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Abstract. It is natural to expect that nonbacktracking random walk will mix faster

than simple random walks, but so far this has only been proved in regular graphs.

To analyze typical irregular graphs, let G be a random graph on n vertices with

minimum degree 3 and a degree distribution that has exponential tails. We determine

the precise worst-case mixing time for simple random walk on G, and show that,

with high probability, it exhibits cutoff at time h−1 logn, where h is the asymptotic

entropy for simple random walk on a Galton–Watson tree that approximates G locally.

(Previously this was only known for typical starting points.) Furthermore, we show

this asymptotic mixing time is strictly larger than the mixing time of nonbacktracking

walk, via a delicate comparison of entropies on the Galton–Watson tree.

1. Introduction

We study the mixing time of simple random walk (SRW) vs. the nonbacktracking

random walk (NBRW) on sparse random graphs. It is natural to expect, as highlighted

in [3] for the case of regular expander graphs, that forbidding the walk to backtrack

(traverse an edge twice in a row) would allow the walk to mix faster. It was thereafter

shown in [13] that, on a typical random d-regular graph on n vertices, both walks

exhibit the cutoff phenomenon—a sharp transition in the total-variation distance from

equilibrium, dropping from near its maximum to near 0 over a negligible time period

referred to as the cutoff window: SRW mixes at time d
d−2 logd−1 n + O(

√
log n), as

conjectured by Durrett [10], whereas the NBRW mixes faster, having cutoff already at

time logd−1 n+O(1). Our goal here is to obtain analogous results for the irregular case.

The (worst-case) total-variation distance of a Markov chain with transition kernel P

and state space Ω from its stationary distribution π is defined as

dtv(t) = max
x0∈Ω

∥∥P t(x0, ·)− π
∥∥
tv

= max
x0∈Ω

sup
A⊂Ω

∣∣P t(x0, A)− π(A)
∣∣ ,

and, for 0 < ε < 1, its corresponding mixing time to within distance ε is given by

tmix(ε) = min {t : dtv(t) ≤ ε} .

(When addressing a prescribed initial state x0 ∈ Ω rather than the worst one, this

definition is replaced by t
(x0)
mix (ε) = min{t : d

(x0)
tv (t) ≤ ε} where d

(x0)
tv = ‖P t(x0, ·)−π‖tv.)

The notion of cutoff, due to Aldous, Diaconis and Shahshahani [1, 2, 9], captures the

dependence of tmix on the parameter ε: a sequence of chains is said to exhibit cutoff if

lim|Ω|→∞[tmix(ε)/tmix(ε′)] = 1 for every fixed 0 < ε, ε′ < 1.
1
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Roughly put, the locally-treelike geometry of sparse random graphs makes the mixing

behavior of random walk resemble that on trees. In the regular case, a walk on a regular

tree, conditioned to be at a given distance from the root, is uniform on that level, and

the analogous mixing time on a random d-regular graph coincides with the time t at

which this distance is about logd−1 n (so as to contain almost all vertices in its range).

This corresponds to t = logd−1 n+O(1) for the NBRW, and a slowdown of the SRW by

a factor of d/(d− 2) due to the reduced speed of random walk on a tree (with a coarser

O(
√

log n)-window due to the normal fluctuations of its height), as in the results of [13].

In the irregular case, however, the walk can have vastly different probabilities of

traversing different paths, and mixing occurs when almost all vertices are—not only

reachable by paths—but reachable by ones that are sufficiently probable. It might then

be the case that the NBRW, allbeit faster to reach the leaves of a tree, could potentially

be “trapped” in a set of lower-probability paths, compared with the SRW that retains

a decent probability of backtracking and exploring more favorable parts of the tree.

It turns out that the effect of such traps is not strong enough to compensate for the

slowdown of the SRW, and, even in the irregular case, the NBRW mixes faster.

Let G = (V,E) be a random graph on n vertices with vertex set V and degree

distribution (pk)k≥1; that is, the degree Dx of each vertex x ∈ V is independently

sampled with P(Dx = k) = pk, conditioned on
∑

xDx being even, and G is thereafter

generated by the configuration model. Let Z be a random variable with distribution

P(Z = k − 1) =
kpk∑
`≥1 `p`

,

consider a rooted Galton–Watson tree (T, ρ) with offspring variable Z, and let (Xt) and

(Yt) be SRW and NBRW, respectively, on T started at ρ. The mixing times on G can

be expressed in terms of the asymptotic entropy of these walks on T as follows. Let

hX
a.s.
= lim

t→∞

1

t
H
(
Pρ(Xt ∈ · | T )

)
and hY

a.s.
= lim

t→∞

1

t
H
(
Pρ(Yt ∈ · | T )

)
, (1.1)

where the entropy H(µT ) of a probability measure µT on the vertices of T is given by

H (µT ) = −
∑
x∈T

µT (x) logµT (x) .

It was shown in [7] that, when the initial vertex v1 is fixed (independently of the graph)

and the degree distribution (pk)k≥1 satisfies suitable moment assumptions, with high

probability (w.h.p.) the SRW has cutoff at time h−1
X log n whereas the NBRW has cutoff

at time h−1
Y log n. Comparing these two mixing times was left open.

Comparing this with the regular case, observe that, for the NBRW, hY = E logZ,

which satisfies hY < logEZ whenever Z is not a constant by Jensen’s inequality. Hence,

the NBRW mixes well after the time at which its range covers most vertices (local

neighborhoods are approximately Galton–Watson trees with offspring variable Z), unlike

the regular setting. The same phenomenon occurs for SRW: denoting by ν the limiting
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speed of SRW on T , then hX/ν < logEZ whenever Z is not a constant (the “dimension

drop” of harmonic measure), as shown in [14].

From a worst-case initial vertex, it was showed independently in [4,7] that w.h.p. the

NBRW also exhibits cutoff at h−1
Y log n under similar moment assumptions (in [4] the

Gaussian tail of the distance profile within the cutoff window was further established).

Here we extend the arguments of [7] to provide the analogous cutoff result for the SRW

from a worst-case starting point, as well as compare these cutoff locations.

Theorem 1. Let G be a random graph with degree distribution (pk)
∞
k=1, such that

p1 = p2 = 0 ,
∑

k2pk <∞ , (1.2)

and for some fixed δ > 0, the random variable Z given by P(Z = k − 1) ∝ kpk satisfies

P(Z > ∆n) = o(1/n) for ∆n := exp
[
(log n)1/2−δ] . (1.3)

Then w.h.p., SRW from a worst-case vertex has cutoff at h−1
X log n with window

√
log n,

with hX as defined in (1.1) for a Galton–Watson tree T with offspring variable Z.

Moreover, hX < hY and the NBRW mixes faster than SRW.

Condition (1.3) is weaker than requiring Z to have an exponential tail.

The two statements of Theorem 1 are proved separately. In Section 2 we prove

Proposition 1.1, which extends the result of [7] to the worst-case starting point. In

Section 3 we establish Proposition 1.2, which shows that hX < hY when the degrees are

at least 3. Together, this implies that, as in the regular case, the backtracking moves of

the SRW on sparse irregular random graphs delay its mixing compared to the NBRW.

Proposition 1.1. Under the assumptions (1.2)–(1.3), w.h.p. the worst-case mixing

time of the SRW on G exhibits cutoff at time h−1
X log n with window O(

√
log n).

Proposition 1.2. Let Z be a random variable taking nonnegative integer values such

that EZ <∞ and Z ≥ 2 a.s. Then hX < hY on the GW-tree with offspring variable Z.

2. Simple random walk from the worst starting point

In this section we prove Proposition 1.1, establishing cutoff and its location for SRW

on a sparse random graph with degree distribution (pk)∞k=0. Recalling that the minimum

degree is 3 by assumption (p1 = p2 = 0), let ∆ = ∆(n) denote the maximum degree

in G, which we may assume is at most exp[(log n)1/2−δ] for some δ > 0 fixed. The

lower bound on the cutoff window from a worst-case starting point follows immediately

from [7, Theorem 2] (where it was established for a uniformly chosen initial vertex, and

in particular carries to the worst one), and it remains to show a matching upper bound.

The first step in the proof is to reduce the analysis of worst-case starting points, as was

done in [13], to vertices whose neighborhood up to distance c log logn, for an appropriate

constant c > 0, is a tree. For x ∈ V and k > 0, let Bk(x) = {y : dist(x, y) ≤ k} be the

k-radius neighborhood of x, and let ∂Bk(x) = {y : dist(x, y) = k}. Further define the
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tree excess of Bk(x), denoted tx(Bk(x)), to be the maximum number of edges that can

be deleted from the induced subgraph on Bk(x) while keeping it connected.

Definition 2.1. Let K > 0. A vertex x ∈ V is said to be a K-root if tx(BK(x)) = 0.

The next two straightforward lemmas follow [13, Lemmas 2.1 and 3.2].

Lemma 2.2. Let K = O(
√

log n). W.h.p., every vertex x ∈ V satisfies tx(B5K(x)) ≤ 1.

Proof. Fix x ∈ V , and condition on the degrees {Du : u ∈ V }, noticing
∑
Du ≥ 3n since

p1 = p2 = 0. We generate the ball of radius 5K around x sequentially, by the standard

breadth-first search process of the configuration model (cf., e.g., [8]): identifying each

vertex u with deg(u) “half-edges,” denoted (u, ∗), we start by inserting all half-edges of

x to a first-in-first-out queue. Upon extracting a half-edge (u, ∗) from the queue it is

matched to a uniformly chosen unmatched half-edge (v, ∗) in G, to form the edge (x, y),

and all other half-edges of the vertex v are inserted to the queue (if not already there).

If M is the total number of half-edges encountered until first observing a vertex

at distance 5K + 1 from x (whence B5K(x) is fully exposed), then clearly we will

perform at most M steps of extracting a half-edge from the queue and matching it,

and in each such step, the number of possible matches in the queue (adding a cycle

in G and increasing tx(B5K(x))) is at most M vs. at least 3n−M half-edges outside

the queue. Since M ≤ ∆5K+1, it follows that tx(B5K(x)) is stochastically dominated

by a binomial random variable Bin(∆5K+1,∆5K+1/(3n − ∆5K+1)), and noting that

∆5K+1 ≤ exp
[
O((log n)1−δ)

]
= no(1) by our assumptions on K and ∆, we find that

P
(
tx(B5K(x)) ≥ 2

)
≤
(

∆5K+1

2

)(
∆5K+1

(3− o(1))n

)2

= n−2+o(1) .

A union bound over x concludes the proof. �

Lemma 2.3. Let K > 0, and let x be a vertex in a graph H with minimum degree 3,

such that tx(B5K(x)) ≤ 1. Then SRW of length 4K started at x ends at a K-root with

probability at least 1− e−K/128.

Proof. Let (Xt) be SRW on H started at x. If x is a 5K-root, then the claim is trivial.

Otherwise, the induced subgraph on B5K(x) has exactly one cycle C, by assumption.

We claim that in this situation,

P
(
dist(X4K , C) < K

)
≤ exp(−K/128) . (2.1)

Let ρt = dist(Xt, C). By the minimum degree assumption, P(ρt+1 = 0 | ρt = 0 , Xt) ≤ 2
3 ,

whereas on the event ρt > 0 one has |ρt+1 − ρt| = 1 and P(ρt+1 < ρt | ρt > 0 , Xt) ≤ 1
3 .

Combining both situations, E[ρt+1 − ρt
∣∣ Xt] ≥ 1

3 , so Mt = ρt − 1
3 t is a submartingale

with |Mt+1 −Mt| ≤ 4
3 . By the Hoeffding–Azuma i nequality,

P(ρ4K ≤ ρ0 +K) = P
(
M4K ≤M0 −

K

3

)
≤ exp

(
− (K/3)2

2(4
3)2 · 4K

)
= e−K/128 ,

establishing (2.1) and concluding the proof. �
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Observe that Lemma 2.2 gives, w.h.p., the hypothesis of Lemma 2.3 simultaneously

for all x ∈ V provided that K = O(
√

log n), implying then that

dtv(t+ 4K) ≤ max
{
d

(x0)
tv (t) : x0 is a K-root

}
+ e−K/128 (2.2)

holds w.h.p. By choosing a suitably large K, this will allow us to reduce the problem to

initial vertices that are K-roots. To bound the mixing time from a K-root x0, let

τK = τK(x0) := inf {t > 0 : Xt ∈ ∂BK(x0)} ,

where Xt is the SRW on G started at x0, and further define

Λt = Λt(x0,K, ε) :=
{
x ∈ ∂BK(x0) : d

(x)
tv (t) > ε

}
.

The next simple lemma bounds d
(x0)
tv via the probability that XτK ∈ Λt started from x0.

Lemma 2.4. For every x0 ∈ V and every ε,K, s, t > 0,

d
(x0)
tv (t+ s) ≤ 1

2P
G
x0 (τK > s) + PGx0 (XτK ∈ Λt) + ε .

Proof. Write SK = ∂BK(x0) for brevity. By the triangle inequality,

d
(x0)
tv (t+ s) ≤ 1

2P
G
x0 (τK > s) + 1

2

∥∥PGx0 (Xt+s ∈ ·, τK ≤ s)− π
∥∥

1
.

Using the strong Markov property, PGx0 (Xt+s ∈ ·, τK ≤ s) is equal to

s∑
`=1

∑
z∈SK

PGx0 (τK = `,XτK = z)PGx0
(
Xt+s ∈ ·

∣∣ τK = `,XτK = z
)

=

s∑
`=1

∑
z∈SK

PGx0 (τK = `,XτK = z)PGz (Xt+s−` ∈ ·) .

Combining these two statements, we find that

d
(x0)
tv (t+ s) ≤ 1

2P
G
x0 (τK > s) +

s∑
`=1

∑
z∈SK

PGx0 (τK = `, XτK = z) d
(z)
tv (t+ s− `)

≤ 1
2P

G
x0 (τK > s) +

∑
z∈SK

PGx0 (XτK = z) d
(z)
tv (t) ,

where we used that t 7→ d
(z)
tv (t) is non-decreasing. The proof is concluded by breaking

the summation over z to SK ∩ Λt and SK ∩ Λct and using the bound d
(z)
tv (t) ≤ ε in the

latter case (by definition of Λt) and d
(z)
tv (t) ≤ 1 in the former. �

For every K-root x0 ∈ V , one has

PGx0 (τK > 4K) ≤ e−K/128

by the exact same proof of (2.1) (the root vertex x0 plays the role of C in that argument).

Together with (2.2) and Lemma 2.4, this implies the following.
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x0

ε
d
(x)
tv (t)

Figure 1. The set Λt ⊂ ∂BK(x0) marked in red, above which are the

corresponding values of d
(x)
tv (t) for x ∈ ∂BK(x0), with a threshold at ε.

Corollary 2.5. For all ε, t > 0 (that may depend on n) and K = O(
√

log n), w.h.p.

dtv(t+ 8K) ≤ max {µx0(Λt) : x0 is a K-root}+ ε+ 3
2e
−K/128 , (2.3)

where µx0 = PGx0(XτK ∈ ·) is the hitting measure of the SRW from x0 on ∂BK(x0).

Combining this corollary with the following theorem will conclude the proof.

Theorem 2.6. For every ε > 0 there exists some γ? > 0 such that, if

t1 =
⌈
h−1
X log n+ γ?

√
log n

⌉
and K = dγ? log logne , (2.4)

then for every tree T0 such that P(BK(x0) = T0) > 0 and sufficiently large n,

P
(
µx0(Λt1) > ε

∣∣ BK(x0) = T0

)
< n−2 .

Indeed, modulo Theorem 2.6, for every fixed ε > 0, we may take t1 and K as in (2.4),

and deduce from the lemma (via a union bound) that, w.h.p., every K-root vertex x0

satisfies µx0(Λt1) ≤ ε. Therefore, dtv(t1 + 8K) ≤ 2ε+ o(1) w.h.p. by (2.3), yielding the

desired upper bound in Proposition 1.1.

Proof of Theorem 2.6. Throughout the proof of this theorem, let PT0 denote the

conditional probability P(· | BK(x0) = T0), and similarly let ET0 denote the analogous

conditional expectation.

For a given vertex x ∈ V , consider a breadth-first-search exploration of G from x,

as described in the proof of Lemma 2.2, with the following addition: upon matching a

half-edge (u, ∗) from the queue to some (uniformly chosen) unmatched half-edge (v, ∗),
if the vertex v had already been encountered (i.e., (v, ∗) is in the queue), we stop the

exploration at u and at v, and mark u and v as exit vertices. Also, when u is at distance

L from x, we stop the exploration at this vertex and mark it as an exit vertex. Let

ΓL(x) ⊂ BL(x) denote the tree, rooted at x, that is obtained by running this process

until no further exploration is allowed.

We first recall some key facts established in [7] in the analysis of SRW on sparse

irregular random graphs. For a given graph G = (V,E) on n vertices and vertex x ∈ V ,

an integer t > 0 and constants γ, ε > 0, define the event

AGx (t, γ, ε) =

{∑
y∈V

(
PGx (Xt = y) ∧ n−1eγ

√
logn

)
≥ 1− ε

}
. (2.5)
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Note that, if gap is the spectral-gap of SRW on a graph G, then for large enough n,

AGx (t0, γ, ε) ⇒ d
(x)
tv (t0 + s) < 2ε for s = 2γgap−1

√
log n . (2.6)

Indeed, on the event AGx , the sub-measure ν(y) := P t0(x, y)∧n−1 exp(γ
√

log n) satisfies

ν(G) ≥ 1 − ε, and using that 1/(∆n) ≤ π(y) ≤ ∆/n for all y (together with the

assumption ∆ = exp(o(
√

log n))) we get ‖ν/π− ν(G)‖L2(π) ≤ exp((γ + o(1))
√

log n), so

d
(x)
tv (t0 + s) ≤ ε+ ‖νP s/π − 1‖L2(π) ≤ ε+ exp(−(γ − o(1))

√
log n)) = ε+ o(1) .

It was shown in [7] that, if G is a random graph as specified in Theorem 1 and x is a

uniformly chosen vertex in G, then for every ε > 0 there exist γ1, γ2 > 0 such that

P
(
AGx (t0, γ1, ε)

)
≥ 1− ε for t0 :=

⌈
h−1
X

(
log n− γ2

√
log n

)⌉
. (2.7)

(See [7, Eq. (3.19)], recalling hX = νd and the definitions in [7, Eqs. (3.1)–(3.3)]: our ε

here replaces
√

5ε from that equation, and γ1 and γ2 replace 4
3γ and 7

8γ, respectively.)

Moreover, by introducing an object referred to as truncated GW-trees [7, §3.1], it was

shown there that for all ε > 0, there exist c0, γ3 > 0, depending only on ε and on the

law of Z, such that, if

R :=
⌈
c log logn

⌉
, L =

⌈
ν
(
t0 + h−1

X γ3

√
log n

)⌉
, (2.8)

for some fixed c ≥ c0, and x ∈ V is fixed independently of G, then for large n there

exists a subtree Γ′L(x) ⊂ ΓL(x) (the truncation of ΓL(x), in which the exploration is

also stopped at vertices which the SRW is less likely to visit, with those vertices being

marked as exit vertices as well) with the following properties:

(i) The first R levels of Γ′L(x) and ΓL(x) are equal, and can be coupled w.h.p. to a

standard GW-tree1 with variable Z (so every vertex there has at least 2 offspring).

(See the definition of truncation in [7, §3.1] and the coupling in [7, §3.2].)

(ii) The total size of the tree Γ′L is at most n exp(−1
4γ1
√

log n).

(See [7, Eq. (3.11)], where `1 equals L from (2.8) for γ3 = 1
8γ and γ1, γ2 as before.)

(iii) The SRW (Xt)
t0
t=1 on G from x does not hit any exit vertex before time t0 with

probability 1 − O(ε) and can be coupled to the SRW on a truncated GW-tree

with probability 1−O(ε). Denote the event of such a successful coupling by Πt0 .

Furthermore, Γ′L(x) can be constructed while revealing at most n exp(−1
4γ1
√

log n)

vertices of BL(x).

(See the description of this coupling in [7, §3.2] and the event Πk defined there.)

(iv) There exists an event EGx ∈ σ(Γ′L(x)) such that

EGx ⊂ AGx (t0, γ1, ε) and P(EGx ) ≥ 1− ε . (2.9)

(See [7, §3.4.1] and the event {PG(Υ) ≥ 1−
√

5ε} there, which is our event EGx .)

1To be precise, the offspring distribution of the root is different — being given by (pk) vs. all other

vertices where it is given by (qk) for qk ∝ (k + 1)pk+1 — but this does not essentially change the proofs.
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x0

z

x

Γ̃L(x)

T0

Figure 2. The tree T0 = ∂BK(x0) with K = 4.

We claim that this analysis extends to the case where x, instead of being a fixed

vertex (chosen independently of the random graph G), is taken to be a leaf of BK(x0).

Consider the following exploration: initially, BK(x0) is fully exposed, and we assume

BK(x0) = T0 for some tree T0. Now, for x ∈ ∂T0, we may expose the truncated tree

Γ′L(x) just as in [7], the only difference being that some part of this tree, namely T0, is

assumed to be exposed already at the beginning (no truncation will occur there). We will

also consider a variant of this exposure process: given BK(x0) = T0, for x ∈ ∂T0 with

ancestor z ∈ ∂BbK/2c(x0), we sequentially expose the neighborhood of x, stopping the

exploration at u when we are about to create a cycle (i.e., a half-edge (u, ∗) is matched

to a previously encountered vertex) or when u meets the truncation criterion [7, §3.1],

just as for Γ′L(x), but in addition, we also stop the exploration at every u ∈ ∂T0 which

is not a descendant of z (and, just as before, mark every such vertex as an exit vertex).

Let Γ̃L(x) be the subtree obtained this way. An illustration of this exposure process is

depicted in Figure 2. In what follows, when referring to the σ-fields generated by Γ′L(x)

and Γ̃L(x) we include the information of which vertices are marked exit (in our setting

of p1 = 0 per (1.2), these are but the leaves in these trees).

Lemma 2.7. Let ε > 0, let t0 and γ1 as given in (2.7), and let T0 be a tree such that

P(BK(x0) = T0) > 0. For every x ∈ ∂T0 there exists an event EGx ∈ σ (Γ′L(x)) such that

EGx ⊂ AGx (t0, γ1, ε) and PT0
(
EGx
)
≥ 1− ε . (2.10)

Moreover, there exists an event ẼGx ∈ σ
(
Γ̃L(x)

)
such that

ẼGx ⊂ AGx (t0, γ1, 2ε) and PT0
(
ẼGx
)
≥ 1− 2ε . (2.11)

Proof. To prove (2.10), we describe in more detail the arguments used in [7] to derive

the aforementioned facts (i)–(iv), and how these are affected by taking x ∈ ∂BK(x0).
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(i) The truncated GW-tree from [7] is a subtree of the standard GW-tree with variable

Z, where the exploration of each level in the tree may skip certain vertices (where

we say a truncation occurs), depending on a certain criterion (see [7, Eq. (3.8)]),

which is measurable w.r.t. to the currently exposed subtree. No truncation occurs

in the first R levels, immediately implying Property (i).

Using c = c0 ∨ 2γ? for the definition of R in (2.8), with γ? from the definition

of K in (2.4), indeed BK(x0) ⊂ BR(x) in G, which is not truncated by definition.

(ii) Property (ii) was a consequence of the truncation criterion, which censors the

parts of the tree where the random walk is less likely to visit; as such, the more

likely subset of each level of the tree cannot be too large by conservation of mass.

Having merely adjusted R to be at least 2K, this bound remains valid unchanged.

(iii) The coupling—now to SRW on a tree rooted at x, containingBK(x0) with truncated

GW-trees at x and all its leaves—is successful unless one of the following occurs:

(a) cycles : SRW on G encounters a vertex at which exploration has been stopped

because of a cycle (thereby hitting a vertex already marked exit in ΓL(x)):

this is controlled by the size of Γ′L(x), and is thus unchanged (for the new R);

(b) truncation — SRW on G visits a truncated vertex (thereby hitting an exit

vertex of Γ′L(x)): this is controlled by the truncation criterion, thus unchanged

(for the new R);

(c) degrees: SRW on G hits a vertex whose degree is inconsistent with its analog

in the GW-tree: again, this is controlled by the size of Γ′L(x), thus unchanged.

Note that encountering the truncation event (a) along the random walk up to time

t0 had probability O(ε), whereas each of the other two events had probability o(1)

(in every given time step the events (b) and (c) had probability exp(−c
√

log n),

outweighing a union bound over t0 = O(log n) steps).

(iv) The event EGx was given by {PGx (Υ) ≥ 1− ε} where Υ was the intersection of Πt0

with two events, each occurring w.h.p.:

• Υ1 said that the distance of SRW on the standard GW-tree, at the target

time t0, is within a given number of standard deviations from its mean;

• Υ3 said that the (loop-erasure of) SRW on Γ′L(x) at time t0 will belong to

the subtree of a given set of vertices (denoted S′′`0 in that paper), where the

probability that SRW visits any given vertex in it is at most n−1 exp(γ1
√

log n).

The event Πt0 was addressed in the previous item. As for the two events Υ1,Υ3,

each occurs w.h.p. also in the situation where the truncated GW-tree rooted at x

is further attached to a tree given by BK(x0) (with additional truncated GW-trees

rooted at all other vertices of ∂BK(x0)), as a consequence of the fact that each

vertex of BK(x0) has at least 2 offspring. This implies that SRW will encounter a

regeneration point below level K by a time period that is O(K) in expectation. In

particular, for each of the above events, the estimates of SRW on the (standard)

truncated GW-tree apply, once we ignore an additive time shift of, say, K2 steps.
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Altogether, we have verified (2.10). Now to prove (2.11), we have to verify an additional

property allowing us to consider an event that is measurable with respect to Γ̃L(x). To

this end, let us define

τ̃ = inf
{
t > 0 : Xt ∈ BbK/2c(x0)

}
,

and consider the event

ẼGx =
{
PGx (Υ ∩ {τ̃ > t0}) > 1− 2ε

}
,

where the event Υ is from item (iv). On the event Υ ∩ {τ̃ > t0}, the walk does not hit

any exit vertex of Γ′L(x) nor does it visit BbK/2c(x0) before time t0. In particular, it

does not hit any exit vertex Γ̃L(x) before time t0 and ẼGx ∈ σ
(

Γ̃L(x)
)

. Moreover,

ẼGx ⊂
{
PGx (Υ) > 1− 2ε

}
⊂ AGx (t0, γ1, 2ε) .

Let us now show that

PT0(ẼGx ) ≥ 1− 2ε . (2.12)

Using two successive union bounds (one on PGx , the other on PT0), we have

PT0
(
ẼGx
)
≥ PT0

(
PGx (Υ) ≥ 1− ε

)
−PT0

(
PGx (τ̃ ≤ t0) > ε

)
.

On the one hand, by (2.10), we know that PT0
(
PGx (Υ) ≥ 1− ε

)
= PT0

(
EGx
)
≥ 1 − ε.

On the other hand, by Markov’s Inequality,

PT0
(
PGx (τ̃ ≤ t0) > ε)

)
≤ PT0(τ̃ ≤ t0)

ε
·

Since each vertex in the tree T0 has at least 2 offspring, ρt := dist(Xt, x0) dominates

a one-dimensional biased random walk with increment ξ given by P(ξ = 1) = 2
3 and

P(ξ = −1) = 1
3 . It then follows (e.g., via the exponential martingale 2−ρt) that

sup
y∈∂Bd3K/4e(x0)

PT0
y

(
τbK/2c < τK

)
≤ 2−K/4

for

τ` = min{t : ρt = `} ,
with which we can afford a union bound over at most C log n time-points serving as

the potentially first visit to ∂Bd3K/4e(x0) before encountering the event τbK/2c < τK ,

yielding PT0(τbK/2c ≤ t0) = o(1), and thus, for n large enough,

PT0
(
PGx (τ̃ ≤ t0) > ε)

)
≤ ε ,

establishing (2.12) and concluding the proof of Lemma 2.7. �

Our next goal is showing that µx0(Λt1) is concentrated around its mean with an

exponential tail. (Recall that Λt1 ⊂ ∂BK(x0) and |∂BK(x0)| ≥ logc n for some c > 0,

whereas our target error probability in Theorem 2.6 is O(n−2).)
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x0

z7

z6 z5

red

z4

z3

x
z2z1

Γ̃L(x)

T0

⋃
y∈Vz1∪Vz2̃

ΓL(y)

Figure 3. The ith stage of the sequential exposure process (i = 3) with

the red coloring of vertices.

To this end, let S = ∂BbK/2c(x0) and z1, . . . , z|S| an ordering of the elements of S
and let

Vzi = {x ∈ ∂T0, x is a descendant of zi} .

Sequentially for i going from 1 to |S| and for x ∈ Vzi , we expose the trees Γ̃L(x) (in

particular, if upon matching half edge (u, ∗) during the exposure of Γ̃L(x), we happen

to reach a vertex in the boundary of the previously exposed trees, then we stop the

exploration at u). While doing so, if at some stage i, we attempt to match half-edge

(u, ∗) with a half-edge (v, ∗) where v ∈ Vzj for some j > i, then we mark v as red .

Lemma 2.8. Let RL be the number of red vertices in ∂T0 at the end of the exploration

process. Then, for γ1 as given in (2.7) and every sufficiently large n,

PT0
(
RL > 15γ−1

1

√
log n

)
< n−2 .

Proof. By our assumption on the maximum degree, at any stage of the exploration

process, the number of unmatched half-edges attached to a vertex of ∂T0 is smaller than

∆K+1 ≤ exp
(

(log n)
1−δ
2

)
for large enough n. Now recall that the truncation ensures

that each of the trees Γ̃L(x) has size at most n exp
(
−1

4γ1
√

log n
)
, implying that the total

number of pairs formed during the exploration process is at most n exp
(
−1

5γ1
√

log n
)
.
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All in all, the probability that at least C
√

log n times an unmatched half-edge attached

to a vertex of ∂T0 is chosen as target during the process is smaller than

(
n exp

(
−1

5γ1
√

log n
)

C
√

log n

)exp
[
(log n)

1−δ
2

]
(3− o(1))n

C
√

logn

.

Using that
(
a
b

)
≤ ab for all a, b ≥ 0, we see that

PT0
(
RL > C

√
log n

)
≤ exp

(
−Cγ1

5
log n+ C(log n)1− δ

2

)
,

which is smaller than n−2 for C ≥ 15/γ1 and large enough n. �

Let us denote by F0 the σ-field generated by T0, and for i = 1, . . . , |S|, let Fi be

the σ-field generated by T0 and
⋃i
j=1

⋃
x∈Vzj

Γ̃L(x), together with the red coloring

of vertices of ∂T0 up to stage i. We say that a vertex z ∈ S is nice if none of its

descendants in ∂T0 is colored red. Note that the event {zi is nice} belongs to Fi−1.

Lemma 2.9. For i ≥ 1, consider running the exploration process up to stage i− 1, and

let x ∈ ∂T0 be a descendant of zi. Then

P
(
ẼGx | Fi−1

)
≥ 1{zi is nice}(1− 2ε) .

Proof. The proof of Lemma 2.9 closely parallels the proof of Lemma 2.7. Indeed, all

that remains to show is that having exposed the trees Γ̃L(y) for y ∈ Vz1 ∪· · ·∪Vzi−1 does

not essentially change the probability of Ẽx for x ∈ Vzi , at least when zi is nice. First

note that Ẽx ∈ σ
(

Γ̃L(x)
)

and that the tree Γ̃L(x) does not intersect any the trees Γ̃L(y)

for y ∈ Vz1 ∪ · · · ∪ Vzi−1 (except for at T0). Now, the only difference with the setting of

Lemma 2.7 is that the number of exposed half-edges may now be larger. However, by the

truncation criterion, we know that for all y ∈ Vz1 ∪· · ·∪Vzi−1 , the size of Γ̃L(y) is smaller

than n exp
(
−1

4γ1
√

log n
)
, so that the total number of exposed half-edges at the end

of stage i− 1 is at most ∆Kn exp
(
−1

4γ1
√

log n
)
≤ n exp

(
−1

5γ1
√

log n
)
. Recalling that

the the three possible impediments to a successful coupling with a truncated GW-tree

(truncation, cycles and degrees) were controlled either by the truncation criterion itself

(thus unchanged), or by the upper bound on the size of the exposed subgraph (which has

merely increased from n exp
(
−1

4γ1
√

log n
)

to n exp
(
−1

5γ1
√

log n
)
) and noticing that

the event of a visit to ∂BbK/2c(x0) before time t0 is not affected by this extra-exposure,

this is enough to ensures that, conditionally on Fi−1, for all x ∈ Vzi with zi nice , the

coupling of SRW on G started at x with SRW on a tree rooted at x (containing BK(x0)

with truncated GW-trees on those leaves which are descendants of zi) is successful with

large probability. Also, the events Υ1 and Υ3 can be handled exactly as in the proof of

Lemma 2.7, a regeneration point below level K being quickly found by the walk. �
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Lemma 2.10. Let ε > 0, take t0 and γ1 as in (2.7), and let µx0 = PGx0(XτK ∈ ·) and

U =
{
x : ẼGx does not hold

}
. (2.13)

If T0 is a tree with P(BK(x0) = T0) > 0 then for every sufficiently large n,

PT0 (µx0(U) ≥ 4ε) < 2n−2 .

Proof. Note that

µx0(U) ≤
|S|∑
i=1

µx0(Vzi)1{zi is not nice} +

|S|∑
i=1

µx0(Vzi ∩ U)1{zi is nice} . (2.14)

As for the first term in the right-hand side of (2.14), we have

|S|∑
i=1

µx0(Vzi)1{zi is not nice} ≤ max
z∈S

µx0(Vz)RL .

Observe that

max
z∈S

µx0(Vz) ≤ PT0
x0(τz < τ∂T0) ≤ 3 · 2−bK/2c , (2.15)

as the probability of ever visiting a vertex at level k in the infinite binary tree is at

most 3 · 2−k (at each point along the path from the root to this vertex, the random

walk has a probability of 1/3 of escaping to infinity through an alternative branch), and

adding edges can only decrease the probability of visiting a vertex. And by Lemma 2.8,

the number of red vertices is smaller than 15
γ1

√
log n with probability at least 1− n−2.

Choosing γ? large enough in the definition of K then ensures that

max
z∈S

µx0(Vz)RL ≤ ε ,

with probability at least 1− n−2.

Moving on to the second term in the right-hand side of (2.14), let

W =

|S|∑
i=1

Wi for Wi = µx0(Vzi ∩ U)1{zi is nice} ,

and

Mt :=
∑
i≤t

(Wi − E[Wi | Fi−1]) (t = 1, . . . , |S|) .

Note that, for all 1 ≤ i ≤ |S|, the variable
∑

j<iWj is Fi−1-measurable and

E [Wi | Fi−1] = 1{zi is nice}

∑
x∈Vzi

µx0(x)P
((
ẼGx
)c | Fi−1

)
≤ 2εµx0(Vzi) ,

with the last inequality by Lemma 2.9. In particular, W ≤M|S| + 2ε. Also, by (2.15),∑
z∈S

µx0(Vz)
2 ≤ max

z∈S
µx0(Vz) ≤ 3 · 2−bK/2c ,
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and so
∑

t

∣∣Mt −Mt−1

∣∣2 ≤ 3 · 2−bK/2c with probability 1. Thus, we can infer from the

Hoeffding–Azuma inequality for the martingale (Mt) that

PT0 (W ≥ 3ε) ≤ PT0
(
M|S| ≥ ε

)
≤ exp

(
− ε2

6 · 2−bK/2c

)
< n−2 ,

provided that γ? in the definition (2.4) is chosen to be sufficiently large. �

Together with (2.6) this completes the proofs of Theorem 2.6 and Proposition 1.1. �

3. Entropy comparison of walks on Galton–Watson trees

In this section we prove Proposition 1.2, showing that the ratio hX/hY (which, as

established in Proposition 1.1, is the ratio between the cutoff locations for SRW and

NBRW on our sparse random graphs) is at most some c(Z) < 1. Assume w.l.o.g. that Z

is non-constant (i.e., P(Z 6= EZ) > 0), otherwise this ratio is EZ−1
EZ+1 as mentioned above.

Let (T, ρ) be a rooted Augmented Galton–Watson tree (i.e., the tree formed by joining

the roots (one of which being ρ) of two i.i.d. Galton–Watson trees by an edge) with

offspring variable Z. As before, let (Xt) and (Yt) be SRW and NBRW on T , resp.; as first

observed in [14], (T, ρ, SRW) is a stationary environment, i.e., (T, ρ)
d
= (T,Pρ(X1 ∈ ·)).

Conditioned on (T, ρ), let Ht(T, ρ) be the entropy of SRW after t steps:

Ht(T, ρ) = H
(
Pρ(Xt ∈ · | T )

)
and ht = E[Ht(T, ρ)] ,

and similarly defined Lt(T, ρ) for the NBRW by

Lt(T, ρ) = H
(
Pρ(Yt ∈ · | T )

)
and `t = E[Lt(T, ρ)] .

With these notations, we have

hX = lim
t→∞

ht
t
, and hY = lim

t→∞

`t
t
, (3.1)

where the identity for hX is by [14, Theorem 9.7], and `t (t ≥ 1) is explicitly given by

`t = E[log(Z + 1)] + (t− 1)E[logZ] = E[log(Z + 1)] + (t− 1)hY .

Since X1 and Y1 have the same distribution, we further have

h1 = `1 = E[log(Z + 1)] .

We need the following result (cf., e.g., the proof of Theorem 3.2 in [5] and Corollary 10

in [6]), which was first observed in the case of random walks on groups by [12]. (Entropy

of random walks on random stationary environments were thereafter studied in [11],

and it was recently shown in [5] that on stationary environments t 7→ ht is sub-additive.)

We include the short proof for completeness.

Claim 3.1. The map t 7→ (ht − ht−1) is non-increasing.
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Proof. Consider the joint entropy of X1 and Xt given T :

H1,t(T, ρ) := H
(
Pρ
(
(X1, Xt) ∈ · | T

))
and h1,t := E[H1,t(T, ρ)] .

Factoring out Pρ(X1 = x | T ) from Pρ(X1 = x,Xt = y | T ), one sees that

H1,t(T, ρ) = H1(T, ρ)−
∑
x∈T

Pρ(X1 = x | T )
∑
y∈T

Px(Xt−1 = y | T ) logPx(Xt−1 = y | T ) ,

and taking expectation gives

h1,t = h1 + E[Ht−1(T,Pρ(X1 ∈ ·))] = h1 + ht−1 ,

where the last equality is due to the stationarity of the environment. Therefore,

ht − ht−1 = ht − h1,t + h1 = E[Ht(T, ρ)−H1,t(T, ρ)] + h1 .

Conditioned on T , the term H1,t(T, ρ)−Ht(T, ρ) is the conditional entropy H(X1 | Xt),

which satisfies H(X1 | Xt) = H(X1 | Xt, Xt+1) ≤ H(X1 | Xt+1), since X1, Xt+1 are

conditionally independent given Xt, and extra information cannot increase entropy. So,

ht − ht−1 ≥ ht+1 − h1,t+1 + h1 = ht+1 − ht . �

The fact that (ht − ht−1) is non-increasing in t implies that, for every t,

ht − h2 ≤ d t−2
2 e(h3 − h1) ,

from which we see (recalling (3.1)) that it suffices to show that h3 − h1 < 2hY in order

to conclude that hX = limt→∞ ht/t < hY . To see this, consider H3(T, ρ), the entropy

of SRW after 3 steps on the tree T ; using the notation Tk = {z ∈ T : dist(ρ, z) = k},
one has that H3(T, ρ) = R+ S where

R = −
∑
z∈T3

Pρ(X3 = z) logPρ(X3 = z) , (3.2)

S = −
∑
x∈T1

Pρ(X3 = x) logPρ(X3 = x) .

Using the notation y ≺ x to denote that y is a child of x and Dy to be the number of

children of y in T , one has

E[R | T1, T2, T3] =
∑
y≺x≺ρ

Dy
logDρ + log(Dx + 1) + log(Dy + 1)

Dρ(Dx + 1)(Dy + 1)

(where each child of y played the role of z in (3.2), hence the factor Dy above), thus

E[R | T1, T2] =
1

Dρ

∑
y≺x≺ρ

1

Dx + 1

(
E
[Z + 1

Z

]
(logDρ + log(Dx + 1)) + E

[Z log(Z + 1)

Z + 1

])

=
1

Dρ

∑
x≺ρ

Dx

Dx + 1

(
E
[ Z

Z + 1

]
(logDρ + log(Dx + 1)) + E

[Z log(Z + 1)

Z + 1

])
.
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Continuing in the same manner, setting β := E
[

Z
Z+1

]
to simplify the notation, we have

E[R] = E
[
E[R | T1]

]
= β2E [logDρ] + 2βE

[
Z log(Z + 1)

Z + 1

]
= β2E [log(Z + 1)] + 2βE

[Z log(Z + 1)

Z + 1

]
(3.3)

where the factor 1/Dρ cancelled the number of i.i.d. choices corresponding to x ≺ ρ,

and of the three summands corresponding to x ≺ ρ in the preceding display, each of the

two that did not involve Dρ yielded the same expression after averaging over T2.

Turning our attention to S, by the convexity of x 7→ x log x and Jensen’s inequality

for conditional expectation,

E[S | T1] ≤ −
∑
x∈T1

E
[
Pρ(X3 = x) | T1

]
logE

[
Pρ(X3 = x) | T1

]
. (3.4)

For every x ∈ T1, accounting for whether X2 = ρ or X2 = y for some y ≺ x shows that

Pρ(X3 = x) =
1

Dρ

( ∑
x′∈T1

1

DρDx′
+
∑
y≺x

1

DxDy

)
;

thus, again using that E[
∑

y≺x
1

DxDy
| T1, T2] = E[ 1

Z+1 ]Dx−1
Dx

as reasoned above,

E [Pρ(X3 = x) | T1] =
E
[

1
Z+1

]
+ E

[
1

Z+1

]
E
[

Z
Z+1

]
Dρ

=
1− β + (1− β)β

Dρ
=

1− β2

Dρ
.

Plugging this in (3.4) shows that

E[S | T1] ≤ (1− β2) log
Dρ

1− β2
,

which, after taking an average over T1 and combining it with (3.3), yields

h3 = E[R+ S] ≤ E[log(Z + 1)] + 2βE
[
Z log(Z + 1)

Z + 1

]
− (1− β2) log(1− β2) . (3.5)

By Jensen’s inequality and the fact that Z is non-constant (thus the same holds also

for Z
Z+1), we have β2 < E[( Z

Z+1)2], hence log(1− β2) > log(E[1− ( Z
Z+1)2]), and another

application of Jensen’s inequality to x 7→ log x implies that

(1− β2) log(1− β2) > (1− β)E
[

2Z + 1

Z + 1

]
E
[
log

(
2Z + 1

(Z + 1)2

)]
≥ (1− β)E

[
2Z + 1

Z + 1
log

(
2Z + 1

(Z + 1)2

)]
,

where the second inequality used that f1(z) = 2z+1
z+1 = 2 − 1

z+1 is increasing whereas

f2(z) = log
(

2z+1
(z+1)2

)
= log(1− ( z

z+1)2) is decreasing, implying—noting E[f1(Z)2] <∞
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and E[f2(Z)2] < ∞ since Z ≥ 1—that Cov(f1(Z), f2(Z)) ≤ 0. Revisiting (3.5), while

recalling that h1 = E[log(Z + 1)], we now infer that

h3 − h1 < 2βE
[
Z log(Z + 1)

Z + 1

]
− (1− β)E

[
2Z + 1

Z + 1
log

(
2Z + 1

(Z + 1)2

)]
= 2E

[
Z log(Z + 1)

Z + 1

]
− (1− β)E

[
2Z + 1

Z + 1
log

(
2Z + 1

(Z + 1)2

)
+

2Z log(Z + 1)

Z + 1

]
= 2E

[
Z log(Z + 1)

Z + 1

]
− (1− β)E [f3(Z)] , (3.6)

where

f3(z) :=
2z + 1

z + 1
log(2z + 1)− 2 log(z + 1) .

It is easy to verify that f ′3(z) = (z + 1)−2 log(2z + 1) > 0 for every z > 0, thus f3(z) is

increasing and E[f3(Z)2] <∞ thanks to the facts Z ≥ 1 and EZ <∞. Therefore, when

considered with the function f4(z) = 1
z+1 which is decreasing and has a finite second

moment, we have Cov(f3(Z), f4(Z)) ≤ 0, or equivalently,

(1− β)E [f3(Z)] ≥ E
[
f3(Z)

Z + 1

]
= E

[
2Z + 1

(Z + 1)2
log(2Z + 1)− 2

Z + 1
log(Z + 1)

]
.

Combining these with (3.6) yields

h3 − h1 < 2E
[
log(Z + 1)− 2Z + 1

2(Z + 1)2
log(2Z + 1)

]
.

The proof will thus be concluded by showing that the function

g(x) := log

(
x+ 1

x

)
− 2x+ 1

2(x+ 1)2
log(2x+ 1) .

satisfies g(x) < 0 for all x ≥ 2, which would then imply that

h3 − h1 < 2E[logZ] = 2hY = `3 − `1 .

To see this, first observe that

g′(x) = (2x+ 1)(x+ 1)− x2 log(2x+ 1)

x(x+ 1)3
.

Now, along the interval [1,∞), the function x 7→ log(2x + 1) increases from 0 to ∞,

whereas x 7→ 2 + 3x−1 + x−2 decreases from 6 to 2, thus g′(x) has a unique root x0 and

is negative on [1, x0) and positive on (x0,∞). Hence, it suffices to show that g(x) is

negative at x = 2 and near ∞, which is indeed the case: g(2) = log(3/2)− 5
18 log 5 < 0

and g(x) x
log(x) → −1 as x→∞, as claimed. �
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