

Eyal Lubetzky
 Courant Institute (NYU)

Joint work with Joseph Chen (NYU)

* The q-state PoTTS moDEL: ($q \geqslant 2$ integer)
- Underlying geometry:

$$
\Lambda_{n} \subset \mathbb{Z}^{3}
$$

Main focus:

$$
\Lambda_{n}=[-n, n]^{2} \times\left(\mathbb{Z}+\frac{1}{2}\right)
$$

$$
\{1,2, \ldots, q\}^{\Lambda_{n}}
$$

Probability of a configuration σ :

$$
\pi_{n}(\nabla)=\frac{1}{z_{p}(n, \beta)} \exp \left[-\beta \sum_{x \sim y} \mathbb{1}[\nabla(x) \neq \nabla(y)\}\right]
$$

for $\beta>0$ the inverse-temperature.

- Boundary conditions (bic.) : fixed coloring of Λ_{n}^{c}
- Main focus:
- b.c. (B) in lower half space \mathbb{H}_{-}
-b.c. R in upper half space H_{+}
- low temperature: $\beta>\beta_{0}$ fixed, large.

Q: What can we say about the random interfaces between the
B and B of the boundary?

* Background: Ising model (the case $g=2$):
- Spins are either (B) on (B).
- Dobrushin, in the early 1970's, studied the Interface:
- Take $F_{\sigma}=\left\{\begin{array}{ll}f=(x, y)^{*} & (\text { dual }) \\ \text { for } \\ x \sim y & \text { s.t. }\end{array} \quad \nabla(x) \neq \nabla(y)\right\}$
- I is the 0 -connected component of faces in F_{σ} touching the boundary.
[f, f) are 0 -adjacent (or $*$-adjacent) if $f \cap f^{\prime} \neq \phi$ (even via a conner $\left.\square\right]$
* Theorem (Dobrushin, '72, '73) RIGIDITY of THE INTERFACE In 30 Using on Λ_{n} at $\beta>\beta_{0}$, for $\forall x=\left(x_{1}, x_{2}\right), h$ $\mathbb{P}\left(\left(x_{1}, x_{2}, h\right) \in I\right) \leq e^{-\frac{1}{3} \beta h}$.
w.h.p. : I flat at height 0 above $0.99 n^{2}$ faces $x \in \llbracket[-n, n]^{2}$.
* Corollaries
(1) ヨ hon-trunslation invariant \mathbb{Z}^{3} Gills measures.
(2) $M_{a x} \& M_{\text {in }}$ height of I are $\leq \frac{10}{\beta} \log n$ w.h.p.
* Sone of the follow-up wriks on Low TEMP ISING:
- [var Beijenen '75]:
altemative simplen angument fir rigidity.
- [Bricmont, Lebowitz, Pfister, Olivieri '79a, '796, '79c] extension of the rigidity argument t_{0} the Widom-Rowlinson model.
- [Gielis, Grimmett '02]:
extensior of nigidity argumet to super-critical percolation/Random Clusten model conditimed to have intenfrees.
- many othen wonk on the Wreff shape, $L D$ for magnetigation, sunface tension [Pisztora' '96] [Bodinean'g6], (Cerf, Pisztora'00] [Bodinean '05], [Cerf 'OG],...
* Recent progress : Ising model (the case $q=2$):
* Gheissari and L. ('21,'22) identified the correct exponential rate:

$$
\mathbb{P}\left(\left(x_{1}, x_{2}, h\right) \in I\right)=e^{-\left(\alpha t_{0}\left(f_{1}\right) h\right.} \quad \text { as } h \rightarrow \infty
$$

for an explicit $\alpha \in 4 \beta \pm C$.

* Led to the following result on Max/Min of I:

Theorem: (Gheissari, L, '21, '22):
Tight less of MAX (MIN) of I
M_{n} the max height of I satisfies

$$
M_{n}-\mathbb{E} M_{n}=O_{p}(1)
$$

and

$$
\mathbb{E} M_{n}=\left(\frac{2}{\alpha}+o(1)\right) \log n .
$$

the interface I a.s. Separates the two bic. phases (finite bubbles aren't drawn)

Q: Analogue in Potts??

* Interfaces in the Potts model:
\exists (ass.) unique if $R \in D$ component:

$$
V_{R \in O}
$$

\exists (a.s.) unique inf BLUE component:

$$
V_{B L U E}
$$

$V_{\text {BLuE }}=\{v: \exists$ path of blue vertices $\} \partial \Lambda_{n} \cap H_{+}$ connecting it to $\left.\partial \Lambda_{n}^{-}\right\}$

* Augnent the components:

$$
\begin{aligned}
& \hat{V}_{R \in D}=V_{R \in D} \cup\left\{\text { finite components of } V_{R \in D}^{c}\right\} \\
& \hat{V}_{\text {BLUE }}=V_{B L U E} \cup\left\{\text { finite components of } V_{B L U E}^{c}\right\}
\end{aligned}
$$

* Interface :

$$
I_{-B L u \epsilon}=\left\{\begin{array}{lll}
f=(u, v)^{*} & \text { for } & u \in \hat{V}_{B L u \epsilon} \\
& v \notin \hat{V}_{B L u \epsilon}
\end{array}\right\}
$$

analogously:

$$
I_{R \in D}=\left\{f=(u, v)^{*} \text { for } \begin{array}{ll}
u \in \hat{V}_{R \in D} \\
v \notin \hat{V}_{R \in D}
\end{array}\right\}
$$

吅

 : $: B A_{0}$: $: B$,

* New results jointly with JOSEPH CHEN (NYU):

Theorem 1: [Cher, L_{0}]
Consider q-state potts on $\Lambda_{L}=[-L, r]^{2} \times\left(\mathbb{Z}+\frac{1}{2}\right)$
w. Dobrushin bic., $q \geqslant 2$ and $\beta>\beta_{0}$ (fixed).

Let $M_{n}=M / N$ height of $I_{\text {BLuE }}$

$$
M_{n}=\text { MAX height of } I_{\text {BLUE }}
$$

Then:

$$
\begin{aligned}
& M_{n}-\mathbb{E}\left[M_{L}\right]=O_{\rho}(1) \quad \text { (Tigh thess) } \\
& M_{n}^{\prime}-\mathbb{E}\left[M_{L}^{\prime}\right]=O_{\rho}(1) \quad \text { in }
\end{aligned}
$$

Moreover, $\exists \gamma, \gamma^{\prime}>0$ s.t.

$$
\mathbb{E} M_{n}=\left(\frac{2}{\gamma}+0(1)\right) \log n, \mathbb{E} M_{n}^{\prime}=\left(\frac{2}{\gamma},+0(1)\right) \log n
$$

and $r^{\prime}>r$ for $q \neq 2$. $\quad(r=r$ for $q=2)$

* The Random Cluster model: (q>1, 0<p<1)
- Underlying geometry:

$$
\Lambda_{L} \subset \mathbb{Z}^{3}
$$

Main focus: $\quad \Lambda_{n}=[-n, n]^{2} \times\left(\mathbb{Z}+\frac{1}{2}\right)$

- Set of configurations:

$$
\left\{\omega: \omega \subseteq E\left(\Lambda_{n}\right)\right\}
$$

- Probabilit of a configuration ω :

$$
\mu_{n}(\omega)=\frac{1}{z_{R c}(n p, q)} p^{|\omega|}(1-p)^{|E| \omega \mid} q(\omega(\omega) \mid
$$

* Boundary conditions: a partition of the vertices of $\partial \Lambda_{n} t_{0}$ conn. comp (conn. "outside" of Λ_{n}).
- Main focus: all conn.
- bic. wIRED in lower half space H_{-}
-b.c. wIRED in upper half space H_{+}
- low temperature: $p>1-\varepsilon_{0}$ fixed, large.
* [Edwards-Sokal '88] coupling $\phi=\binom{$ Potts }{$\pi, \mu)}:$

$$
\begin{gathered}
p:=1-e^{-\beta} \\
p_{p, q}(\nabla, \omega)=\frac{1}{Z_{E S}(n, p, q)} p^{|\omega|}(1-p)^{|E| \omega \mid} \prod_{(x, y) \in \omega} \mathbb{1}(\sigma(x)=\sigma(y)\}
\end{gathered}
$$

$$
\left[\pi(\sigma) \propto(1-p)^{1 f\{x-y: \sigma(x) \neq \sigma(y)\}} j \mu(\omega) \propto p^{|\omega|}(1-p)^{|E| \omega \mid} q k(\omega)\right]
$$

- moving between
[Swendsen $-W_{\text {ax in }}$ '87]

$\frac{\text { color } \forall \text { conn comp }}{\left.\frac{\text { II } u_{i}\left(\left(1, \ldots, q^{\prime}\right)\right.}{\prime}\right)} \omega$

* Via this coupling: Potts
corresponds to RC wired $a \Lambda_{n}^{+}$

$$
\begin{aligned}
& \text { conditioned on } \\
& \nRightarrow \partial \Lambda_{n}^{+} \stackrel{\omega}{\sim} \partial \Lambda_{n}=: \Omega_{n}
\end{aligned}
$$

is., \exists an interface I.

* Interfaces in the RC model:
\exists (ans.) unique inf Top component: $V_{\text {ToP }}$
\exists (a.s.) unique inf BOT component: $V_{\text {BOT }}$

* Augnent the components:
$\hat{V}_{\text {TOP }}=V_{\text {TOP }} \cup\left\{\right.$ finite components of $\left.V_{\text {TOP }}^{c}\right\}$
$\hat{V}_{\text {BOT }}=V_{\text {BOT }} \cup\left\{\right.$ finite components of $\left.V_{\text {BOT }}^{c}\right\}$
* Interfaces:

$$
I_{T_{0} p}=\left\{f=(u, v)^{*} \text { for } \begin{array}{l}
u \in \hat{V}_{T_{0} p} \\
v \notin \hat{V}_{T_{0} p}
\end{array}\right\}
$$

analogously:

$$
I_{B O T}=\left\{f=(u, v)^{*} \text { for } \begin{array}{ll}
u \in \hat{V}_{B O T} \\
v \notin \hat{V}_{B O T}
\end{array}\right\}
$$

Last but not least:

$$
\left[f=e^{*} \text { st. } e \notin \omega\right]
$$

$I=\{1$-connected comp of dual-closed faces touching the boundary\}

* New results on RC: $\left(p=1-e^{-\beta}\right)$

Theorem 2: [Cher, L.]
Consider the RC model on $\Lambda_{L}=[-L, r]^{2} \times\left(\mathbb{Z}+\frac{1}{2}\right)$
w. Dobrushin b.c., $q>1$ and $\beta>\beta_{0}$ (fixed) condition on the existence of I.

Let $M_{n}=$ MIN height of $I_{\text {BOT }}$

$$
M_{n}=\text { MAX height of } I_{\text {BOT }}
$$

Then:

$$
\begin{aligned}
& M_{n}-\mathbb{E}\left[M_{L}\right]=O_{\rho}(1) \quad \text { (Tigh thess) } \\
& M_{n}-\mathbb{E}\left[M_{L}^{\prime}\right]=O_{\rho}(1) \quad \text { in }
\end{aligned}
$$

Moreover, $\exists \alpha, \alpha^{\prime}>0$ st.

$$
\mathbb{E} M_{n}=\left(\frac{2}{\alpha}+0(1)\right) \log n, \mathbb{E} M_{n}^{\prime}=\left(\frac{2}{\alpha}+0(1)\right) \log n
$$

and $\alpha^{\prime}>\alpha$.

* A Tale of Four Rates:

We can compare the rates as followers:
Theorem: [Cher, L.]
The nates from $T h_{m s} .1,2$ satisfy:

$$
\begin{aligned}
4 \beta-c & \leq \alpha \leq 4 \beta \\
\sigma-\alpha & =\left(1 \pm \varepsilon_{\beta}\right) e^{-\beta} \\
\gamma^{\prime}-\alpha & =\left(1 \pm \varepsilon_{\beta}\right)(q-1) e^{-\beta} \\
\alpha^{\prime}-\alpha & =\left(1 \pm \varepsilon_{\beta}\right) q e^{-\beta}
\end{aligned}
$$

* How did the Ising of work? (and why does
\therefore Step $(1): \quad$ Cluster expansion: [Mi nos, Sinai '67]
(Dobrushin '72]

$$
\mathbb{P}(I)=\frac{1}{z} e^{-\beta|I|+\sum_{f \in I} g(f, I)}
$$

\# faces in I
interaction fund g : uniformly bid, local

* Stop (II): Dobroshin's rigidity framework:
- classify conn sets of "excess" faces in I us WALLS
- rest are CEILINGS.
-to show rigidity:
attempt to delate a wall W gaining $\beta|\omega|$
- the tricky part: controlling g.

Egg.: deleting w may shift other parts of I which accumulate interaction terns...

- Must continue deleting "nearby" walls.
- Dobrushin grouped walls together via rige s. distance to make this arg work.
* Step III: From WALLS to pILLARS:
- Dobrushin's deletion of complete groups-of-walls is tor crude to recover LD rates:

Instead: [Gheissari, L_{0}] looked at the PILLAR ρ_{x} :
the conn. comp in H_{+}
of t spins containing x

- Conditional on the event

$$
E_{h}^{x}=\left\{\operatorname{lt}\left(\rho_{x}\right) \geqslant h\right\}
$$

it should behave as a (directed) $R W$ in \mathbb{Z}^{3} : with regeneration pts.

- Break it into increments

Goal:
(a) Show that a given increment tends to be "trivial": a cube (4 side faces)
(b) Including 1st (exceptional) increment

- How do we show (a) ? By "straightening" ρ_{x} :
* replacing i-th increment X_{i} by a trivial one.
* doing so for any $j^{-t h}$ incr x_{j} whose size is too large
 compared to $\operatorname{dist}\left(X_{i}, X_{j}\right)$.
- How do we show (b)? Complicated algorithm for modify id I.
* Step IV): The LD rate α :
- P_{x} concerns a component of \oplus. Can't we use FKG for SupGR-MULTIPLICATIUTTY?
n_{0} : due to the bic. at height h, we are more negative.

- Instead: sub-multipucativitr: (in la "BK-inequality")

Use monotonicity and properties (a), (b). \qquad

* Random Cluster to the rescue?
- The toolkit to handle pillars is robust, but without the sub-mult argument: of no value...
- While $\mathbb{P}(I \in \cdot)$ in $I_{\text {sing }}$ does not sat. $F<G$, the Using dist on configurations does: monotonicity used in a crucial way.
- Standard remedy to Potts non-monotonicity: RC.
* [Gielis-Grimmett 102 extended the framework of Dobrushin to RC cons on an interface:
call this measure

$$
\bar{\mu}_{n}=\mu_{n}\left(\cdot \mid Q_{2}\right)
$$

top bic. $\partial \Lambda_{h}^{+}$
DISCONNECTED from bottom bc. $\partial \Lambda_{n}^{-}$

* Still No montonicity because of the cond. on the (exponentially unlikely) event A_{n}.
* However: at least the $R C$ measure μ_{n} is monotone
* Cluster expansion and rigidity pf give us the foundations for studying I in $\bar{\mu}_{L}$
* The RC interface I :

$$
\left[f=e^{*} \text { s.t. } e \notin \omega\right]
$$

$I=\{1$-connected comp of dual-closed faces touching the boundary\}
Not the interface wend want to study but the one [GG'O2] developed tools fr:

No longer just a surface

* BUT: many complications:
- Cluster Expansion:

$$
\bar{\mu}_{L}(I) \propto \quad\left(1-e^{-\beta}\right)^{|\partial I|} q_{I} e^{-\beta|I|+\sum_{f \in I} g(f, I)}
$$

\# open clusters
(dual open) faces
in the conf
1-conn to I dual to I
but not in I
[In accordance with the RC $p^{\text {\#open }}(1-p)^{\text {\#closed \#conn }}$ q]

- Walls \& Ceilings: done w.r.t.
extending I into I^{λ} via some open faces:

$$
I^{*}:=I \cup\{f \in \partial L \text { horizontal }\}
$$

* The RC PILLAR ρ_{x} :
- Recall: Using PILLAR $=$ the M -conn. comp in H_{+} of \oplus spins containing x
* RC PILLAR ρ_{x} : the Λ_{h}-conn. comp in $\hat{V}_{\text {Top }}^{c} \cap \mathbb{H}_{+} \quad$ containing x
Its faces def. by taking

$$
F=\left\{f=(u, v)^{x}: \quad u \in P_{x}, v \in H_{+} \backslash P_{x}\right\}
$$

and adding to it any 1-conn. cong of faces E in I $\backslash I_{\text {Top }}$ s.t. $\quad e \cap \rho_{x} \cap H_{+} \neq p$

- Added "hairs" necessary to deal with ∂I in the [GG'O2] cluster expansion.
- But now separate pillars can touch each other...

* Suppose we could control the film P_{x}. What about the sub-muLTIPLICATIUTTY argument?
- The goal: show

$$
\bar{\mu}_{n}\left(A_{h_{1}+h_{\sigma}}\right) \leq \bar{\mu}_{2}\left(A_{h_{1}}\right) \bar{\mu}_{2}\left(A_{h_{\sigma}}\right)
$$

- In Using: we exposed a \oplus component, by def surrounded by Θ 's.
- Here: much more delicate to def faces of I we expose to support a Domain Markov Property (starting from the open faces ∂I)
- Last but not least: the missing bar: Even if this recipe gave

$$
\bar{\mu}_{n}\left(A_{h_{1}+h_{\sigma}}\right) \lesssim \bar{\mu}_{L}\left(A_{h_{1}}\right) \mu_{L}\left(A_{h_{2}}\right)
$$

then the last tern on the RIAS is in a graph with different bic. (no longer the $\bar{\mu}_{n}$ measure)

* Some of the ideas to bypass these obstacles:
* P_{x} affects P_{y} via "hairs":
 establish that " typically" $P_{x} \in$ cone devoid of other walls
* Offset the new terms $\left(1-e^{-\beta}\right)^{|\partial I|} k_{I}$ in the [GG'O2] cluster expansion via deleted faces in the "straightening" of ρ_{x}.
* Approximate the event $E_{h}^{x}=\left\{h t\left(\rho_{x}\right) \geqslant h\right\}$ by a suitable A_{h}^{x} that is
(i) amenable to exposing certain faces of I forming a bic.
 on the graph above height h
(ii) not very sensitive to Q_{n} at large h then add it to RHS by monotonicity:

$$
\mu_{L}\left(A_{h_{2}}\right) \leq \bar{\mu}_{L}\left(A_{h_{2}}\right)
$$

Only works for a DECREASING A_{h} !

* Carrying out the program:

Max height of $I_{\text {Top }}$: governed by:

$$
\alpha:=\lim _{h \rightarrow \infty}-\frac{1}{h} \log \bar{\mu}_{\mathbb{Z}^{2}}\left(\operatorname{lt}\left(\rho_{x}\right) \geqslant h\right)
$$

* What about its $m_{\text {in }}$ height ?

* What about Potts?

Promising approach:

- Cond. on $\left\{h t\left(P_{x}\right) \geq h\right\}$ in the RC model, it behaves like a $R \omega$, in that its increments are asynp. stationary $\approx \nu$

$$
\text { mixing } \delta \substack{\text { measure } \\ \text { outer } \\ \text { ing }}
$$

- By the [ES] coupling, we need to consider the coloring of its interior.

- $\log \mathbb{P}\left(\xi_{0}^{h} \mid l t\left(P_{x}\right) \geq h\right)$ will be approx a sum of $k \| D$ r.vis: $\left.\log \mathbb{P}_{2}(\exists \xi!\} \in X\right)$
* The (retrospectively obvious) fault:

A typical ρ_{x} in $\bar{F}_{2}\left(\cdot \mid \operatorname{let}\left(\rho_{x}\right) \geqslant h\right)$ has the above structure.
But the Max of $I_{\text {BLuE }}$ might (and will!) come from an atypical ρ_{x}. (Most increments should be trivial, still)

* Complicated optinization: shape of P_{x} wants to mininige surface area, but also give many options for BLUE paths climbing to h.
* Solution: show existence of the rate (rather than what its value is) by another sub-MuLTIPLICATIVITY argument:

$$
\begin{gathered}
\phi_{h}\left(\operatorname{lt}\left(P_{x}^{b / u e}\right) \geqslant h_{1}+h_{2} \mid \operatorname{lt}\left(P_{x}\right) \geqslant h_{1}+h_{2}\right) \\
\leq C_{1}^{\prime} \phi_{h}\left(\operatorname{lat}\left(P_{x}^{b / u e}\right) \geqslant h_{1} \mid \operatorname{lt}\left(P_{x}\right) \geqslant h_{1}\right) \\
\cdot \phi_{h}\left(\operatorname{lt}\left(P_{x}^{b / u e}\right) \geqslant h_{2} \mid \operatorname{lt}\left(P_{x}\right) \geqslant h_{2}\right)
\end{gathered}
$$

BUT HoW??
x The $3-t_{0}-3$ map:

* wart to show that:
cannot afford additive errors: were cone on E_{h}^{x}...

$$
\nu\left(P_{B} \times P^{\top}\right) \leq(1+\varepsilon) \nu_{1}\left(P_{B}\right) \nu_{2}\left(P^{\top}\right)
$$

write

$$
\begin{aligned}
& \nu\left(P_{B} \times P^{\top}\right)-\nu,\left(P_{B}\right) \nu_{2}\left(P^{\top}\right) \\
& =\sum_{A, A_{1}, A_{2}}\left[\nu\left(P_{B} \times P^{\top}, A\right)-\nu_{1}\left(P_{B}, A_{1}\right) \nu_{2}\left(P^{\top}, A_{2}\right)\right] \\
& =\sum_{A_{1} A_{1}, A_{2}}\left[v\left(P_{B} \times P^{\top}, A\right) \nu_{1}\left(Q_{B}, A_{1}\right) \nu_{2}\left(Q^{\top}, A_{2}\right)\right. \\
& \left.Q_{B}, Q^{\top}-\nu\left(Q_{B} \times Q^{\top}, A\right) \nu_{1}\left(P_{B}, A_{1}\right) \nu_{2}\left(P^{\top}, A_{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{A_{1} A_{1}, A_{2}} \nu\left(Q_{B} \times Q^{\top}, A\right) \nu_{1}\left(P_{B}, A_{1}\right) \nu_{2}\left(P^{\top}, A_{2}\right) \\
& Q_{B}, Q^{\top} \quad \cdot\left[\frac{\nu\left(P_{B} \times P^{\top}, A\right) \nu_{1}\left(Q_{B}, A_{1}\right) \nu_{2}\left(Q^{\top}, A_{2}\right)}{\nu\left(Q_{B} \times Q^{\top}, A\right) \nu_{1}\left(P_{B}, A_{1}\right) \nu_{2}\left(P^{\top}, A_{2}\right)}-1\right]
\end{aligned}
$$

Control via Cluster expansion ${ }^{\text {i }} \varepsilon_{\beta}$ with the 3-to-3 map

$$
\leq \varepsilon V_{1}\left(P_{B}\right) \quad V_{2}\left(P^{\top}\right)
$$

* Recovering the LD rates $\alpha^{\prime}, \sigma^{\prime}, r$:

With the $3 \rightarrow 3$ map we can recover modulo: P_{α} gives info on conf the rates relative to α :

- blue path dominated by [for max of $I_{\text {Blue }}$] $\mathbb{P}\binom{\bullet ?}{!?}=\frac{p}{p+(1-p) q}+\frac{(1-p) q}{p+(1-p) q} \cdot \frac{1}{q} \approx 1-(q-1) e^{-\beta}$
- Non RED path doninated by [for Min of $I_{\text {BLuE }}$] $\mathbb{P}(\underset{\substack{0 \\ \text { hon } \\ \vdots \\ \text { red } \\ 0 \\ \text { red }}}{ })=\frac{p}{p+(1-p) q}+\frac{(1-p) q}{p+(1-p) q} \cdot q=\frac{q-1}{p} \approx 1-e^{-\beta}$
- w-Conn path doninated by [for Min of I $I_{\text {Top }}$]

$$
\mathbb{P}(\vdots)=\frac{p}{p+(1-p) q} \approx 1-q e^{-\beta}
$$

