] = O_{p}(1)$ ($T_{ij}Htless$)
 $M_{\mu} - \mathbb{E}[M_{\mu}] = O_{p}(1)$ ($T_{ij}Htless$)
Moreover, $\exists \mathcal{F}_{i} \mathcal{F}_{i} \ge 0$ s.t.
 $\mathbb{E}M_{\mu} = (\frac{2}{2} + o(i)) \log \mu$, $\mathbb{E}M_{\mu}^{2} = (\frac{2}{2}i + o(i)) \log \mu$
and $\mathcal{F}_{i}^{i} \ge \mathcal{F}_{i}$ for $q \neq 2$. ($\mathcal{F} = \mathcal{F}_{i}^{i}$ for $q = 2$)







* Interfaces in the RC model:

$$\exists (u,s_{i}) unique ist ToP component: V_{ToP}$$

$$\exists (u,s_{i}) unique ist BoT component: V_{BoT}$$

$$\exists (u,s_{i}) unique ist BoT component: V_{BoT}$$

$$Augnent the components:$$

$$V_{ToP} = V_{ToP} \cup \{ finite components of V_{ToP}^{c} \}$$

$$\hat{V}_{BoT} = V_{BOT} \cup \{ finite components of V_{BoT}^{c} \}$$

$$\hat{V}_{BoT} = V_{BOT} \cup \{ finite components of V_{BOT}^{c} \}$$

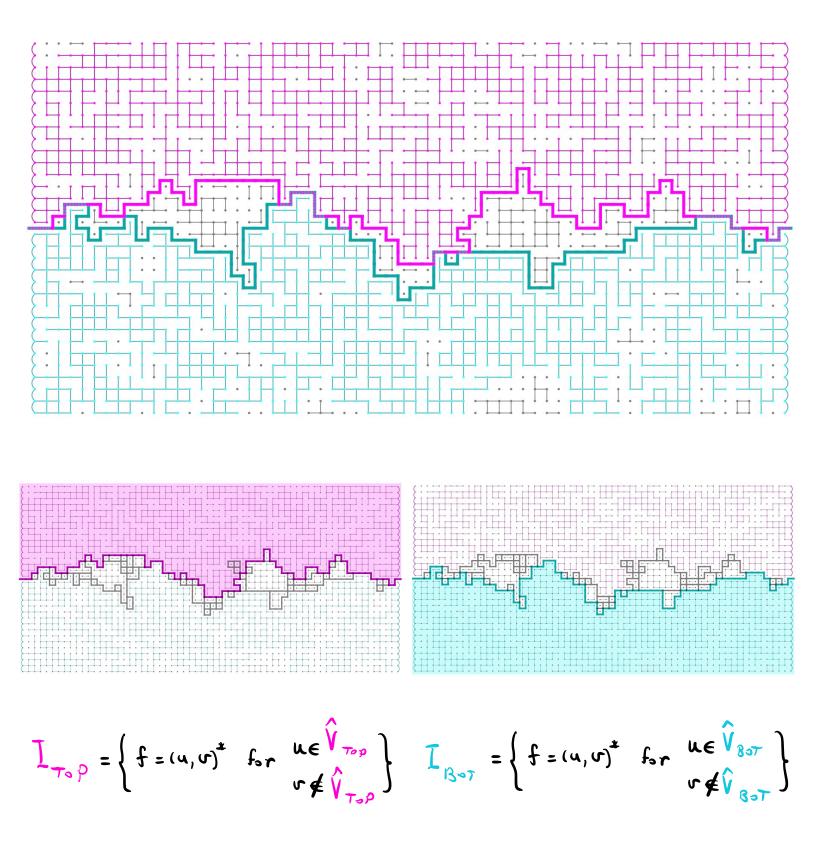
$$\hat{V}_{BOT} = \left\{ f = (u, u)^{*} \text{ for } u \in \hat{V}_{ToP} \right\}$$

$$auclosely:$$

$$I_{BoT} = \left\{ f = (u, u)^{*} \text{ for } u \in \hat{V}_{BOT} \right\}$$

$$Lost but not least: \qquad [f = e^{*} st. e \notin G]$$

$$I = \left\{ 1 - connected comp of dual-closed faces to ching the boundary \right\}$$



* New results on RC: (p=1-eB)

Theorem 2: [Chen, L.]
Consider the RC model on
$$N_{L} = [I-L, L]^{2} \times (Z+\frac{1}{2})$$

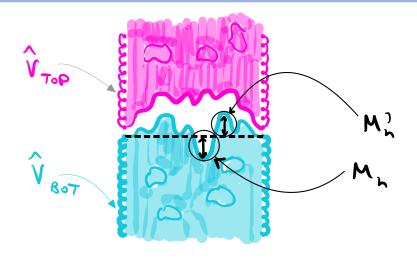
w. Dobrushin b.c., $g>1$ and $\beta > \beta o$ (fixed)
condition on the existence of I.

Let
$$M_n = MIN$$
 height of I_{BoT}
 $M_n^2 = MAX$ height of I_{BOT}

$$M_{n} - \mathbb{E}[M_{n}] = O_{p}(\underline{1}) \qquad (T_{ij} + t_{less})$$

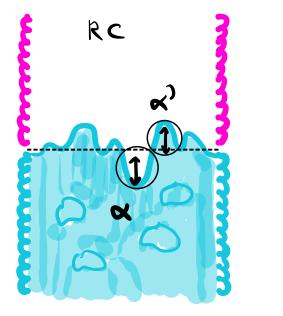
$$M_{n} - \mathbb{E}[M_{n}] = O_{p}(\underline{1}) \qquad (T_{ij} + t_{less})$$

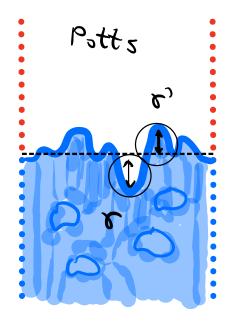
Moreover,
$$\exists \alpha, \alpha' > 0$$
 s.t.
 $\mathbb{E} M_n = (\frac{2}{\alpha} + o(1)) \log n$, $\mathbb{E} M'_n = (\frac{2}{\alpha} + o(1)) \log n$
and $\alpha' > \alpha$.

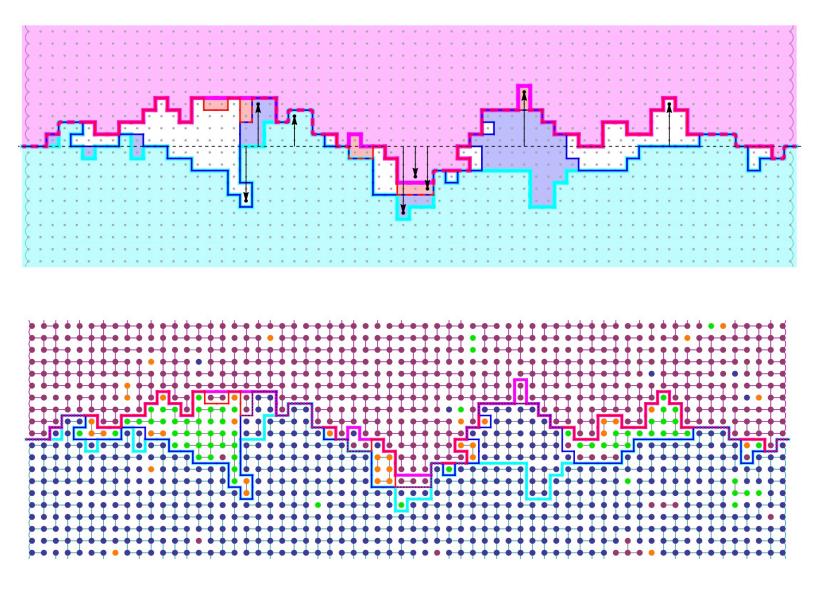


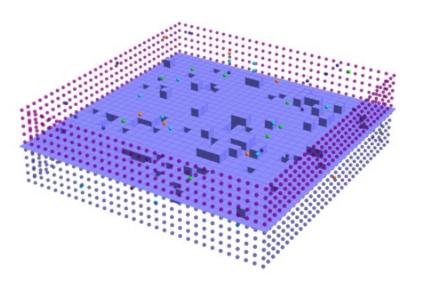
* A Tale of Four Rates:
We can compare the rates as follow:
Theorem: [Chen, L.]
The nates from This. 1, 2 satisfy:
4p-C
$$\leq \alpha \leq 4\beta$$

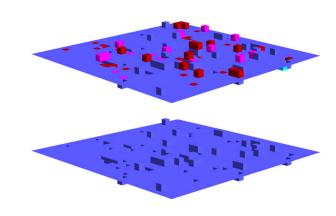
 $\sigma - \alpha = (1 \pm \epsilon_p) e^{-\beta}$
 $\sigma' - \alpha = (1 \pm \epsilon_p) (q^{-1}) e^{-\beta}$
 $\alpha'' - \alpha = (1 \pm \epsilon_p) q e^{-\beta}$





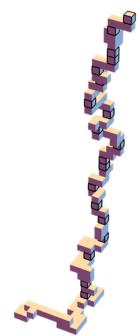






* Step D: From WALLS to PILLARS:
-Dobrushin's deletion of complete groups-of-walls
is the coule to necover LD rates:
Instead: [Gheissari, L.] looked at the
PILLAR P_x:
the conn. comp in IH₊
of
$$\rightarrow$$
 spins containing x

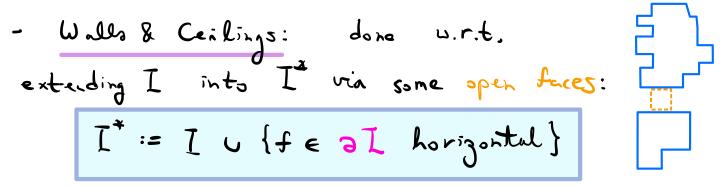
(a) Show that a given increment tends to be "trivial": a cube (4 side faces)
(b) Including 1st (exceptional) incremet

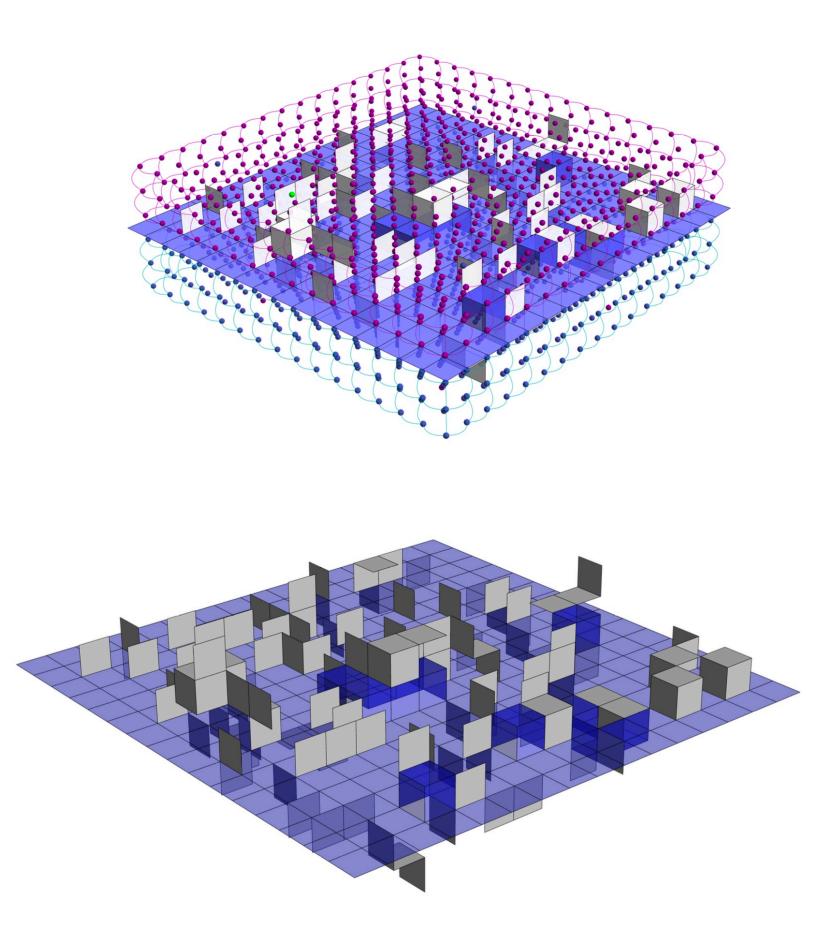


- How do we show (a) ?
By "straightening" Px:
* replacing in the increment Xis
by a trivial one.
* doing so for any jith incr Xj
whose age is too laye
compared to dist(Xi, Xj).
- How do we show (b) ?
Complicated algorithm for mobility J.
* Step D: The LD rate
$$\alpha$$
:
- Px concerns a component of \bigcirc .
Can't we use FKG for Super - MULTIPUCATIVITY?
No: due to the b.c.
at height h, we are
more hegative.
- Instead: SUB-MULTIPUCATIVITY: (a la "BK-inequality")
Use monotonicity and properties (a), (b).

- * Random Cluster to the rescue?
 - The tookkit to handle pillars is nobust,
 but without the sub-mult argument: of no value...
 While IP(IE.) in Ising does not sat. FKG,
 the Ising dist on configurations does:
 monstanicity used in a crucial way.
 Standard renedy to Potts non-monotonicity : RC.
- * [Gielis-Grimmett 102] extended the framework of Dobrushin to RC could on an interface: call this measure $\overline{\mu}_n = \mu_n(\cdot | \overline{\mu}_n)$ top b.c. $\partial \Lambda_n^+$ bisconnected from botton b.c. $\partial \Lambda_n^-$
- * Still No montonicity because of the cond.
 on the (exponentially unlikely) event Dn.
 * However: at least the RC measure fin
 is monotone
- * Cluster expansion and nigidity of give up the foundations for studying I in Fu

* The RC interface
$$I$$
:
 $I = \{1 - connected comp of dual-closed faces touching the boundary\}$
Not the interface we'd want to study but the one [GG'os] developed toolo fn:
No longer just a surface
* BUT: may complications:
- Cluster Expansion:
 $\overline{\mu}(I) \propto (I - e^{\beta}) |\partial I| R_{I} - \beta |I| + \sum_{f \in I} g(f, I)$
(dual open) faces
 $I - conn to I$
but hot in I
L accordance with the RC pt per cupping





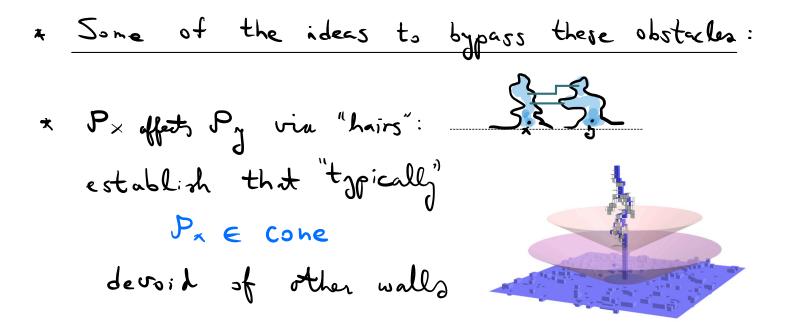
* The RC PILLAR Px:

- Recall: Ising PILLAR = the A-conn. comp in 14, of + spins containing x

* RC PILLAR Px: the M-conn. comp in Vic H+ containing X Its faces def. by taking $F = \left\{ f = (u, \sigma)^{*} : u \in P_{x}, \sigma \in H_{y} \setminus P_{x} \right\}$ and adding to it any 1-conn. comp of faces C in $I \setminus I_{\tau_{op}}$ s.t. $C \cap P_x \cap H_+ \neq \beta$ V Top

- Added "hairs" necessary to deal with ƏI in the [GG'OD] cluster expansion.
- But now separate pillars can touch each other ...

* Suppose we could control the pillon Px. What about the SUB-MULTIPLICATIVITY argument? - The youl: show $\overline{\mu}_{h}(A_{h_{1}+h_{0}}) \leq \overline{\mu}_{h}(A_{h_{1}}) \overline{\mu}_{h}(A_{h_{0}})$ - In Ising: we exposed a - component, by def surrounded by (-)'s. -Here: much more delicate to def faces of I we expose to support a Domain Markov Propert, (starting from the open faces OI) - Last but not least : the missing bar: Even if this necipe gave $\overline{\mu}_{h}(A_{h,+h_{o}}) \lesssim \overline{\mu}_{h}(A_{h_{o}}) \mu_{h}(A_{h_{o}})$ then the last tern on the RHS is it a graph with different b.c. (no longer the In measure)



* Offset the new terms (I-e^{-B}) [] Kz in the [GG'OD] cluster expansion via deleted faces in the "straightening" of Px.

* Approximate the event En={ Lt(Px) > h} by a suitable An that is × 0 A amenable to exposing certain faces of I forming a b.c. on the graph above height h (ii) not very sensitive to Dr at large h then add it to RHS by monotonicity: $\mu_{L}(A_{h_{a}}) \leq \mu_{L}(A_{h_{a}})$ Only works for a DECREASING Ah!

* The (retrospectively obvious) fault:
A typical P_x in
$$\overline{\mu}(\cdot | lot(P_x) \cdot h)$$
 has
the above structure.
But the Max of I Bene might (and will!)
come from an atypical P_x.
(Most increments should be trivial, still)

* Solution: show existence of the nate
(nother than what its value is)
by another SUB-MULTIPLICATIVITY argument:

$$\phi_n(lt(P_x^{blue}) \ge h_1 + h_2 | lt(P_x) \ge h_1 + h_2)$$

 $\le C \phi_n(lt(P_x^{blue}) \ge h_1 + h_2 | lt(P_x) \ge h_1)$

$$\cdot \phi_{n} \left(lt(P_{x}^{b}) \ge h_{y} \right) lt(P_{x}) \ge h_{y}$$

BUT HOW ??

* The 3-to-3 map:

$$P_{a}$$
 P_{a} P

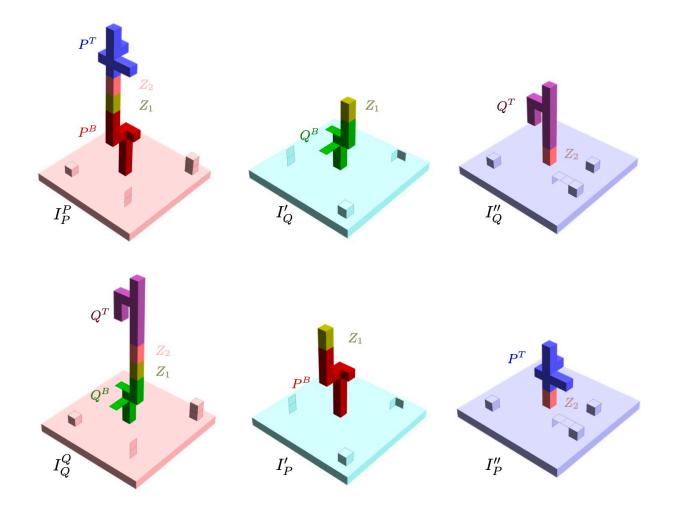
$$\mathcal{V} \left(\mathcal{P}_{\mathcal{B}} \times \mathcal{P}^{\mathsf{T}} \right) - \mathcal{V}_{\mathcal{A}} \left(\mathcal{P}_{\mathcal{B}}^{\mathsf{T}} \right)$$

$$= \sum_{A_{\mathcal{A}}, A_{\mathcal{A}}, A_{\mathcal{B}}} \left[\mathcal{V} \left(\mathcal{P}_{\mathcal{B}} \times \mathcal{P}^{\mathsf{T}}, A \right) - \mathcal{V}_{\mathcal{A}} \left(\mathcal{P}_{\mathcal{B}}, A_{\mathcal{A}} \right) \mathcal{V}_{\mathcal{A}} \left(\mathcal{P}^{\mathsf{T}}, A_{\mathcal{B}} \right) \right]$$

$$= \sum_{A_{\mathcal{A}}, A_{\mathcal{A}}, A_{\mathcal{B}}} \left[\mathcal{V} \left(\mathcal{P}_{\mathcal{B}} \times \mathcal{P}^{\mathsf{T}}, A \right) \mathcal{V}_{\mathcal{A}} \left(\mathcal{Q}_{\mathcal{B}}, A_{\mathcal{A}} \right) \mathcal{V}_{\mathcal{A}} \left(\mathcal{Q}_{\mathcal{A}}^{\mathsf{T}}, A_{\mathcal{A}} \right) \right]$$

$$= \sum_{A_{\mathcal{A}}, A_{\mathcal{A}}, A_{\mathcal{B}}} \left[\mathcal{V} \left(\mathcal{P}_{\mathcal{B}} \times \mathcal{P}^{\mathsf{T}}, A \right) \mathcal{V}_{\mathcal{A}} \left(\mathcal{Q}_{\mathcal{B}}, A_{\mathcal{A}} \right) \mathcal{V}_{\mathcal{A}} \left(\mathcal{Q}_{\mathcal{A}}^{\mathsf{T}}, A_{\mathcal{A}} \right) \right]$$

$$= \sum_{\substack{A_{1}, A_{1}, A_{2} \\ a_{g}, a^{T}}} \mathcal{V} \left(a_{g} \times a^{T}, A \right) \mathcal{V}_{1} \left(\mathbf{P}_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{1}, A_{2} \right) \\ \cdot \left[\frac{\mathcal{V} \left(\mathbf{P}_{g} \times \mathbf{P}_{1}, A \right) \mathcal{V}_{1} \left(a_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{1}, A_{2} \right)}{\mathcal{V} \left(a_{g} \times a^{T}, A \right) \mathcal{V}_{1} \left(\mathbf{P}_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{1}, A_{2} \right)} - 1 \right] \\ \cdot \left[\frac{\mathcal{V} \left(a_{g} \times a^{T}, A \right) \mathcal{V}_{1} \left(\mathbf{P}_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{1}, A_{2} \right)}{\mathcal{V} \left(\mathbf{P}_{g} \times a^{T}, A \right) \mathcal{V}_{1} \left(\mathbf{P}_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{1}, A_{2} \right)} - 1 \right] \\ \cdot \left[\frac{\mathcal{V} \left(a_{g} \times a^{T}, A \right) \mathcal{V}_{1} \left(\mathbf{P}_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{1}, A_{2} \right)}{\mathcal{V} \left(\mathbf{P}_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{1}, A_{2} \right)} - 1 \right] \\ \cdot \left[\frac{\mathcal{V} \left(\mathbf{P}_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{g}, A_{2} \right)}{\mathcal{V}_{2} \left(\mathbf{P}_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{g}, A_{2} \right)} - 1 \right] \\ \cdot \left[\frac{\mathcal{V} \left(\mathbf{P}_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{g}, A_{2} \right)}{\mathcal{V}_{2} \left(\mathbf{P}_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{g}, A_{1} \right) \mathcal{V}_{2} \left(\mathbf{P}_{g}, A_{2} \right)} - 1 \right]$$



* Recovering the LD notes
$$a', r', r'$$
:
With the 3+3 map we can necover info on cash
the notes nelative to a :
- Blue path lominated by [for M_{ax} of I_{Blue}]
 $P(\frac{a}{2}) = \frac{p}{p+(1p)q} + \frac{(1-p)q}{p+(1p)q} \frac{1}{q} \approx 1-(q-1)e^{-\beta}$
- Non RED path doninated by [for M_{ix} of I_{Blue}]
 $P(\frac{a}{2}) = \frac{p}{p+(1p)q} + \frac{(1-p)q}{p+(1p)q} \frac{q}{q} \approx 1-(e^{-\beta})$
- Mon RED path doninated by [for M_{ix} of I_{Blue}]
 $P(\frac{a}{2}) = \frac{p}{p+(1p)q} + \frac{(1-p)q}{p+(1p)q} \frac{q}{q} \approx 1-e^{-\beta}$
- we can path doninated by [for M_{ix} of I_{Top}]
 $P(\frac{a}{2}) = \frac{p}{p+(1p)q} \approx 1-qe^{-\beta}$