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Abstract. We study dynamics for asymmetric spin glass models, proposed by Hertz

et al. and Sompolinsky et al. in the 1980’s in the context of neural networks: particles

evolve via a modified Langevin dynamics for the Sherrington–Kirkpatrick model with

soft spins, whereby the disorder is i.i.d. standard Gaussian rather than symmetric.

Ben Arous and Guionnet (1995), followed by Guionnet (1997), proved for Gaussian

interactions that as the number of particles grows, the short-term empirical law of

this dynamics converges a.s. to a non-random law µ? of a “self-consistent single

spin dynamics,” as predicted by physicists. Here we obtain universality of this fact:

For asymmetric disorder given by i.i.d. variables of zero mean, unit variance and

exponential or better tail decay, at every temperature, the empirical law of sample

paths of the Langevin-like dynamics in a fixed time interval has the same a.s. limit µ?.

1. Introduction

Consider the dynamics for asymmetric spin glass models, studied in the context of

neural networks e.g. by Hertz et al. [20] and Cristani and Sompolinsky [12], given by

dX
(i)
t = dB

(i)
t − U ′1(X

(i)
t )dt+

β√
N

N∑
j=1

JijX
(j)
t dt (i = 1, . . . , N) , (1.1)

where Bt is N -dimensional Brownian motion, Xt ∈ [−s, s]N for some finite s, the poten-

tial U1 is some smooth function satisfying that U1(x)→∞ as |x| → s (e.g. a double-well

potential at ±1 with s = 2), the parameter β > 0 is the inverse-temperature and the

interactions Jij are quenched (frozen) i.i.d. standard Gaussian random variables.

If instead one were to take a symmetric disorder (that is, Jij = Jji i.i.d. standard

Gaussian for each pair {i, j}) then the stochastic differential system (sds) (1.1) would

be precisely Langevin dynamics for the soft-spin Sherrington–Kirkpatrick (sk) model;

see, e.g., [23, 27,28] and [3, 4, 19] for studies of the short-term dynamics in that case.

The asymmetric nature of the disorder Jij aids some aspects of the analysis via the

extra independence, yet makes the dynamics non-reversible, whence various useful tools

(e.g., the Fluctuation Dissipation Theorem used in [28] to analyze the symmetric case)

become unavailable. As argued e.g. in [12] (see also [14, 22] on the related Hopfield

model [21]), the asymmetric disorder seems a better model for the interactions between

neurons (cf. Remark 1.4 for other flavors of the model in the context of neural networks).

Many of the dynamical quantities of interest, such as spin autocorrelation and re-

sponse functions, may be read from the thermodynamic limit (N →∞) of the empirical

measure µN of sample-paths of the N particles in a given time interval [0, T ]; that is,

µN =
1

N

N∑
i=1

δ
X

(i)
·
∈M1(C([0, T ])) . (1.2)
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Ben Arous and Guionnet [2], followed by [19] (cf. [4]) were able to show that, from an

i.i.d. initial state, µN converges a.s. to a law µ? of a self-consistent single-spin dynamics,

a non-Markovian diffusion involving only one spin, as predicted for this system in [12].

The proofs in [2,19] (and in follow-up works on variants of this model, e.g., Glauber-like

dynamics [17,26] and the dynamics where the sds has an extra non-linearity [15]) relied

in an essential way on special properties of Gaussian random variables.

In the related sk model, the first rigorous proof [18, 30] that the free energy has

an a.s. limit was specific to Gaussian disorder, as was the identification of this limit.

Talagrand [29] later proved that the same limit must be obtained under interactions

of Bernoulli ±1 random variables. This universality property was further generalized

in [9,10] to any i.i.d. interactions given by a variable J satisfying EJ = 0 and EJ2 = 1.

Our goal in this work is to obtain a similar universality result for the system (1.1),

where a self-consistent a.s. limit was till now rigorously verified only in the case of

Gaussian interactions. To be precise, consider the probability measures PβN of the triplet

(J, B·, X·) corresponding to the sds (1.1) with an initial state that is a product ν⊗N0

which places no mass on the boundary, i.e.,

ν0 ∈M1((−s, s)) ,

and the C2((−s, s)) potential function U1(x) → ∞ as |x| → s fast enough to confine

the solution of (1.1) within (−s, s). Specifically, suppose (as in [2, p. 458]), that

lim
|x|↑s

∫ x

0
e2U1(t)

(∫ t

0
e−2U1(v)dv

)
dt =∞ , (1.3)

which is satisfied for instance by U1(x) = − log(s2 − x2). In this context, the heuristic

reasoning for the expected universality, as in the case of the free energy in the sk

model, is due to the invariance principle, whereby one expects the interaction term

N−1/2JXt in (1.1) to approximately follow a Gaussian law when N →∞, irrespective

of the marginal laws of the independent disorder variables Jij . However, even for fully

independent (i.e. non-symmetric), Gaussian disorder, the limit µ? of µN is characterized

only as the global minimum of a certain rate function, corresponding to the variational

problem of a large deviation principle (ldp). Consequently, one has to establish the

sought-after universality at the level of large deviations. For {Jij} which are fully i.i.d

Gaussian variables and high temperature (i.e. β2s2T < 1), such ldp was proved in [2]

by relying on exact Gaussian calculus for the Radon–Nykodim derivative (rnd) w.r.t. a

reference system with independent particles, corresponding to the β = 0 measure (the

corresponding a.s. convergence µN → µ? was thereafter extended in [19] to all β <∞).

Unfortunately, such explicit calculus does not exist for any other law of interactions.

Moreover, any attempt to control the rnd of Gaussian vs. non-Gaussian interactions

via an argument such as Lindeberg’s method must be done with utmost care, since it

typically yields only an N−c additive error term, which is potentially multiplied — and

hence outweighed — by an ecN factor from the rnd (see Remark 1.3).
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Figure 1. Comparison of the diffusions (1.1) under different disorder laws:

standard Gaussian Jij (orange) vs. Bernoulli ±1 set by sign(Jij) (blue), with

N = 100 particles, β = 1, s = 2, the double-well potential at ±1 given by

U1(x) = − log(s2 − x2) − x2 + 1
3x

4 and a common N -dimensional Brownian

motion Bt driving the systems. Left: sample path of X
(I)
0 X

(I)
t for a uniform

particle I ∈ {1, . . . , N}. Right: average of 100 samples of X
(I)
0 X

(I)
t .

Our results hold for any random interactions consisting of independent {Jij}, whose

laws may depend on i, j,N , subject only to the following moment and tail assumptions:

EJij = 0 , EJ2
ij = 1 , (1.4)

lim
ε→0

sup
i,j,N

{
E
[
eε|Jij |

]}
<∞ ; (1.5)

that is, independent {Jij} of zero mean, unit variance and a uniform exponential,

or better, tail decay. (In fact, the uniformity over j in (1.5) is not needed and this

assumption may be relaxed into the conditions (1.6)–(1.8) stated later; see Remark 1.2.)

Let W s
T be the metric space C([0, T ]→ [−s, s]) of paths equipped with the distance

d2(x, y) =

(
1

T

∫ T

0
|x(t)− y(t)|2dt

)1/2

.

Our main result is the a.s. convergence of µN , in the weak topology corresponding to

the metric space W s
T , to the self-consistent limit µ? of [2, 4, 19].

Theorem 1.1. Let µN be the empirical measure defined on (1.2) on sample paths of the

Langevin spin glass dynamics (1.1) with independent interactions satisfying (1.4) and

(1.5). Then, for every β > 0, T < ∞ and s > 0, we have that a.s. in the interactions

J and the diffusion, µN → µ? in M1(W s
T ) weakly as N →∞.

As a corollary we obtain, for instance, that the dynamics with interactions that are,

e.g., centered Bernoulli(1
2) or centered Exp(1) random variables (see Figure 1) have the

same limit as the one derived in [2, 4, 19] for the standard Gaussian case.
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Remark 1.2. Theorem 1.1 remains valid when replacing the assumption (1.5) by the

following, less explicit, yet somewhat more relaxed conditions:

lim
ε→0

sup
i≤N
θ∈(0,ε]

1

θ2N

N∑
j=1

log
(
E[eθJij ] ∨ E[e−θJij ]

)
<∞ , (1.6)

1

Nγ

N∑
i,j=1

E(|Jij |3)→ 0 for some γ <
5

2
, (1.7)

lim
N→∞

{N−1/2‖J‖2→2} <∞ almost surely . (1.8)

The approach of [2] is to establish a weak ldp for the empirical law of the dynamics,

in an approximate system of equations where interactions are frozen over a finite number

of sub-intervals (see (2.1)), under the topology derived from sup-norm distance between

sample paths. One then boosts it via exponential tightness into a full ldp, where the

extra assumption β2s2T < 1 for exponential tightness in [2], is later dispensed of in [19].

The ldp further extends to the original sds, implying in particular the law of large

numbers (lln). Theorem 1.1 applies beyond Gaussian disorder, albeit for the slightly

weaker topology derived from L2-distance.

Remark 1.3. As demonstrated in Figure 1, even when using the same Brownian mo-

tion, the sample path for a typical (random) coordinate of the solutions of (1.1) under

two different disorder laws are not close to one another: one must average over the dis-

order matrix J in order to establish the similarity of the limiting µN . Going this route,

any attempt to control the rnd between the average of the measure PβN w.r.t. our non-

Gaussian interaction J and the average of such a measure with Gaussian interactions Ĵ

requires one to estimate a term of the form EJ[eF ]/E
Ĵ
[eG] conditioned on the sample

paths and Brownian motions. The analysis of this rnd becomes particularly delicate

since, even upon establishing that E
J,Ĵ

[eF − eG] ≤ (1 + N−c Ξ)N , we must control the

effect of the random variable Ξ in order to deduce that the overall ratio is exp(o(N)).

Remark 1.4. Various extensions of the model studied here appeared in the context of

disordered neural networks. For instance, in [7, 8] (also see [6]) the model allows time

delays in the interaction between the particles, a time-dependent self-interaction, and

any bounded Lipschitz-continuous pairwise interaction (which in the setup of [2, 4, 19]

was a bi-linear map). In studies of networks of Hopefield neurons, e.g. [15] and the

references therein, the evolution of X
(i)
t has interaction terms Jij as pre-factors of a

nonlinear uniformly bounded function of the X
(j)
t ’s, in lieu of a confining potential U .

Both of these lines of extensions were studied under the assumption that the interaction

variables Jij are Gaussian, while [24, Sec. 4] and [5, Sec. 4.5] follow the same general

approach as taken here to establish for such neural networks the universality of the limit

of µN for sufficiently small T and for sub-Gaussian i.i.d. {Jij}. It is plausible that our

methods here would be useful in the analysis of these models without those limitations.
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In Section 2 we describe the sds of piecewise frozen interactions and establish that

Theorem 1.1 is a direct consequence of Propositions 2.2 and 2.3. Thereafter, in Sec-

tion 3 we establish Proposition 2.2, namely the relevant lln for the approximating sds,

whereas in Section 4 we prove Proposition 2.3, which couples the approximating sds

to the (original) dynamics (1.1) of interest.

2. Proof of Theorem 1.1: piecewise frozen interactions

We start by showing that the conditions in Remark 1.2 indeed relax (1.4)–(1.5).

Lemma 2.1. Conditions (1.4) and (1.5) imply the conditions (1.6)–(1.8).

Proof. Taking the expectation of

eθJij − θJij ≤ 1 +
θ2

ε2
eε|Jij | , ∀|θ| ≤ ε

w.r.t. the zero-mean law of Jij , followed by the logarithm of both sides, as log(1+y) ≤ y
on R+ it follows that

logE[eθJij ] ≤ θ2

ε2
E[eε|Jij |] , ∀|θ| ≤ ε, i, j,N .

Thereby, (1.6) follows from (1.5). Similarly, with |J |3 ≤ 6
ε3
eε|J |, upon taking the

expectation of both sides w.r.t. the law of Jij , we get (1.7) (for 5
2 > γ > 2). As for

(1.8), let A := β√
N
J denote the scaled disorder matrix and Z1, Z2 be two N -dimensional

symmetric matrices, which are independent of A and of each other, with independent

entries above and on their main diagonal satisfying both (1.4) and (1.5). Then, for

non-random γ ∈ R consider the 2N -dimensional symmetric matrices

Wγ :=

(
γ√
N
Z1 A

At γ√
N
Z2

)
,

noting that

‖A‖2→2 := sup
‖z‖2=1

{‖Az‖2} = λmax(AtA)1/2 = λmax(W0)

≤ λmax(Wβ)− βλmin(N−1/2Z1)− βλmin(N−1/2Z2) .

But Wβ is a
√

2β multiple of an 2N -dimensional Wigner matrix while N−1/2Zi for i =

1, 2, are a pair of N -dimensional Wigner matrices. The Füredi-Komlós [16] argument

applies to each of these three matrices, yielding that limN→∞{λmax(Wβ)} ≤ 2
√

2β and

limN→∞{λmin(N−1/2Zi)} ≥ −2 for i = 1, 2. This completes the proof.1 �

1The result of [16] is for matrices of bounded entries and convergence in probability; the proof re-

mains valid under the condition of uniform boundedness of exponential moments of the entries of
√
NA:

see the detailed exposition in [1, Sec. 2.1.6] for the case of i.i.d. entries. The extension to non-identically

distributed entries and a.s. convergence, respectively, is immediate (see [1, Ex. 2.1.27 and 2.1.29]).
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Figure 2. Solution of the diffusion (1.1) with Bernoulli ±1 disorder variables,

N = 100 and β = 1 (blue) vs. the approximating system (2.1) with subinterval

length 0.1 (green) and subinterval length 0.2 (purple).

A key ingredient in our proof is the analysis of the approximate dynamics of [2, §3],

now for a general disorder {Jij}. Specifically, fixing an integer κ, let

tk = kT/κ for k = 0, . . . , κ ,

partitioning the interval [0, T ) into κ disjoint sub-intervals [tk−1, tk). We denote by

P̃βN,κ the probability measure of the triplet (J, B·, X̃·) corresponding to the diffusion X̃t

starting from X̃0 = X0 and given by

dX̃t = dBt −∇U(X̃t)dt+
β√
N

JX̃tk−1
dt (t ∈ [tk−1, tk], 1 ≤ k ≤ κ) , (2.1)

i.e., the interaction term between the particles is frozen along each sub-interval [tk−1, tk).

(See Figure 2 for a simulation of the approximate dynamics.)

The fact that both (2.1) and the original diffusion (1.1) have unique weak solutions,

follows from [2, Proposition 2.1], which established this fact for every (Jij). Further-

more, this solution is in fact strong (see, e.g., [25, exercises (2.10)(1◦) and (2.15)(2◦) in

p. 383 and p. 386]).

Next, for any finite a2, denote by Pβ,a2N the measure PβN restricted to the event

Aa2 := {‖A‖2→2 ≤ a2} . (2.2)

We further use Πβ
N for the averaged over A law of the empirical measure µN , with

Πβ,a2
N similarly standing for the sub-probability measure in which the expectation over

A is restricted by an indicator on the event Aa2 . In analogy with (1.2), let µ̃N,κ be the

empirical measure of the solution to (2.1), with Π̃β,a2
N,κ denoting its law integrated over

the disorder restricted to Aa2 .
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Recall that W s
T is the metric space C([0, T ]→ [−s, s]) equipped with the distance

d2(x, y) =

(
1

T

∫ T

0
|x(t)− y(t)|2dt

)1/2

.

We further equip the space M1(W s
T ) with the corresponding Wasserstein metric

dW2(φ, ψ) := inf
ξ=(ξ1,ξ2)
ξ1=φ,ξ2=ψ

{∫
d2(x, y)2dξ(x, y)

}1/2

,

denoting hereafter by B(µ?, δ) the ball of radius δ around µ? in that metric.

Proposition 2.2. Suppose (1.4), (1.6) and (1.7) hold. Then, for every T, a2 <∞ and

δ > 0 there exists some κ0 <∞ such that for every κ ≥ κ0,

∞∑
N=1

Π̃β,a2
N,κ (B(µ?, δ)

c) <∞ .

Next, let Qβ,a2
N denote the joint law of J, X̃t and Xt, restricted to Aa2 , where we use

the same N -dimensional Brownian motion Bt for both processes.

Proposition 2.3. Suppose (1.4), (1.6) and (1.7) hold. Then, for every T, a2 <∞ and

δ > 0, there exists some κ0 <∞ such that for every κ ≥ κ0,

∞∑
N=1

Qβ,a2
N

(
1

NT

∫ T

0
‖Xt − X̃t‖22dt > δ

)
<∞ .

Coupling each coordinate of Xt with the corresponding one of X̃t, one has that

dW2(µN , µ̃N,κ)2 ≤ 1

N

N∑
i=1

d2(X(i), X̃(i))2 =
1

NT

∫ T

0
‖Xt − X̃t‖22dt .

Thus, combining Proposition 2.2, Proposition 2.3 and the triangle inequality for dW2(·, ·)
we have that for any T finite, a2 finite and δ > 0

∞∑
N=1

PβN
(
dW2(µN , µ?) > 2

√
δ,Aa2

)
<∞ ,

which by Borel–Cantelli I, implies that for any δ > 0 and a2 finite,

Pβ
[

lim
N→∞

{dW2(µN , µ?)} > 2
√
δ , lim

N→∞
‖A‖2→2 < a2

]
= 0 .

In view of (1.8), the proof of Theorem 1.1 is thus complete.
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3. Proof of Proposition 2.2

Our proof relies on the following application of the multivariate Lindeberg’s method

of [11, Theorem 1.1].

Lemma 3.1. Suppose the random vector J ∈ RN has independent entries {Jj} such

that EJj = 0 and EJ2
j = 1. Then, for every N,κ ≥ 1, non-random X = (xkj) ∈ Rκ×N ,

b ∈ Rκ, and the quadratic function

h(z) =
1

2
‖Xz − b‖22 (z ∈ RN ) , (3.1)

setting c0 = 1
2e
−
√

3/2(3
1
4 + 3−

1
4 ) one has that

|Ee−h(J) − Ee−h(Ĵ)| ≤ c0

N∑
j=1

(XtX)
3/2
jj (E|Jj |3 + E|Ĵ |3) (3.2)

where Ĵ = (Ĵj) ∈ RN has i.i.d. standard Gaussian entries. In addition,

E
[

exp(h(0)− h(Ĵ))
]
≥ det(I + XXt)−1/2 . (3.3)

Proof. Having mutually independent entries of J whose first and second moments match

those of Ĵ, eliminates the first two terms of the bound on the lhs of (3.2) that we get

by applying [11, Theorem 1.1] for the smooth function f(z) = e−h(z). Denoting the

first three partial derivatives of a function f w.r.t. zj by fj , fjj and fjjj , the proof of

[11, Theorem 1.1] provides a sharper bound than stated in its last term, namely

|Ef(J)− Ef(Ĵ)| ≤ 1

6

N∑
j=1

‖fjjj‖∞ (E|Jj |3 + E|Ĵ |3) .

For h(z) of (3.1), we have ∇h = Xt(Xz − b), so hjj = (XtX)jj is constant, with

hjjj = 0 and |hj | ≤
√

2hhjj by Cauchy–Schwarz. Substituting r =
√

2h we thus have

that

|(e−h)jjj | = |hjjj − 3hjhjj + h3
j |e−h ≤ h

3/2
jj sup

r≥0

{
e−

1
2
r2(3r + r3)

}
= 6c0h

3/2
jj ,

from which the rhs of (3.2) follows. To get (3.3) note that the multivariate Gaussian

g := XĴ has zero mean and covariance XXt. Consequently,

E
[
eh(0)−h(Ĵ)

]
= E

[
e−

1
2
‖g‖22+〈g,b〉] ≥ E

[
e−

1
2
‖g‖22

]
= det

(
I + E[ggt]

)−1/2
,

as claimed in (3.3). �

Let P̂βN,κ and Π̂β
N,κ be the counterparts of P̃βN,κ and Π̃β

N,κ when the disorder J is

replaced by Ĵ whose entries are i.i.d. standard Gaussian random variables. Fixing the

random variables

M (i)
κ :=

1

2
‖b(i)‖22, b

(i)
k :=

X̃
(i)
tk
− X̃(i)

tk−1
−
∫ tk
tk−1

U ′1(X̃
(i)
s )ds

√
tk − tk−1

, k = 1, . . . , κ, (3.4)
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we control Π̃β
N,κ for some δ

(i)
N → 0 in terms of its counterpart Π̂β

N,κ and

ΦN,κ :=
1

N

N∑
i=1

log
(
1 + δ

(i)
N eM

(i)
κ
)
, (3.5)

where

δ
(i)
N = c1N

−3/2
N∑
j=1

E|Jij |3 . (3.6)

Lemma 3.2. Assume the independent {Jij} satisfy (1.4). Then, for any T, β, κ there

exist N0 and c1 finite, such that for every N ≥ N0,

d Π̃β
N,κ

d Π̂β
N,κ

≤ eNΦN,κ .

Proof. Let

ΓβN,κ(µ̃N,κ) :=
1

N

N∑
i=1

logEJ

[
exp

(
〈b(i),g(i)〉 − 1

2
‖g(i)‖22

)]
, (3.7)

where Jij are independent and the coordinates of each g(i) ∈ Rκ (i = 1, . . . , N) are

g
(i)
k :=

N∑
j=1

xkjJij , xkj :=
β
√
T√

Nκ
X̃

(j)
tk−1

, k = 1, . . . , κ . (3.8)

We further define Γ̂βN,κ(µ̃N,κ) as in (3.7)–(3.8), except for using {ĝ(i)} and the i.i.d.

standard normal variables {Ĵij} instead of {g(i)} and {Jij}, respectively. Note that by

Girsanov’s theorem we have the Radon–Nykodim derivative

d P̃βN,κ
d P̃0

N,κ

= exp
( N∑
i=1

[
〈b(i),g(i)〉 − 1

2
‖g(i)‖22

])
. (3.9)

Indeed, under P̃0
N,κ we get from (3.4) that

√
T√
κ
b
(i)
k = B

(i)
tk
−B(i)

tk−1
, so having in (2.1) the

interaction vector Gt = β√
N
JX̃tk−1

throughout [tk−1, tk], it is easy to verify that then

〈b(i),g(i)〉 =

∫ T

0
G

(i)
t dB

(i)
t , ‖g(i)‖22 =

∫ T

0
(G

(i)
t )2dt .

Further, Novikov’s condition holds here since

Ẽ0
N,κ

(
exp

(1

2

N∑
i=1

‖g(i)‖22
) ∣∣∣ J) <∞ ,
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due to the uniform bound on {xkj} of (3.8) (as ‖X̃t‖∞ ≤ s). Under P̃0
N,κ = P0

N we have

that J is independent of (X̃·), thereby yielding that

EJ

[
d P̃βN,κ
dP0

N

]
= exp(NΓβN,κ(µ̃N,κ)) , (3.10)

where we also crucially used the independence of the rows of J to arrive at the specific

form on rhs. Being a function of only µ̃N,κ, the rhs of (3.10) coincides with the

Radon–Nykodim derivative restricted to these empirical measures, namely

d Π̃β
N,κ

d Π0
N

= exp(NΓβN,κ(µ̃N,κ)) .

The same argument applies for the Radon–Nykodim derivative of Π̂β
N,κ with respect

to Π0
N . To complete the proof it thus suffices to show that

ΓβN,κ(µ̃N,κ)− Γ̂βN,κ(µ̃N,κ) ≤ ΦN,κ . (3.11)

Unraveling (3.4)–(3.8) this follows upon showing that for each 1 ≤ i ≤ N ,

E
[
e−h

(i)(J(i))
]
− E

[
e−h

(i)(Ĵ)
]
≤ δ(i)

N eh
(i)(0)E

[
e−h

(i)(Ĵ)
]
, (3.12)

where Ĵ is a standard multivariate Gaussian, J(i) = (Ji1, . . . , JiN ) ∈ RN and h(i)(·) of

(3.1) with b(i) of (3.4) and {xkj} of (3.8). Since X̃
(j)
t ∈ [−s, s], we have that

|xkj |2 ≤
(βs)2T

κN
=⇒ (XtX)jj ≤

(βs)2T

N
, (XXt)kk′ ≤

(βs)2T

κ
.

Thus, from Lemma 3.1 the rhs of (3.3) is bounded below in our case by 1/c2 for some

c2 = c2(βs
√
T , κ) finite, while for some c3 = c3(βs

√
T ) finite, the lhs of (3.12) is at

most c3N
−3/2

∑
j≤N (E|Jij |3 + E|Ĵ |3). With E|Jij |3 ≥ 1 and E|Ĵ |3 =

√
8/π, taking

c1 = c2c3(1 +
√

8/π) in (3.6) guarantees that (3.12) would hold and thereby completes

the proof of the lemma. �

The following elementary lemma is needed for proving Lemma 3.4 (namely, to show

that ΦN,κ → 0 a.s. when N →∞).

Lemma 3.3. Suppose vectors J = (J1, . . . , JN ) ∈ RN are composed of independent

coordinates {Ji} such that for some ε > 0, v <∞, and all N ≥ N0,

sup
θ∈(0,ε]

{ 1

θ2N

N∑
j=1

log
(
E[eθJj ] ∨ E[e−θJj ]

)}
≤ v . (3.13)

For any a <∞, if α < 1
4v ∧

ε
4a and N ≥ N1 := N0 ∨ 2

εa , then

sup
{u∈RN : ‖u‖∞≤N−1/2}

E
[

exp
(
α〈u,J〉2

)
1{‖J‖1≤aN}

]
≤ f?(αv) <∞ .
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Proof. Fixing α > 0, associate with each non-random u ∈ RN such that ‖u‖∞ ≤ N−1/2

the variable Yu :=
√

2α〈u,J〉, noting that for α ≤ ε/(4a) and any such u

{‖J‖ ≤ aN} =⇒ |Yu| ≤ a
√

2αN ≤ ε

2

√
N/(2α) := rN .

Taking N ≥ N0 yields in view of (3.13) (at θ = λ
√

2α/N), that

E
[
eλYu

]
≤ e2αvλ2 , ∀|λ| ≤ 2rN . (3.14)

Recall the elementary bound, valid for all r ≥ 1

ey
2/2
1[−r,r](y) ≤ 2

∫ 2r

−2r
eλye−λ

2/2 dλ√
2π

. (3.15)

Further, since rN ≥
√
εaN/2 ≥ 1 for all N ≥ N1, upon combining the bounds (3.14),

(3.15) with Fubini’s theorem, we find that for any such α, Yu and for all N ≥ N1,

E
[
eY

2
u /21{‖J‖1≤aN}

]
≤ 2

∫ ∞
−∞

e2αvλ2e−λ
2/2 dλ√

2π
:= f?(αv) <∞ ,

as claimed. �

Equipped with Lemma 3.3 we proceed to verify that a.s. ΦN,κ → 0 when N →∞.

Lemma 3.4. Suppose the independent variables {Jij} satisfy (1.6) and (1.7). Then,

for any T, β, a2, κ and all η > 0,
∞∑
N=1

P̃β,a2N,κ (ΦN,κ > 2η) <∞ . (3.16)

Proof. Set M̂
(i)
κ := 1

2‖b̂
(i)‖22 for b̂

(i)
k := b

(i)
k − g

(i)
k . Then, for any q ∈ (0, 1] and rN ≥ 0,

M (i)
κ ≤ (1 + q)M̂ (i)

κ + q−1‖g(i)‖22 ≤ (1 + q)M̂ (i)
κ + rN + q−1‖g(i)‖221{‖g(i)‖22≥qrN}

. (3.17)

With δ̂
(i)
N := erN δ

(i)
N we thus get from (3.5) and log(1 + yeR) ≤ R + log(1 + y), for

R, y ≥ 0, that

ΦN,κ ≤
1

N

N∑
i=1

log
(
1 + δ̂

(i)
N e(1+q)M̂

(i)
κ
)

+
1

qN

N∑
i=1

‖g(i)‖221{‖g(i)‖22≥qrN}
:= Φ̂N,κ + ΨN,κ .

Taking ϕ := 1− q = 2
3(γ − 1) for 1 < γ < 5/2 of (1.7) and rN →∞ slowly enough, we

find that as N →∞,

δ̂N :=
1

N

∑
i=1

(δ̂
(i)
N )ϕ ≤ (c1e

rN )ϕN−γ
N∑

i,j=1

E|Jij |3 → 0 . (3.18)

Further, under P̃βN,κ the variables {b̂(i)k } are i.i.d. standard Gaussian, independent of J.

In particular, (2M̂κ)1/2 is the Euclidean norm of a κ-dimensional, standard Gaussian

random vector, which has the density ĉκr
κ−1e−r

2/2 at r ∈ [0,∞) for some ĉκ < ∞.
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Thus, the elementary inequality (1 + u)ϕ ≤ 1 + uϕ, valid for u ≥ 0 and ϕ < 1, yields

the bound

ẼβN,κ
[(

1 + δ̂e(1+q)M̂
(i)
κ
)ϕ] ≤ 1 + (δ̂)ϕ ĉκ

∫ ∞
0

rκ−1e−(qr)2/2dr = 1 + (δ̂)ϕ q−κ .

Combining this with Markov’s inequality, yields for the i.i.d. M̂
(i)
κ , that

P̃βN,κ(Φ̂N,κ > η) ≤ e−ϕηN
N∏
i=1

ẼβN,κ
[(

1 + δ̂
(i)
N e(1+q)M̂

(i)
κ
)ϕ] ≤ e−N(ϕη−q−κδ̂N ) .

In view of (3.18), we thus deduce that

∞∑
N=1

P̃βN,κ(Φ̂N,κ > η) <∞ (3.19)

and complete the proof of the lemma upon checking that for any η > 0,

∞∑
N=1

P̃β,a2N,κ (ΨN,κ > η) <∞ . (3.20)

To this end, first note that if ‖A‖2→2 ≤ a2, then necessarily

N∑
i=1

‖g(i)‖22 =
T

κ

κ∑
k=1

‖AX̃tk−1
‖22 ≤ Ta2

2s
2N . (3.21)

Thus, the random set S? := {i ≤ N : ‖g(i)‖22 ≥ qrN} has at most

`N := dTa2
2s

2N/(qrN )e = o(N)

elements. By the union bound over the at most
(
N
`N

)
= exp(o(N)) ways to choose a

non-random set S ⊆ [N ] of size `N , it suffices for (3.20) to show that

lim
N→∞

sup
|S|=`N

1

N
log P̃βN,κ(RS > qηN,Aa2) < 0 , where RS :=

∑
i∈S
‖g(i)‖22 . (3.22)

To this end, fixing S ⊂ [N ] of size `N , consider the measure P̃β;S
N,κ where we set β = 0 at

all coordinates i ∈ S of (2.1), while not changing the value of β when i /∈ S. One then

has similarly to (3.9) the following Radon–Nykodim derivative, expressed in terms of

b(i) of (3.4) and g(i) of (3.8) by

d P̃βN,κ
d P̃β;S

N,κ

= exp
(∑
i∈S
〈b(i),g(i)〉 − 1

2
RS

)
. (3.23)

The rhs of (3.23) is bounded for any θ > 0 (using the trivial bound xy ≤ (x2 + y2)/2

for x = (1 + θ)−1/2b(i) and y = (1 + θ)1/2g(i)) by

exp
( MS

1 + θ
+
θ

2
RS

)
, where MS :=

1

2

∑
i∈S
‖b(i)‖2 .
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In addition, maxi{N−1/2
∑N

j=1 |Aij |} ≤ ‖A‖2→2 for anyN -dimensional matrix, yielding

for a := a2/β, that

Aa2 ⊆ ASa :=
⋂
i∈S
{
N∑
j=1

|Jij | ≤ aN} .

Combining the preceding bounds, we arrive at

P̃βN,κ(RS > qηN,Aa2) ≤ Ẽβ;S
N,κ

[
exp

( MS
1 + θ

+
θ

2
RS
)
1{RS>qηN}1ASa

]
≤ e−θqηN/2 Ẽβ;S

N,κ

[
exp

( MS
1 + θ

+ θRS
)
1ASa

]
.

Under P̃β;S
N,κ the variables {b(i)k , i ∈ S, k ≤ κ} of (3.4) are i.i.d. standard Gaussian. With

MS being the sum of half the squares of these variables, we clearly have that for some

f0(·) finite, any θ > 0 and all κ,S,

Ẽβ;S
N,κ

[
eMS/(1+θ)

]
= f0(θ)κ|S| .

Denoting by FN := σ(b
(i)
k , xkj , k ≤ κ, i, j ≤ N) the σ-algebra generated by b

(i)
k of (3.4)

and {xkj} of (3.8), it thus suffices for (3.22) to show the existence of non-random θ > 0,

N1 and f1 = f1(θ) <∞, such that for all N ≥ N1 and S ⊆ [N ],

Ẽβ;S
N,κ

[
eθRS1ASa | FN

]
≤ f1(θ)|S| . (3.24)

To this end, recall that under P̃β;S
N,κ the vectors {Ji := (Jij) ∈ RN , i ∈ S} of mutually

independent entries are independent of FN . Further, in view of (3.8),

RS =
∑
i∈S

κ∑
k=1

〈xk,Ji〉2 ,

where xk = (xkj) ∈ RN is such that ‖xk‖∞ ≤
√
T/(Nκ)βs. We thus have that

Ẽβ;S
N,κ

[
eθRS1ASa | FN

]
≤ fN,κ(θTβ2s2)|S| ,

fN,κ(α) := max
i≤N

sup
{uk∈RN :‖uk‖∞≤N−1/2}

E
[

exp
(α
κ

κ∑
k=1

〈uk,Ji〉2
)
1A{i}a

]
.

By Jensen’s inequality fN,κ(α) ≤ fN,1(α). Further, thanks to our assumption (1.6),

the vectors Ji of independent coordinates satisfy the condition (3.13) for some ε > 0,

v <∞ which are independent of i and N . Hence, taking θ > 0 so α = θTβ2s2 be as in

Lemma 3.3, results for N ≥ N1 with fN,κ(α) ≤ f?(αv) finite, thus establishing (3.24)

and thereby concluding the proof of the lemma. �

Setting Ŵ s
T as the metric space C([0, T ]→ [−s, s]) equipped with the distance

d∞(x, y) = sup
t∈[0,T ]

|x(t)− y(t)| ,
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we next effectively prove an exponential tightness of Π̃β
N,κ in the corresponding weak

topology (using an entropy bound, this has been proved in [4] for Gaussian disorder).

Lemma 3.5. Fixing T, β, κ, a2, α, there exists Kα ⊂M1(Ŵ s
T ) compact, with

lim sup
N→∞

1

N
log Π̃β,a2

N,κ (Kcα) < −α .

Proof. It follows from (3.9) that for M
(i)
κ := 1

2‖b
(i)‖22 and b(i) of (3.4),

d P̃βN,κ
dP0

N

≤ exp
( N∑
i=1

M (i)
κ

)
.

By (3.21) and the lhs of (3.17), having ‖A‖2→2 ≤ a2 yields that

N∑
i=1

M (i)
κ ≤ 2

N∑
i=1

M̂ (i)
κ + Ta2

2s
2N .

Further, under P̃βN,κ the variables {b̂(i)k } are i.i.d. standard Gaussian, independent of A,

hence for any A ⊂M1(Ŵ s
T ) and r′ = (r − Ta2

2s
2)/2 ≥ 1,

Π̃β,a2
N,κ (A) ≤ eκrN Π0

N (A) + Π̃β
N,κ(

N∑
i=1

M̂ (i)
κ ≥ κr′N) . (3.25)

The cgf log ẼβN,κ[eθM̂
(1)
κ ] = κΛ(θ) which is independent of N and A (hence also on β),

is finite at θ < 1 and has κΛ′(0) = ẼβN,κM̂κ = κ/2. Thus, θ ≥ Λ(θ) for small enough

θ > 0, so applying Markov’s inequality, we get for such θ > 0 and i.i.d. M̂
(i)
κ , that for

some r̂ = r̂(α, κ) finite,

Π̃β
N,κ(

N∑
i=1

M̂ (i)
κ ≥ κr̂N) ≤ exp(−Nκ[θr̂ − Λ(θ)]) < exp(−αN) . (3.26)

Thus, thanks to (3.25) and (3.26), it suffices to verify that Π0
N are exponentially tight

in M1(Ŵ s
T ). To this end, recall that this is the law of the empirical measure µN

of independent (X
(i)
· ) (namely, the solutions of the sds (1.1) which are uncoupled

at β = 0). These i.i.d. variables take value in a Polish space Ŵ s
T , whence Π0

N is

exponentially tight in the induced weak topology (see [13, Lemma 6.2.6]). �

We have the following upon combining [2] and Lemma 3.5.

Lemma 3.6. For every β, κ, T, a2 there exists a good rate function Iκ onM1(Ŵ s
T ) such

that, for any closed F ⊂M1(Ŵ s
T ),

lim sup
N→∞

1

N
log Π̂β,a2

N,κ (F) ≤ −Iκ(F) .

In addition, Iκ(F) → I(F) as κ → ∞ and I(·) is a good rate function whose unique

minimizer is µ?.
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Proof. The large deviations upper bound with a good rate function Iκ(·) is established

in [2, Theorem 3.1(1)–(2)] for F compact and Π̂β,a2
N,κ . The exponential tightness from

Lemma 3.5 applies in particular for the Gaussian disorder Ĵ, thereby extending the

validity of such upper bound to all closed sets F . Finally, [2, Prop. 4.3(1)] shows the

convergence of Iκ(·) to some I(·) whose global minimizer µ? is unique. �

Proof of Proposition 2.2. We actually prove a slightly stronger statement, where B(µ?, δ)

denotes instead the ball of radius δ > 0 and center µ? in M1(Ŵ s
T ). Fixing T, β, δ, a2,

we have by Lemma 3.2 and the union bound, that for any κ, N ≥ N0(κ) and all η > 0,

Π̃β,a2
N,κ (B(µ?, δ)

c) ≤ P̃β,a2N,κ (ΦN,κ > 2η) + e2ηN Π̂β,a2
N,κ (B(µ?, δ)

c) .

In view of Lemma 3.4 it thus suffices to show that for any δ > 0 and all κ ≥ κ0(δ)

lim sup
N→∞

1

N
log Π̂β,a2

N,κ (B(µ?, δ)
c) < 0 . (3.27)

Recall from Lemma 3.6, that I(Fδ) > 0 for the closed set Fδ = B(µ?, δ)
c and therefore

Iκ(Fδ) > 0 for all κ ≥ κ0(δ). We thus get (3.27) and thereby complete the proof of the

theorem, upon considering the ldp upper bound of Lemma 3.6 for this Fδ. �

4. Proof of Proposition 2.3

For β > 0, we couple Xt and X̃t using the same Brownian motion: writing

Et := X̃t −Xt

we see that

d

dt
Et = ∇U(Xt)−∇U(X̃t) +

β√
N

J(X̃tbtκ/Tc −Xt) ,

E0 = 0 .

Let

Rt = ‖Et‖2 and A =
β√
N

J .

Then

Rt
d

dt
Rt =

〈
Et,

d

dt
Et
〉

= 〈Et,AEt〉+
〈
Et,∇U(Xt)−∇U(X̃t)

〉
+
〈
Et,A(X̃tbtκ/Tc − X̃t)

〉
,

which, by the mean value theorem, is at most

‖A‖2→2R
2
t +R2

t c
′′ + ‖A‖2→2RtLt ,

where, for fixed ε > 0 and ρ > 0, we define

Lt = ‖X̃tbtκ/Tc − X̃t‖2 and c′′ = sup
|x|≤s

(−U ′′1 (x)) .
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Restricted to the event Aa2 , we have that

d

dt
Rt ≤

(
a2 + c′′

)
Rt + 3a2ρ

√
N , (4.1)

up to the stopping time

τ̃ρ := inf{t ≥ 0 : Lt ≥ 3ρ
√
N} .

Solving the ode that corresponds to equality in (4.1), starting at R0 = 0, results with

Rt ≤
3a2

a2 + c′′
(e(a2+c′′)t − 1)ρ

√
N ≤ δ

√
N

up to τ̃ρ, provided that

ρ ≤ δ
(
a2 + c′′

3a2

)
e−(a2+c′′)T .

In particular, for such ρ = ρ(δ, a2, T ) > 0 it then follows that

Qβ,a2
N

(
sup
t∈[0,T ]

Rt ≥ δ
√
N
)
≤ Pβ,a2N (τ̃ρ ≤ T ,Dc

ε) + Pβ,a2N (Dε) ,

for any ε > 0, where

σ̃(i)
ε = inf{t ≥ 0 : |X̃(i)

t | > s− ε} , Dε =
{ N∑
i=1

1{σ̃(i)
ε <T} >

ρ2

s2
N
}
.

Recall from [2, Thm. 4.1(a)] that µ? is absolutely continuous w.r.t. the law P0
1 of the

solution X
(1)
t , t ∈ [0, T ], of a single sde (1.1) at β = 0. Further, P0

1({x : ‖x‖∞ = s}) = 0

thanks to (1.3), hence for any small ε > 0 and the corresponding closed subset

µ? /∈ Fε :=
{
µ : µ(‖x‖∞ ≥ s− ε) ≥ ρ2

s2

}
. (4.2)

Fixing such ε > 0, we proceed to bound Lt. To this end, recall that for any t ∈ [tk, tk+1],

X̃t − X̃tk = −
∫ t

tk

∇U(X̃ξ)dξ +Bt −Btk + (t− tk)AX̃tk .

Hence, with t− tk ≤ T/κ, setting c′ε := sup|x|≤s−ε |U ′1(x)| we get that

N∑
i=1

1{σ̃(i)
ε ≥T}

∣∣X̃(i)
t − X̃

(i)
tk

∣∣2 ≤ [c′εTκ√N + ‖Bt −Btk‖2 +
T

κ
‖A‖2→2 ‖X̃tk‖2

]2

.

At the same time, on the event Dc
ε we have that

N∑
i=1

1{σ̃(i)
ε <T}

∣∣X̃(i)
t − X̃

(i)
tk

∣∣2 ≤ (2ρ)2N .

Consequently, (using that ‖X̃tk‖2 ≤ s
√
N and the restriction to the event Aa2) we

deduce that as soon as

κ ≥ κ1 :=
⌈
(c′ε + a2s)T/ρ

⌉
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we have by the independence of the Brownian increments (and a union bound),

Pβ,a2N (τ̃ρ ≤ T , Dc
ε) ≤ κP

(
sup

t∈[0,T
κ

]

{‖Bt‖22} ≥ ρ2N

)
.

To bound the latter, note that

u(t, x) = exp

[
x2

1 + 2t
− 1

2
log(1 + 2t)

]
,

is a positive, smooth solution of the heat equation ut+
1
2uxx = 0. Hence, by Ito’s formula

the integrable M
(i)
t := u(t, B

(i)
t ) are i.i.d. positive martingales, starting at M

(i)
0 = 1.

Next, increasing κ1 as needed in order to have

η :=
ρ2

1 + 2T/κ1
− 1

2
log(1 + 2T/κ1) > 0 ,

and applying Doob’s maximal inequality for the positive martingale M t =
∏N
i=1M

(i)
t ,

we deduce that for any κ ≥ κ1,

P
(

sup
t∈[0,T

κ
]

{‖Bt‖22} ≥ ρ2N

)
≤ P

(
sup

t∈[0,T
κ

]

{M t} ≥ eηN
)
≤ e−ηN .

Turning now to show that Pβ,a2N (Dε) is summable in N for all κ ≥ κ1(ε, ρ), note that

Dε ⊆ {µ̃N,κ ∈ Fε} for Fε of (4.2). Thus, proceeding as in the proof of Proposition 2.2,

we have by Lemma 3.2 and the union bound, that for any κ, N ≥ N0(κ) and all η > 0,

Pβ,a2N (Dε) ≤ Π̃β,a2
N,κ (Fε) ≤ P̃β,a2N,κ (ΦN,κ > 2η) + e2ηN Π̂β,a2

N,κ (Fε) .

Thanks to Lemma 3.4, it thus suffices to establish that for all κ ≥ κ1,

lim sup
N→∞

1

N
log Π̂β,a2

N,κ (Fε) < 0 , (4.3)

which as we have seen before, follows from Lemma 3.6 since µ? /∈ Fε (hence I(Fε) > 0).
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