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Abstract. We consider Glauber dynamics for the Ising model on the

complete graph on n vertices, known as the Curie-Weiss model. It is

well-known that the mixing-time in the high temperature regime (β < 1)

has order n logn, whereas the mixing-time in the case β > 1 is exponen-

tial in n. Recently, Levin, Luczak and Peres proved that for any fixed

β < 1 there is cutoff at time 1
2(1−β)

n logn with a window of order n,

whereas the mixing-time at the critical temperature β = 1 is Θ(n3/2).

It is natural to ask how the mixing-time transitions from Θ(n logn) to

Θ(n3/2) and finally to exp (Θ(n)). That is, how does the mixing-time

behave when β = β(n) is allowed to tend to 1 as n→∞.

In this work, we obtain a complete characterization of the mixing-

time of the dynamics as a function of the temperature, as it approaches

its critical point βc = 1. In particular, we find a scaling window of

order 1/
√
n around the critical temperature. In the high temperature

regime, β = 1 − δ for some 0 < δ < 1 so that δ2n → ∞ with n, the

mixing-time has order (n/δ) log(δ2n), and exhibits cutoff with constant
1
2

and window size n/δ. In the critical window, β = 1 ± δ where δ2n

is O(1), there is no cutoff, and the mixing-time has order n3/2. At low

temperature, β = 1 + δ for δ > 0 with δ2n → ∞ and δ = o(1), there is

no cutoff, and the mixing time has order n
δ

exp
(
( 3
4

+ o(1))δ2n
)
.

1. Introduction

The Ising Model on a finite graph G = (V,E) with parameter β ≥ 0
and no external magnetic field is defined as follows. Its set of possible
configurations is Ω = {1,−1}V , where each configuration σ ∈ Ω assigns
positive or negatives spins to the vertices of the graph. The probability that
the system is at a given configuration σ is given by the Gibbs distribution

µG(σ) =
1

Z(β)
exp

(
β
∑

xy∈E
σ(x)σ(y)

)
,

where Z(β) (the partition function) serves as a normalizing constant. The
parameter β represents the inverse temperature: the higher β is (the lower
the temperature is), the more µG favors configurations where neighboring
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Figure 1. Illustration of the mixing time evolution as a
function of the inverse-temperature β, with a scaling window
of order 1/

√
n around the critical point. We write δ = |β−1|

and let ζ be the unique positive root of g(x) := tanh(βx)−x
1−x tanh(βx) .

Cutoff only occurs at high temperature.

spins are aligned. At the extreme case β = 0 (infinite temperature), the
spins are totally independent and µG is uniform over Ω.

The Curie-Weiss model corresponds to the case where the underlying
geometry is the complete graph on n vertices. The study of this model (see,
e.g., [7],[8],[9],[11]) is motivated by the fact that its behavior approximates
that of the Ising model on high-dimensional tori. It is convenient in this
case to re-scale the parameter β, so that the stationary measure µn satisfies

µn(σ) ∝ exp
(β
n

∑

x<y

σ(x)σ(y)
)
. (1.1)

The heat-bath Glauber dynamics for the distribution µn is the following
Markov Chain, denoted by (Xt). Its state space is Ω, and at each step, a
vertex x ∈ V is chosen uniformly at random, and its spin is updated as
follows. The new spin of x is randomly chosen according to µn conditioned
on the spins of all the other vertices. It can easily be shown that (Xt) is an
aperiodic irreducible chain, which is reversible with respect to the stationary
distribution µn.

We require several definitions in order to describe the mixing-time of the
chain (Xt). For any two distributions φ, ψ on Ω, the total-variation distance
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of φ and ψ is defined to be

‖φ− ψ‖TV := sup
A⊂Ω
|φ(A)− ψ(A)| = 1

2

∑

σ∈Ω

|φ(σ)− ψ(σ)| .

The (worst-case) total-variation distance of (Xt) to stationarity at time t is

dn(t) := max
σ∈Ω
‖Pσ(Xt ∈ ·)− µn‖TV ,

where Pσ denotes the probability given that X0 = σ. The total-variation
mixing-time of (Xt), denoted by tmix(ε) for 0 < ε < 1, is defined to be

tmix(ε) := min {t : dn(t) ≤ ε} .
A related notion is the spectral-gap of the chain, gap := 1−λ, where λ is the
largest absolute-value of all nontrivial eigenvalues of the transition kernel.

Consider an infinite family of chains (X(n)
t ), each with its corresponding

worst-distance from stationarity dn(t), its mixing-times t(n)
mix, etc. We say

that (X(n)
t ) exhibits cutoff iff for some sequence wn = o

(
t
(n)
mix(1

4)
)

we have
the following: for any 0 < ε < 1 there exists some cε > 0, such that

t
(n)
mix(ε)− t(n)

mix(1− ε) ≤ cεwn for all n . (1.2)

That is, there is a sharp transition in the convergence of the given chains to
equilibrium at time (1 + o(1))t(n)

mix(1
4). In this case, the sequence wn is called

a cutoff window, and the sequence t(n)
mix(1

4) is called a cutoff point.
It is well known that for any fixed β > 1, the Glauber dynamics (Xt)

mixes in exponential time (cf., e.g., [10]), whereas for any fixed β < 1
(high temperature) the mixing time has order n log n (see [2] and also [3]).
Recently, Levin, Luczak and Peres [11] established that the mixing-time at
the critical point β = 1 has order n3/2, and that for fixed 0 < β < 1 there is
cutoff at time 1

2(1−β)n log n with window n. It is therefore natural to ask how
the phase transition between these states occurs around the critical βc = 1:
abrupt mixing at time ( 1

2(1−β) + o(1))n log n changes to a mixing-time of

Θ(n3/2) steps, and finally to exponentially slow mixing.
In this work, we determine this phase transition, and characterize the

mixing-time of the dynamics as a function of the parameter β, as it ap-
proaches its critical value βc = 1 both from below and from above. The
scaling window around the critical temperature βc has order 1/

√
n, as for-

mulated by the following theorems, and illustrated in Figure 1.

Theorem 1 (Subcritical regime). Let δ = δ(n) > 0 be such that δ2n → ∞
with n. The Glauber dynamics for the mean-field Ising model with parameter
β = 1 − δ exhibits cutoff at time 1

2(n/δ) log(δ2n) with window size n/δ. In
addition, the spectral gap of the dynamics in this regime is (1 + o(1))δ/n,
where the o(1)-term tends to 0 as n→∞.
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Theorem 2 (Critical window). Let δ = δ(n) satisfy δ = O(1/
√
n). The

mixing time of the Glauber dynamics for the mean-field Ising model with
parameter β = 1±δ has order n3/2, and does not exhibit cutoff. In addition,
the spectral gap of the dynamics in this regime has order n−3/2.

Theorem 3 (Supercritical regime). Let δ = δ(n) > 0 be such that δ2n→∞
with n. The mixing-time of the Glauber dynamics for the mean-field Ising
model with parameter β = 1 + δ does not exhibit cutoff, and has order

texp(n) :=
n

δ
exp

(
n

2

∫ ζ

0
log
(

1 + g(x)
1− g(x)

)
dx

)
,

where g(x) := (tanh(βx)− x) / (1− x tanh(βx)), and ζ is the unique positive
root of g. In particular, in the special case δ → 0, the order of the mixing
time is n

δ exp
(
(3

4 + o(1))δ2n
)
, where the o(1)-term tends to 0 as n→∞. In

addition, the spectral gap of the dynamics in this regime has order 1/texp(n).

As we further explain in Section 2, the key element in the proofs of the
above theorems is understanding the behavior of the sum of all spins (known
as the magnetization chain) at different temperatures. This function of the
dynamics turns out to be an ergodic Markov chain as well, and namely a
birth-and-death chain (a one-dimensional chain, where only moves between
neighboring positions are permitted). In fact, the reason for the exponential
mixing at low-temperature is essentially that this magnetization chain has
two centers of mass, ±ζn (where ζ is as defined in Theorem 3), with an
exponential commute time between them. Figure 2 demonstrates how the
single center of mass around 0 that this chain (rescaled) has at high near-
critical temperature proceeds to split into two symmetric centers of mass
that drift further and further apart as the temperature decreases.

In light of this, a natural question that rises is whether the above men-
tioned bottleneck between the two centers of mass at ±ζn is the only reason
for the exponential mixing-time at low temperatures. Indeed, as shown in
[11] for the strictly supercritical regime, β > 1 fixed, if one restricts the
Glauber dynamics to non-negative magnetization (known as the censored
dynamics), the mixing-time becomes Θ(n log n) just like in the subcritical
regime. Formally, the censored dynamics is defined as follows: at each step,
a new state σ is generated according to the original rule of the Glauber
dynamics, and if a negative magnetization is reached (S(σ) < 0) then σ is
replaced by −σ. Interestingly, this simple modification suffices to boost the
mixing-time back to order n log n, just as in the high temperature case, and
thus raises the question of whether the symmetry between the high temper-
ature regime and the low temperature censored regime applies also to the
existence of cutoff.
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Figure 2. The stationary distribution of the normalized
magnetization chain (average of all spins) for the dynamics
on n = 500 vertices. The center of mass at high tempera-
tures (see β = 0.95) is at 0. Low temperatures feature two
centers of mass at ±ζ (where ζ is the unique positive solution
of tanh(βx) = x), leading to the exponential mixing time.

In a companion paper [6], we strengthen the result of [11] by showing that
the scaling window of 1/

√
n exists also for the censored low temperature

case, beyond which cutoff indeed occurs (yet at a different location than in
the symmetric high temperature point).

Theorem 4. Let δ > 0 be such that δ2n → ∞ arbitrarily slowly with n.
Then the censored Glauber dynamics for the mean field Ising model with
parameter β = 1 + δ has a cutoff at

tn =
(

1
2

+
1

2(ζ2β/δ − 1)

)
n

δ
log(δ2n)

with a window of order n/δ. In the special case of the dynamics started from
the all-plus configuration, the cutoff constant is [2(ζ2β/δ − 1)]−1 (the order
of the cutoff point and the window size remain the same).

Theorem 5. Let δ > 0 be such that δ2n → ∞ arbitrarily slowly with n.
Then the censored Glauber dynamics for the mean field Ising model with
parameter β = 1 + δ has a spectral gap of order δ/n.

Recalling Theorem 1, the above confirms that there is a symmetric scaling
window of order 1/

√
n around the critical temperature, beyond which there

is cutoff both at high and at low temperatures, with the same order of
mixing-time (yet with a different constant), cutoff window and spectral gap.
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The rest of this paper is organized as follows. Section 2 contains a brief
outline of the proofs of the main theorems. Several preliminary facts on the
Curie-Weiss model and on one-dimensional chains appear in Section 3. Sec-
tions 4, 5 and 6 address the high temperature regime (Theorem 1), critical
temperature regime (Theorem 2) and low temperature regime (Theorem 3)
respectively.

2. Outline of proof

In what follows, we present a sketch of the main ideas and arguments
used in the proofs of the main theorems. We note that the analysis of the
critical window relies on arguments similar to those used for the subcritical
and supercritical regimes. Namely, to obtain the order of the mixing-time
in Theorem 2 (critical window), we study the magnetization chain using the
arguments that appear in the proof of Theorem 1 (high temperature regime).
It is then straightforward to show that the mixing-time of the entire Glauber
dynamics has the very same order. In turn, the spectral-gap in the critical
window is obtained using arguments similar to those used in the proof of
Theorem 3 (low temperature regime). In light of this, the following sketch
will focus on the two non-critical temperature regimes.

2.1. High temperature regime.

Upper bound for mixing. As mentioned above, a key element in the proof is
the analysis of the normalized magnetization chain, (St), which is the aver-
age spin in the system. That is, for a given configuration σ, we define S(σ)
to be 1

n

∑
i σ(i), and it is easy to verify that this function of the dynamics is

an irreducible and aperiodic Markov chain. Clearly, a necessary condition
for the mixing of the dynamics is the mixing of its magnetization, but inter-
estingly, in our case the converse essentially holds as well. For instance, as
we later explain, in the special case where the starting state is the all-plus
configuration, by symmetry these two chains have precisely the same total
variation distance from equilibrium at any given time.

In order to determine the behavior of the chain (St), we first keep track
of its expected value along the Glauber dynamics. To simplify the sketch
of the argument, suppose that our starting configuration is somewhere near
the all-plus configuration. In this case, one can show that ESt is monotone
decreasing in t, and drops to order

√
1/δn precisely at the cutoff point.

Moreover, if we allow the dynamics to perform another Θ(n/δ) steps (our
cutoff window), then the magnetization will hit 0 (or 1

n , depending on the
parity of n) with probability arbitrarily close to 1. At that point, we essen-
tially achieve the mixing of the magnetization chain.
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It remains to extend the mixing of the magnetization chain to the mix-
ing of the entire Glauber dynamics. Roughly, keeping in mind the above
comment on the symmetric case of the all-plus starting configuration, one
can apply a similar argument to an arbitrary starting configuration σ, by
separately treating the set of spins which were initially positive and those
which were initially negative. Indeed, it was shown in [11] that the following
holds for β < 1 fixed (strictly subcritical regime). After a “burn-in” period
of order n steps, the magnetization typically becomes not too biased. Next,
if one runs two instances of the dynamics, from two such starting config-
urations (where the magnetization is not too biased), then by the time it
takes their magnetization chains to coalesce, the entire configurations be-
come relatively similar. This was established by a so-called Two Coordinate
Chain analysis, where the two coordinates correspond to the current sum
of spins along the set of sites which were initially either positive or negative
respectively.

By extending the above Two Coordinate Chain Theorem to the case of
β = 1− δ where δ = δ(n) satisfies δ2n→∞, and combining it with second
moment arguments and some additional ideas, we were able to show that
the above behavior holds throughout this mildly subcritical regime. The
burn-in time required for the typical magnetization to become “balanced”
now has order n/δ, and so does the time it takes the full dynamics of two
chains to coalesce once their magnetization chains have coalesced. Thus,
these two periods are conveniently absorbed in our cutoff window, making
the cutoff of the magnetization chain the dominant factor in the mixing of
the entire Glauber dynamics.

Lower bound for mixing. While the above mentioned Two Coordinate Chain
analysis was required in order to show that the entire Glauber dynamics
mixes fairly quickly once its magnetization chain reaches equilibrium, the
converse is immediate. Thus, we will deduce the lower bound on the mixing
time of the dynamics solely from its magnetization chain.

The upper bound in this regime relied on an analysis of the first and
second moments of the magnetization chain, however this approach is too
coarse to provide a precise lower bound for the cutoff. We therefore resort
to establishing an upper bound on the third moment of the magnetization
chain, using which we are able to fine-tune our analysis of how its first mo-
ment changes along time. Examining the state of the system order n/δ
steps before the alleged cutoff point, using concentration inequalities, we
show that the magnetization chain is typically substantially far from 0. Re-
calling Figure 2, this implies a lower bound on the total variation distance
of the magnetization chain to stationarity, as required.
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Spectral gap analysis. In the previous arguments, we stated that the magne-
tization chain essentially dominates the mixing-time of the entire dynamics.
An even stronger statement holds for the spectral gap: the Glauber dynam-
ics and its magnetization chain have precisely the same spectral gap, and
it is in both cases attained by the second largest eigenvalue. We therefore
turn to establish the spectral gap of (St).

The lower bound follows directly from the contraction properties of the
chain in this regime. To obtain a matching upper bound, we use the Dirichlet
representation for the spectral gap, combined with an appropriate bound on
the fourth moment of the magnetization chain.

2.2. Low temperature regime.

Exponential mixing. As mentioned above, the exponential mixing in this
regime follows directly from the behavior of the magnetization chain, which
has a bottleneck between ±ζ. To show this, we analyze the effective resis-
tance between these two centers of mass, and obtain the precise order of the
commute time between them. Additional arguments show that the mixing
time of the entire Glauber dynamics in this regime has the same order.

Spectral gap analysis. In the above mentioned proof of the exponential mix-
ing, we establish that the commute time of the magnetization chain between
0 and ζ has the same order as the hitting time from 1 to 0. We can therefore
apply a recent result of [5] for general birth-and-death chains, which implies
that in this case the inverse of the spectral-gap (known as the relaxation-
time) and the mixing-time must have the same order.

3. Preliminaries

3.1. The magnetization chain. The normalized magnetization of a con-
figuration σ ∈ Ω, denoted by S(σ), is defined as

S(σ) :=
1
n

n∑

i=1

σ(i) .

Suppose that the current state of the Glauber dynamics is σ, and that site i
has been selected to have its spin updated. By definition, the probability of
updating this site to a positive spin is given by p+ (S(σ)− σ(i)/n), where

p+(s) :=
eβs

eβs + e−βs
=

1 + tanh(βs)
2

. (3.1)

Similarly, the probability of updating the spin of site i to a negative one is
given by p− (S(σ)− σ(i)/n), where

p−(s) :=
e−βs

eβs + e−βs
=

1− tanh(βs)
2

. (3.2)
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It follows that the (normalized) magnetization of the Glauber dynamics at
each step is a Markov chain, (St), with the following transition kernel:

PM (s, s′) =





1+s
2 p−(s− n−1) if s′ = s− 2

n ,
1−s

2 p+(s+ n−1) if s′ = s+ 2
n ,

1− 1+s
2 p−(s− n−1)− 1−s

2 p+(s+ n−1) if s′ = s .

(3.3)

An immediate important property that the above reveals is the symmetry of
St: the distribution of (St+1 | St = s) is precisely that of (−St+1 | St = −s).

As evident from the above transition rules, the behavior of the Hyperbolic
tangent will be useful in many arguments. This is illustrated in the following
simple calculation, showing that the minimum over the holding probabili-
ties of the magnetization chain is nearly 1

2 . Indeed, since the derivative of
tanh(x) is bounded away from 0 and 1 for all x ∈ [0, β] and any β = O(1),
the Mean Value Theorem gives

PM (s, s+ 2
n) = 1−s

4 (1 + tanh(βs)) +O(n−1) ,
PM (s, s− 2

n) = 1+s
4 (1− tanh(βs)) +O(n−1) ,

PM (s, s) = 1
2 (1 + s tanh(βs))−O(n−1) .

(3.4)

Therefore, the holding probability in state s is at least 1
2 − O

(
1
n

)
. In fact,

since tanh(x) is monotone increasing, PM (s, s) ≤ 1
2 + 1

2s tanh(βs) for all s,
hence these probability are also bounded from above by 1

2(1 + tanh(β)) < 1.
Using the above fact, the next lemma will provide an upper bound for

the coalescence time of two magnetization chains, St and S̃t, in terms of the
hitting time τ0, defined as τ0 := min{t : |St| ≤ n−1}.

Lemma 3.1. Let (St) and (S̃t) denote two magnetization chains, started
from two arbitrary states. Then for any ε > 0 there exists some cε > 0,
such that the following holds: if T > 0 satisfies P1(τ0 ≥ T ) < ε then St and
S̃t can be coupled in a way such that they coalesce within at most cεT steps
with probability at least 1− ε.

Proof. Assume without loss of generality that |S̃0| < |S0|, and by symmetry,
that σ = |S0| ≥ 0. Define

τ := min
{
t : |St| ≤ |S̃t|+ 2

n

}
.

Recalling the definition of τ0, clearly we must have τ < τ0. Next, since
the holding probability of St at any state s is bounded away from 0 and 1
for large n (by the discussion preceding the lemma), there clearly exists a
constant 0 < b < 1 such that

P
(
St+1 = S̃t+1

∣∣ |St − S̃t| ≤ 2
n

)
> b > 0
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(for instance, one may choose b = 1
10 (1− tanh(β)) for a sufficiently large

n). It therefore follows that |Sτ+1| = |S̃τ+1| with probability at least b.
Condition on this event. We claim that in this case, the coalescence of (St)

and (S̃t) (rather than just their absolute values) occurs at some t ≤ τ0 + 1
with probability at least b. The case Sτ+1 = S̃τ+1 is immediate, and it
remains to deal with the case Sτ+1 = −S̃τ+1. Let us couple (St) and (S̃t)
so that the property St = −S̃t is maintained henceforth. Thus, at time
t = τ0 we obtain |St − S̃t| = 2|St| ≤ 2

n , and with probability b this yields
St+1 = S̃t+1.

Clearly, our assumption on T and the fact that 0 ≤ σ ≤ 1 together give

Pσ(τ0 ≥ T ) ≤ P1(τ0 ≥ T ) < ε .

Thus, with probability at least (1 − ε)b2, the coalescence time of (St) and
(S̃t) is at most T . Repeating this experiment a sufficiently large number of
times then completes the proof. �

In order to establish cutoff for the magnetization chain (St), we will need
to carefully track its moments along the Glauber dynamics. By definition
(see (3.3)), the behavior of these moments is governed by the Hyperbolic
tangent function, as demonstrated by the following useful form for the con-
ditional expectation of St+1 given St (see also [11, (2.13)]).

E [St+1 | St = s] =
(
s+ 2

n

)
PM
(
s, s+ 2

n

)
+ sPM (s, s) +

(
s− 2

n

)
PM
(
s, s− 2

n

)

= (1− n−1)s+ ϕ(s)− ψ(s) , (3.5)

where

ϕ(s) = ϕ(s, β, n) :=
1

2n
[
tanh

(
β(s+ n−1)

)
+ tanh

(
β(s− n−1)

)]
,

ψ(s) = ψ(s, β, n) :=
s

2n
[
tanh

(
β(s+ n−1)

)
− tanh

(
β(s− n−1)

)]
.

3.2. From magnetization equilibrium to full mixing. The motivation
for studying the magnetization chain is that its mixing essentially dominates
the full mixing of the Glauber dynamics. This is demonstrated by the next
straightforward lemma (see also [11, Lemma 3.4]), which shows that in the
special case where the starting point is the all-plus configuration, the mixing
of the magnetization is precisely equivalent to that of the entire dynamics.

Lemma 3.2. Let (Xt) be an instance of the Glauber dynamics for the mean
field Ising model starting from the all-plus configuration, namely, σ0 = 1,
and let St = S(Xt) be its magnetization chain. Then

‖P1(Xt ∈ ·)− µn‖TV = ‖P1(St ∈ ·)− πn‖TV , (3.6)

where πn is the stationary distribution of the magnetization chain.
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Proof. For any s ∈ {−1,−1 + 2
n , . . . , 1− 2

n , 1}, let Ωs := {σ ∈ Ω : S(σ) = s}.
Since by symmetry, both µn(· | Ωs) and P1(Xt ∈ · | St = s) are uniformly
distributed over Ωs, the following holds:

‖P1(Xt ∈ ·)− µn‖TV =
1
2

∑

s

∑

σ∈Ωs

|P1(Xt = σ)− µn(σ)|

=
1
2

∑

s

∑

σ∈Ωs

∣∣∣P1(St = s)
|Ωs|

− µn(Ωs)
|Ωs|

∣∣∣

= ‖P1(St ∈ ·)− πn‖TV . �

In the general case where the Glauber dynamics starts from an arbitrary
configuration σ0, though the above equivalence (3.6) no longer holds, the
magnetization still dominates the full mixing of the dynamics in the following
sense. The full coalescence of two instances of the dynamics occurs within
order n log n steps once the magnetization chains have coalesced.

Lemma 3.3 ([11, Lemma 2.9]). Let σ, σ̃ ∈ Ω be such that S(σ) = S(σ̃). For
a coupling (Xt, X̃t), define the coupling time τX,X̃ := min{t ≥ 0 : Xt = X̃t}.
Then for a sufficiently large c0 > 0 there exists a coupling (Xt, X̃t) of the
Glauber dynamics with initial states X0 = σ and X̃0 = σ̃ such that

lim sup
n→∞

Pσ,σ̃

(
τX,X̃ > c0n log n

)
= 0 .

Though Lemma 3.3 holds for any temperature, it will only prove useful in
the critical and low temperature regimes. At high temperature, using more
delicate arguments, we will establish full mixing within order of nδ steps once
the magnetization chains have coalesced. That is, the extra steps required
to achieve full mixing, once the magnetization chain cutoff had occurred, are
absorbed in the cutoff window. Thus, in this regime, the entire dynamics has
cutoff precisely when its magnetization chain does (with the same window).

3.3. Contraction and one-dimensional Markov chains. We say that a
Markov chain, assuming values in R, is contracting, if the expected distance
between two chains after a single step decreases by some factor bounded
away from 0. As we later show, the magnetization chain is contracting
at high temperatures, a fact which will have several useful consequences.
One example of this is the following straightforward lemma of [11], which
provides a bound on the variance of the chain. Here and throughout the
paper, the notation Pz, Ez and Varz will denote the probability, expectation
and variance respectively given that the starting state is z.

Lemma 3.4 ([11, Lemma 2.6]). Let (Zt) be a Markov chain taking values
in R and with transition matrix P . Suppose that there is some 0 < ρ < 1
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such that for all pairs of starting states (z, z̃),

|Ez[Zt]−Ez̃[Zt] | ≤ ρt|z − z̃|. (3.7)

Then vt := supz0 Varz0(Zt) satisfies vt ≤ v1 min
{
t, 1/

(
1− ρ2

)}
.

Remark. By following the original proof of the above lemma, one can readily
extend it to the case ρ ≥ 1 and get the following bound:

vt ≤ v1 · ρ2t min
{
t, 1/

(
ρ2 − 1

)}
. (3.8)

This bound will prove to be effective for reasonably small values of t in the
critical window, where although the magnetization chain is not contracting,
ρ is only slightly larger than 1.

Another useful property of the magnetization chain in the high tempera-
ture regime is its drift towards 0. As we later show, in this regime, for any
s > 0 we have E [St+1|St = s] < s, and with probability bounded below by
a constant we have St+1 < St. We thus refer to the following lemma of [12]:

Lemma 3.5 ([12, Chapter 18]). Let (Wt)t≥0 be a non-negative supermartin-
gale and τ be a stopping time such

(i) W0 = k,
(ii) Wt+1 −Wt ≤ B,
(iii) Var(Wt+1 | Ft) > σ2 > 0 on the event τ > t .

If u > 4B2/(3σ2), then Pk(τ > u) ≤ 4k
σ
√
u

.

This lemma, together with the above mentioned properties of (St), yields
the following immediate corollary:

Corollary 3.6 ([11, Lemma 2.5]). Let β ≤ 1, and suppose that n is even.
There exists a constant c such that, for all s and for all u, t ≥ 0,

P( |Su| > 0, . . . , |Su+t| > 0 | Su = s) ≤ cn|s|√
t
. (3.9)

Finally, our analysis of the spectral gap of the magnetization chain will
require several results concerning birth-and-death chains from [5]. In what
follows and throughout the paper, the relaxation-time of a chain, trel, is
defined to be gap−1, where gap denotes its spectral-gap. We say that a
chain is b-lazy if all its holding probabilities are at least b, or simply lazy for
the useful case of b = 1

2 . Finally, given an ergodic birth-and-death chain on
X = {0, 1, . . . , n} with stationary distribution π, the quantile state Q(α), for
0 < α < 1, is defined to be the smallest i ∈ X such that π({0, . . . , i}) ≥ α.
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Lemma 3.7 ([5, Lemma 2.9]). Let X(t) be a lazy irreducible birth-and-
death chain on {0, 1, . . . , n}, and suppose that for some 0 < ε < 1

16 we have
trel < ε4 ·E0τQ(1−ε). Then for any fixed ε ≤ α < β ≤ 1− ε:

EQ(α)τQ(β) ≤
3
2ε

√
trel ·E0τQ( 1

2
) . (3.10)

Lemma 3.8 ([5, Lemma 2.3]). For any fixed 0 < ε < 1 and lazy irreducible
birth-and-death chain X, the following holds for any t:

‖P t(0, ·)− π‖TV ≤ P0(τQ(1−ε) > t) + ε , (3.11)

and for all k ∈ Ω,

‖P t(k, ·)− π‖TV ≤ Pk(max{τQ(ε), τQ(1−ε)} > t) + 2ε . (3.12)

Remark. As argued in [5] (see Theorem 3.1 and its proof), the above two
lemmas also hold for the case where the birth-and-death chain is not lazy
but rather b-lazy for some constant b > 0. The formulation for this more
general case incurs a cost of a slightly different constant in (3.10), and re-
placing t with t/C (for some constant C) in (3.11) and (3.12). As we already
established (recall (3.4)), the magnetization chain is indeed b-lazy for any
constant b < 1

2 and a sufficiently large n.

3.4. Monotone coupling. A useful tool throughout our arguments is the
monotone coupling of two instances of the Glauber dynamics (Xt) and (X̃t),
which maintains a coordinate-wise inequality between the corresponding
configurations. That is, given two configurations σ ≥ σ̃ (i.e., σ(i) ≥ σ̃(i) for
all i), it is possible to generate the next two states σ′ and σ̃′ by updating the
same site in both, in a manner that ensures that σ′ ≥ σ̃′. More precisely,
we draw a random variable I uniformly over {1, 2, . . . , n} and independently
draw another random variable U uniformly over [0, 1]. To generate σ′ from
σ, we update site I to +1 if U ≤ p+

(
S(σ)− σ(I)

n

)
, otherwise σ′(I) = −1.

We perform an analogous process in order to generate σ̃′ from σ̃, using the
same I and U as before. The monotonicity of the function p+ guarantees
that σ′ ≥ σ̃′, and by repeating this process, we obtain a coupling of the two
instances of the Glauber dynamics that always maintains monotonicity.

Clearly, the above coupling induces a monotone coupling for the two cor-
responding magnetization chains. We say that a birth-and-death chain with
a transition kernel P and a state-space X = {0, 1, . . . , n} is monotone if
P (i, i + 1) + P (i + 1, i) ≤ 1 for every i < n. It is easy to verify that this
condition is equivalent to the existence of a monotone coupling, and that for
such a chain, if f : X → R is a monotone increasing (decreasing) function
then so is Pf (see, e.g., [5, Lemma 4.1]).
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3.5. The spectral gap of the dynamics and its magnetization chain.
To analyze the spectral gap of the Glauber dynamics, we establish the fol-
lowing lemma which reduces this problem to determining the spectral-gap
of the one-dimensional magnetization chain. Its proof relies on increasing
eigenfunctions, following the ideas of [13].

Proposition 3.9. The Glauber dynamics for the mean-field Ising model
and its one-dimensional magnetization chain have the same spectral gap.
Furthermore, both gaps are attained by the largest nontrivial eigenvalue.

Proof. We will first show that the one-dimensional magnetization chain has
an increasing eigenfunction, corresponding to the second eigenvalue.

Recalling that St assumes values in X := {−1,−1 + 2
n , . . . , 1 − 2

n , 1}, let
M denote its transition matrix, and let π denote its stationary distribution.
Let 1 = θ0 ≥ θ1 ≥ . . . ≥ θn be the n+ 1 eigenvalues of M , corresponding to
the eigenfunctions f0 ≡ 1, f1, . . . , fn. Define θ = max{θ1, |θn|}, and notice
that, as St is aperiodic and irreducible, 0 < θ < 1. Furthermore, by the
existence of the monotone coupling for St and the discussion in the previous
subsection, whenever a function f : X → R is increasing so is Mf .

Define f : I → R by f := f1 + fn +K1, where 1 is the identity function
and K > 0 is sufficiently large to ensure that f is monotone increasing
(e.g., K = n

2 ‖f1 + fn‖L∞ easily suffices). Notice that, by symmetry of St,
π(x) = π(−x) for all x ∈ X , and in particular

∑
x∈X xπ(x) = 0, that is to

say, 〈1, f0〉L2(π) = 0. Recalling that for all i 6= j we have 〈fi, fj〉L2(π) = 0, it
follows that for some q1, . . . , qn ∈ R we have f =

∑n
i=1 qifi with q1 6= 0 and

qn 6= 0, and thus

(
θ−1M

)m
f =

n∑

i=1

qi(θi/θ)mfi .

Next, define

g =
{
q1f1 if θ = θ1

0 otherwise
, and h =

{
qnfn if θ = −θn
0 otherwise

,

and notice that

lim
m→∞

(
θ−1M

)2m
f = g + h , and lim

m→∞

(
θ−1M

)2m+1
f = g − h .

As stated above, Mmf is increasing for all m, and thus so are the two limits
g+h and g−h above, as well as their sum. We deduce that g is an increasing
function, and next claim that g 6≡ 0. Indeed, if g ≡ 0 then both h and −h
are increasing functions, hence necessarily h ≡ 0 as well; this would imply
that q1 = qn = 0, thus contradicting our construction of f .
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We deduce that g is an increasing eigenfunction corresponding to θ1 = θ,
and next wish to show that it is strictly increasing. Recall that for all x ∈ X ,

(Mg)(x) = M
(
x, x− 2

n

)
g
(
x− 2

n

)
+M(x, x)g(x) +M

(
x, x+

2
n

)
g
(
x+

2
n

)
.

Therefore, if for some x ∈ X we had g(x− 2
n) = g(x) ≥ 0, the fact that g is

increasing would imply that

θ1g(x) = (Mg)(x) ≥ g(x) ≥ 0 ,

and analogously, if g(x) = g(x+ 2
n) ≤ 0 we could write

θ1g(x) = (Mg)(x) ≤ g(x) ≤ 0 .

In either case, since 0 < θ1 < 1 (recall that θ1 = θ) this would in turn lead
to g(x) = 0. By inductively substituting this fact in the above equation for
(Mg)(x), we would immediately get g ≡ 0, a contradiction.

Let 1 = λ0 ≥ λ1 ≥ . . . ≥ λ|Ω|−1 denote the eigenvalues of the Glauber
dynamics, and let λ := max{λ1, |λ2n−1|}. We translate g into a function
G : Ω→ R in the obvious manner:

G(σ) := g(S(σ)) = g
( 1
n

n∑

i=1

σ(i)
)
.

One can verify that G is indeed an eigenfunction of the Glauber dynamics
corresponding to the eigenvalue θ1, and clearly G is strictly increasing with
respect to the coordinate-wise partial order on Ω. At this point, we refer to
the following lemma of [13]:

Lemma 3.10 ([13, Lemma 4]). Let P be the transition matrix of the Glauber
dynamics, and let λ1 be its second largest eigenvalue. If P has a strictly
increasing eigenfunction f , then f corresponds to λ1.

The above lemma immediately implies that G corresponds to the second
eigenvalue of Glauber dynamics, which we denote by λ1, and thus λ1 = θ1.

It remains to show that λ = λ1. To see this, first recall that all the holding
probabilities of St are bounded away from 0, and the same applies to the
entire Glauber dynamics by definition (the magnetization remains the same
if and only if the configuration remains the same). Therefore, both θn and
λ2n−1 are bounded away from −1, and it remains to show that gap = o(1)
for the Glauber dynamics (and hence also for its magnetization chain).

To see this, suppose P is the transition kernel of the Glauber dynam-
ics, and recall the Dirichlet representation for the second eigenvalue of a
reversible chain (see [12, Lemma 13.7], and also [1, Chapter 3]):

1− λ1 = min
{ E(f)
〈f, f〉µn

: f 6≡ 0 , Eµn(f) = 0
}
, (3.13)
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where Eµn(f) denotes 〈1, f〉µn , and

E(f) = 〈(I − P )f, f〉µn =
1
2

∑

σ,σ′∈Ω

[
f(σ)− f(σ′)

]2
µn(σ)P (σ, σ′) .

By considering the sum of spins, h(σ) =
∑n

i=1 σ(i), we get E(h) ≤ 2, and
since the spins are positively correlated, Varµn

∑
i σ(i) ≥ n. It follows that

1− λ1 ≤ 2/n ,

and thus gap = 1 − λ1 = 1 − θ1 for both the Glauber dynamics and its
magnetization chain, as required. �

4. High temperature regime

In this section we prove Theorem 1. Subsection 4.1 establishes the cutoff
of the magnetization chain, which immediately provides a lower bound on
the mixing time of the entire dynamics. The matching upper bound, which
completes the proof of cutoff for the Glauber dynamics, is given in Subsection
4.2. The spectral gap analysis appears in Subsection 4.3. Unless stated
otherwise, assume throughout this section that β = 1− δ where δ2n→∞.

4.1. Cutoff for the magnetization chain. Clearly, the mixing of the
Glauber dynamics ensures the mixing of its magnetization. Interestingly,
the converse is also essentially true, as the mixing of the magnetization
turns out to be the most significant part in the mixing of the full Glauber
dynamics. We thus wish to prove the following cutoff result:

Theorem 4.1. Let β = 1 − δ, where δ > 0 satisfies δ2n → ∞. Then the
corresponding magnetization chain (St) exhibits cutoff at time 1

2 · nδ log(δ2n)
with a window of order n/δ.

Notice that Lemma 3.2 then gives the following corollary for the special
case where the initial state of the dynamics is the all-plus configuration:

Corollary 4.2. Let δ = δ(n) > 0 be such that δ2n→∞ with n, and let (Xt)
denote the Glauber dynamics for the mean-field Ising model with parameter
β = 1− δ, started from the all-plus configuration. Then (Xt) exhibits cutoff
at time 1

2(n/δ) log(δ2n) with window size n/δ.

4.1.1. Upper bound. Our goal in this subsection is to show the following:

lim
γ→∞

lim sup
n→∞

dn

(
1
2
· n
δ

log(δ2n) + γ
n

δ

)
= 0 , (4.1)

where dn(·) is with respect to the magnetization chain (St) and its stationary
distribution. This will be obtained using an upper bound on the coalescence
time of two instances of the magnetization chain. Given the properties of
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its stationary distribution (see Figure 2), we will mainly be interested in the
time it takes this chain to hit near 0. The following theorem provides an
upper bound for that hitting time.

Theorem 4.3. For 0 < β < 1+O(n−1/2), consider the magnetization chain
started from some arbitrary state s0, and let τ0 = min{t : |St| ≤ n−1}. Write
β = 1− δ, and for γ > 0 define

tn(γ) =





n

2δ
log(δ2n) + (γ + 3)

n

δ
δ2n→∞ ,

(
200 + 6γ

(
1 + 6

√
δ2n
))

n3/2 δ2n = O(1) .
(4.2)

Then there exists some c > 0 such that Ps0(τ0 > tn(γ)) ≤ c/√γ .

Proof. For any t ≥ 1, define:

st := Es0

[
|St|1{τ0>t}

]
.

Suppose s > 0. Recalling (3.5) and bearing in mind the concavity of the
Hyperbolic tangent and the fact that ψ(s) ≥ 0, we obtain that

E(St+1

∣∣St = s) ≤ s+
1
n

(
tanh(βs)− s

)
.

Using symmetry for the case s < 0, we can then deduce that

E
[
|St+1|

∣∣St
]
≤ |St|+

1
n

(
tanh(β|St|)− |St|

)
for any t < τ0 . (4.3)

Hence, combining the concavity of the Hyperbolic tangent together with
Jensen’s inequality yields

st+1 ≤
(

1− 1
n

)
st +

1
n

tanh(βst) . (4.4)

Since the Taylor expansion of tanh(x) is

tanh(x) = x− x3

3
+

2x5

15
− 17x7

315
+O(x9) , (4.5)

we have tanh(x) ≤ x− x3

5 for 0 ≤ x ≤ 1, giving

st+1 ≤
(

1− 1
n

)
st +

1
n

tanh(βst) ≤
(

1− 1
n

)
st +

1
n
βst −

(st)3

5n

= st −
δ

n
st −

(st)3

5n
. (4.6)

For some 1 < a ≤ 2 to be defined later, set

bi = a−i/4 , and ui = min{t : st ≤ bi} .
Notice that st is decreasing in t by (4.6), thus for every t ∈ [ui, ui+1] we have

bi/a = bi+1 ≤ st ≤ bi .
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It follows that

st+1 ≤ st −
δ

n
· bi
a
− b3i

5a3n
,

and

ui+1 − ui ≤
(
a− 1
a

bi

)
/

(
δ

n

bi
a

+
b3i

5a3n

)
≤ 5(a− 1)a2n

5δa2 + b2i
. (4.7)

For the case δ2n→∞, define:

i0 = min{i : bi ≤ 1/
√
δn} .

The following holds:
i0∑

i=1

(ui+1 − ui) ≤
i0∑

i=1

5(a− 1)a2n

5δa2 + b2i
≤
∑

i≤i0
b2i>δ

5(a− 1)a2n

b2i
+
∑

i≤i0
b2i≤δ

5(a− 1)a2n

5δa2

≤ 5na2

δ(a+ 1)
+

a− 1
2 log a

· n
δ

log(δ2n) ,

where in the last inequality we used the fact that the series {b−2
i } is a

geometric series with a ratio a2, and that, as b2i ≥ 1/(δn) for all i ≤ i0, the
number of summands such that b2i ≤ δ is at most loga(

√
δ2n). Therefore,

choosing a = 1 + n−1, we deduce that:
i0∑

i=1

(ui+1 − ui) ≤
(

5
2

+O(n−1)
)
n

δ
+
(

1
2

+O(n−1)
)
n

δ
log(δ2n)

≤ 3
n

δ
+
n

2δ
log(δ2n) , (4.8)

where the last inequality holds for any sufficiently large n. Combining the
above inequality and the definition of i0, we deduce that

( stn(0) = ) Es0

[
|Stn(0)|1{τ0>tn(0)}

]
≤ 1/

√
δn . (4.9)

Thus, by Corollary 3.6 (after taking expectation), for some fixed c > 0

P(τ0 > tn(γ)) ≤ c/√γ .
For the case δ2n = O(1), choose a = 2, that is, bi = 2−(i+2), and define

i1 = min{i : bi ≤ n−1/4 ∨ 5
√
|δ|} . (4.10)

Substituting a = 2 in (4.7), while noting that δ > − 1
25b

2
i for all i < i1, gives

i1∑

i=1

(ui+1 − ui) ≤
i1∑

i=1

20n
20δ + b2i

≤ 100
i1∑

i=1

n

b2i
≤ 200

n

b2i1

≤
(

200n3/2 ∧ 8
n

|δ|

)
≤ 200n3/2 .
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where the last inequality in the first line incorporated the geometric sum
over {b−2

i }. By (4.10),

bi1 ≤ n−1/4 ∨ 5
√
|δ| ≤ n−1/4

(
1 + 5(δ2n)1/4

)
,

and as in the subcritical case, we now combine the above results with an
application of Corollary 3.6 (after taking expectation), and deduce that for
some absolute constant c > 0,

P(τ0 > tn(γ)) ≤ c/√γ ,

as required. �

Apart from drifting toward 0, and as we had previously mentioned, the
magnetization chain at high temperatures is in fact contracting; this is a
special case of the following lemma.

Lemma 4.4. Let (St) and (S̃t) be the corresponding magnetization chains
of two instances of the Glauber dynamics for some β = 1− δ (where δ is not
necessarily positive), and put Dt := St − S̃t. The following then holds:

E[Dt+1 −Dt | Dt] ≤ −
δ

n
Dt +

|Dt|
n2

+O(n−4) . (4.11)

Proof. By definition (recall (3.5)), we have

E[Dt+1 −Dt | Dt] = E[St+1 − St + S̃t − S̃t+1 | Dt]

=
S̃t − St
n

+
[
ϕ(St)− ϕ(S̃t)

]
−
[
ψ(St)− ψ(S̃t)

]
.

The Mean Value Theorem implies that

ϕ(St)− ϕ(S̃t) ≤
β

n
(St − S̃t) ,

and applying Taylor expansions on tanh(x) around βSt and βS̃t, we deduce
that

ψ(St)− ψ(S̃t) =
St

n2 cosh2(βSt)
− S̃t

n2 cosh2(βS̃t)
+O

( 1
n4

)
.

Since the derivative of the function x/ cosh2(βx) is bounded by 1, another
application of the Mean Value Theorem gives

∣∣∣ψ(St)− ψ(S̃t)
∣∣∣ ≤ |St − S̃t|

n2
+O

( 1
n4

)
.

Altogether, we obtain (4.11), as required. �
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Indeed, the above lemma ensures that in the high temperature regime,
β = 1− δ where δ > 0, the magnetization chain is contracting:

E
[
|Dt+1|

∣∣Dt

]
≤
(

1− δ

2n

)
|Dt| for any sufficiently large n . (4.12)

We are now ready to prove that hitting near 0 essentially ensures the mixing
of the magnetization.

Lemma 4.5. Let β = 1 − δ for δ > 0 with δ2n → ∞, (Xt) and (X̃t)
be two instances of the dynamics started from arbitrary states σ0 and σ̃0

respectively, and (St) and (S̃t) be their corresponding magnetization chains.
Let τmag denote the coalescence time τmag := min{t : St = S̃t}, and tn(γ) be
as defined in Theorem 4.3. Then there exists some constant c > 0 such that

P (τmag > tn(3γ)) ≤ c/√γ for all γ > 0 . (4.13)

Proof. Set T = tn(γ). We claim that the following holds for large n:

|ESt| ≤
2√
δn

and |ES̃t| ≤
2√
δn

for all t ≥ T . (4.14)

To see this, first consider the case where n is even. The above inequality
then follows directly from (4.9) and the decreasing property of st (see (4.6)),
combined with the fact that E0St = 0 (and thus ESt = 0 for all t ≥ τ0). In
fact, in case n is even, |ESt| and |ES̃t| are both at most 1/

√
δn for all t ≥ T .

For the case of n odd (where there is no 0 state for the magnetization chain,
and τ0 is the hitting time to ± 1

n), a simple way to show that (4.14) holds is to
bound |E 1

n
St|. By definition, PM ( 1

n ,
1
n) ≥ PM ( 1

n ,− 1
n) (see (3.3)). Combined

with the symmetry of the positive and negative parts of the magnetization
chain, one can then verify by induction that P tM ( 1

n ,
k
n) ≥ P tM ( 1

n ,− k
n) for

any odd k > 0 and any t. Therefore, by symmetry as well as the fact that
Es0St ≤ s0 for positive s0, we conclude that |E 1

n
St| is decreasing with t, and

thus is bounded by 1
n . This implies that (4.14) holds for odd n as well.

Combining (4.14) with the Cauchy-Schwartz inequality we obtain that for
any t ≥ T

E|St − S̃t| ≤ E|St|+ E|S̃t| ≤
√

Var(St) +
4
δn

+

√
Var(S̃t) +

4
δn

.

Now, combining Lemma 3.4 and Lemma 4.4 (and in particular, (4.12)), we
deduce that VarSt ≤ 4

δn , and plugging this into the above inequality gives

E|St − S̃t| ≤
10√
δn

for any t ≥ T .

We next wish to show that within 2γn/δ additional steps, St and S̃t coalesce
with probability at least 1− c/√γ for some constant c > 0.
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Consider time T , and let Dt := St − S̃t. Recall that we have already
established that

EDT ≤ 10/
√
δn , (4.15)

and assume without loss of generality that DT > 0. We now run the mag-
netization chains St and S̃t independently for T ≤ t ≤ τ1, where

τ1 := min
{
t ≥ T : Dt ∈ {0,− 2

n}
}
,

and let Ft be the σ-field generated by these two chains up to time t. By
Lemma 4.4, we deduce that for sufficiently large values of n, if Dt > 0 then

E[Dt+1 −Dt | Ft] ≤ −
δ

2n
Dt ≤ 0 , (4.16)

and Dt is a supermartingale with respect to Ft. Hence, so is

Wt := DT+t ·
n

2
1{τ1>t} ,

and it is easy to verify that Wt satisfies the conditions of Lemma 3.5 (recall
the upper bound on the holding probability of the magnetization chain,
as well as the fact that at most one spin is updated at any given step).
Therefore, for some constant c > 0,

P (τ1 > tn(2γ) | DT ) = P(W0 > 0,W1 > 0, . . . ,Wtn(2γ)−T > 0 | DT )

≤ cnDT√
γn/δ

.

Taking expectation and plugging in (4.15), we get that for some constant c′,

P (τ1 > tn(2γ)) ≤ c′√
γ
. (4.17)

From time τ1 and onward, we couple St and S̃t using a monotone coupling,
thus Dt becomes a non-negative supermartingale with Dτ1 ≤ 2

n . By (4.16),

E [Dt+1 −Dt | Ft] ≤ −
δ

n2
for τ1 ≤ t < τmag ,

and therefore, the Optional Stopping Theorem for non-negative supermartin-
gales implies that, for some constant c′′,

P (τmag − τ1 ≥ n/δ) ≤
E(τmag − τ1)

n/δ
≤ c′′

γ
. (4.18)

Combining (4.17) and (4.18) we deduce that for some constant c,

P (τmag > tn(3γ)) ≤ c√
γ
,

completing the proof. �
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4.1.2. Lower bound. We need to prove that the following statement holds
for the distance of the magnetization at time t from stationarity:

lim
γ→∞

lim inf
n→∞

dn

(
1
2
· n
δ

log(δ2n)− γn
δ

)
= 1 . (4.19)

The idea is to show that, at time 1
2 · nδ log(δ2n)− γ nδ , the expected magne-

tization remains large. Standard concentration inequalities will then imply
that the magnetization will typically be significantly far from 0, unlike its
stationary distribution.

To this end, we shall first analyze the third moment of the magnetization
chain. Recalling the transition rule (3.3) of St under the notations (3.1),(3.2)

p+(s) =
1 + tanh(βs)

2
, p−(s) =

1− tanh(βs)
2

,

the following holds:

E
[
S3
t+1 | St = s

]

=
1 + s

2
p−(s− n−1)

(
s− 2

n

)3

+
1− s

2
p+(s+ n−1)

(
s+

2
n

)3

+
(

1− 1 + s

2
p−(s− n−1)− 1− s

2
p+(s+ n−1)

)
s3

= s3 +
6s2

n
· 1

4

(
− 2s+ tanh

(
β(s− n−1)

)
+ tanh

(
β(s+ n−1)

)

+ s
(
tanh

(
β(s− n−1)

)
− tanh

(
β(s+ n−1

)) )
+ c1

s

n2
+
c2

n3
. (4.20)

As tanh(x) ≤ x for x ≥ 0, for every s > 0 we get

E
[
S3
t+1 | St = s

]
≤ s3 +

3s2

2n
(
−2s+ β(s− n−1) + β(s+ n−1)

)
+ c1

s

n2
+
c2

n3

= s3 − 3
δ

n
s3 +

c1

n2
s+

c2

n3
. (4.21)

If s = 0, the above also holds, since in that case |St+1|3 ≤ (2/n)3. Finally,
by symmetry, if s < 0 then the distribution of |S3

t+1| = −S3
t+1 given St = s

is the same as that of S3
t+1 given St = |s|, and altogether we get:

E
[
|St+1|3 | St = s

]
≤ |s|3 − 3

δ

n
|s|3 +

c1

n2
|s|+ c2

n3
.

We deduce that

E|St+1|3 ≤ E
(
|St|3 − 3

δ

n
|St|3 +

c1

n2
|St|+

c2

n3

)

≤
(

1− 3δ
n

)
E|St|3 +

c1

n2
E|St|+

c2

n3
. (4.22)
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Note that the following statement holds for the first moment of St:

Es0 [|St|] ≤
√

(Es0St)2 + Vars0(St)

≤
√

(st)2 +
16
δn
≤
(

1− δ

n

)t
|s0|+

4√
δn

.

Hence,

Es0 |St+1|3 ≤
(

1− 3δ
n

)
Es0 |St|3 +

c1

n2

(
1− δ

n

)t
|s0|+

2
n2
√
δn

+
c2

n3

= η3Es0 |St|3 + ηt
c1

n2
|s0|+

4
n2
√
δn

+
c′2δ

2

n2
,

where η = 1−δ/n, and the extra error term involving c′2 absorbs the change
of coefficient of Es0 |St|3 and also the 1/n3 term. Iterating, we obtain

Es0 |St+1|3 ≤ η3t|s0|3 + ηt
c1

n2
|s0|

t∑

j=0

η2j +
(

c′1
n2
√
δn

+
c′2δ

2

n2

) t∑

j=0

η3j

≤ η3t|s0|3 + ηt
c1

n2
· |s0|

1− η2
+
(

c′1
n2
√
δn

+
c′2δ

2

n2

)
· 1

1− η3

≤ η3t|s0|3 + ηt
c1

δn
|s0|+

c′1
(δn)3/2

+
c′2δ

n
. (4.23)

Define Zt := |St|η−t, whence Z0 = |S0| = |s0|. Recalling (3.5), and com-
bining the Taylor expansion of tanh(x) given in (4.5) with the fact that
|ψ(s)| = O

(
s/n2

)
, we get that for s > 0

E
[
|St+1|

∣∣St = s
]
≥ ηs− s3

2n
− s

n2
.

By symmetry, an analogous statement holds for s < 0, and altogether we
obtain that

E
[
|St+1|

∣∣St
]
≥ η|St| −

|St|3
2n
− |St|

n2
. (4.24)

Remark. Note that (4.24) in fact holds for any temperature, having followed
from the basic definition of the transition rule of (St), rather than from any
special properties that this chain may have in the high temperature regime.

Rearranging the terms and multiplying by η−(t+1), we obtain that for any
sufficiently large n,

E
[(

1− 2
n2

)
Zt − Zt+1 | St

]
≤ 1
n
η−t|St|3 ,
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where we used the fact that η−1 ≤ 2. Taking expectation and plugging in
(4.23), we deduce that

Es0

[(
1− 2

n2

)
Zt − Zt+1

]
≤ 1
n

(
η2t|s0|3 +

c1

δn
|s0|+ η−t

(
c′1

(δn)3/2
+
c′2δ

n

))
.

(4.25)

Set
t =

n

2δ
log(δ2n)− γn/δ ,

and notice that when n is sufficiently large,
(
1− 2

n2

)−(t+1) ≤ 2 for any t ≤ t.
Therefore, multiplying (4.25) by (1− 2

n2 )−(t+1) and summing over gives:

|s0| − 2Es0Zt ≤
2|s0|3

n(1− η2)
+ t

c1

δn2
|s0|+

2η−t

n(1− η)

(
c′1

(δn)3/2
+
c′2δ

n

)

≤ 2|s0|3
δ

+
c1 log(δ2n)

2δ2n
|s0|+

c′1
δ3/2n

+
c2

δn3/2
+
c′2δ√
n

=
2|s0|3
δ

+ o(
√
δ + |s0|) ,

where the last inequality follows from the assumption δ2n → ∞. We now
select s0 =

√
δ/3, which gives

√
δ/3− 2Es0Zt ≤ 2

√
δ/27 + o(

√
δ) ,

and for a sufficiently large n we get

Es0Zt ≥
√
δ/9 .

Recalling the definition of Zt, and using the well known fact that (1− x) ≥
exp(−x/(1− x)) for 0 < x < 1, we get that for a sufficiently large n,

Es0 |St| ≥ ηt
√
δ/9 ≥ eγ/2

10
√
δn

=: L . (4.26)

Lemma 3.4 implies that max{Vars0(St),Varµn(S̃t)} ≤ 16/δn. Therefore,
recalling that EµnS̃t = 0, Chebyshev’s inequality gives

Ps0(|St| ≤ L/2) ≤ Ps0(||St| −Es0 |St|| ≥ L/2) ≤ 16/(δn)
L2/4

= ce−γ ,

Pµn(|S̃t| ≥ L/2) ≤ 16/(δn)
L2/4

= ce−γ .

Hence, letting π denote the stationary distribution of St, and AL denote the
set
[
−L

2 ,
L
2

]
, we obtain that

‖Ps0(St ∈ ·)− π‖TV ≥ π(AL)−Ps0(|St| ∈ AL) ≥ 1− 2ce−γ ,

which immediately gives (4.19). �
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4.2. Full Mixing of the Glauber dynamics. In order to boost the mix-
ing of the magnetization into the full mixing of the configurations, we will
need the following result, which was implicitly proved in [11, Sections 3.3,
3.4] using a Two Coordinate Chain analysis. Although the authors of [11]
were considering the case of 0 < β < 1 fixed, one can follow the same argu-
ments and extend this result to any β < 1. Following is this generalization
of their result:

Theorem 4.6 ([11]). Let (Xt) be an instance of the Glauber dynamics and
µn the stationary distribution of the dynamics. Suppose X0 is supported by

Ω0 := {σ ∈ Ω : |S(σ)| ≤ 1/2} .
For any σ0 ∈ Ω0 and σ̃ ∈ Ω, we consider the dynamics (Xt) starting from
σ0 and an additional Glauber dynamics (X̃t) starting from σ̃, and define:

τmag := min{t : S(Xt) = S(X̃t)} ,
U(σ) := |{i : σ(i) = σ0(i) = 1}| , V (σ) := |{i : σ(i) = σ0(i) = −1}| ,
Ξ := {σ : min{U(σ), U(σ0)− U(σ), V (σ), V (σ0)− V (σ))} ≥ n/20} ,

R(t) :=
∣∣∣U(Xt)− U(X̃t)

∣∣∣ ,

H1(t) := {τmag ≤ t} , H2(t1, t2) := ∩t2i=t1{Xi ∈ Ξ ∧ X̃i ∈ Ξ} .
Then for any possible coupling of Xt and X̃t, the following holds:

max
σ0∈Ω0

‖Pσ0(Xr2 ∈ ·)− µn‖TV ≤ max
σ0∈Ω0

σ̃∈Ω

[
Pσ0,σ̃(H1(r1))

+ Pσ0,σ̃(Rr1 > α
√
n/δ) + Pσ0,σ̃(H2(r1, r2)) +

αc1√
r2 − r1

·
√
n

δ

]
,

(4.27)

where r1 < r2 and α > 0.

The rest of this subsection will be devoted to establishing a series of
properties satisfied by the magnetization throughout the mildly subcritical
case, in order to ultimately apply the above theorem.

First, we shall show that any instance of the Glauber dynamics concen-
trates on Ω0 once it performs an initial burn-in period of n/δ steps. It
suffices to show this for the dynamics started from s0 = 1: to see this, con-
sider a monotone-coupling of the dynamics (Xt) starting from an arbitrary
configuration, together with two additional instances of the dynamics, (X+

t )
starting from s0 = 1 (from above) and (X−t ) starting from s0 = −1 (from
below). By definition of the monotone-coupling, the chains (X+

t ) and (X−t )
“trap” the chain (Xt), and by symmetry it indeed remains to show that

P1(|St0 | ≤ 1/2) = 1− o(1) , where t0 = n/δ .
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Recalling (4.4), we have st+1 ≤ (1− δ
n)st where st = E

[
|St|1{τ0>t}

]
, thus

E1

[
|St0 |1{τ0>t0}

]
≤ e−1 .

Adding this to the fact that E1St01{τ0 ≤ t0} = 0, which follows immediately
from symmetry, we conclude that E1St0 ≤ e−1. Next, applying Lemma 3.4
to our case and noting that (3.7) holds for ρ′ = 1− 1

n

(
1−n tanh(βn)

)
≤ 1− δ

n ,
we conclude that

Var(St) ≤ ν1
n

δ
≤
(

4
n

)2 n

δ
=

16
δn

for all t .

Hence, Chebyshev’s inequality gives that |St0 | ≤ 1/2 with high probability.
We may therefore assume henceforth that our initial configuration already
belongs to some good state σ0 ∈ Ω0.

Next, set:

T := tn(γ) , r0 := tn(2γ) , r1 := tn(3γ) , r2 := tn(4γ) .

We will next bound the terms in the righthand side of (4.27) in order. First,
recall that Lemma 4.5 already provided us with a bound on the probability
of H1(r1), by stating there for constant c > 0

P(τmag > r1) ≤ c√
γ
. (4.28)

Our next task is to provide an upper bound on Rr1 , and namely, to show
that it typically has order at most

√
n/δ. In order to obtain such a bound,

we will analyze the sum of the spins over the set B := {i : σ0(i) = 1}. Define

Mt(B) :=
1
2

∑

i∈B
Xt(i) ,

and consider the monotone-coupling of (Xt) with the chains (X+
t ) and (X−t )

starting from the all-plus and all-minus positions respectively, such that
X−t ≤ Xt ≤ X+

t . By defining M+
t and M−t accordingly, we get that

E(Mt(B))2 ≤ E(M+
t (B))2 + E(M−t (B))2 = 2E(M+

t (B))2 .

By (4.14), we immediately get that for t ≥ T , |EM+
t (B)| ≤

√
n
δ . We will

next bound the variance of M+
t (B), by considering the following two cases:

(i) If every pair of spins of X+
t is positively correlated (since X+

0 is the all-
plus configuration, by symmetry, the covariances of each pair of spins
is the same), then we can infer that

Var(M+
t (B)) ≤ Var

(1
2

∑

i∈[n]

X+
t (i)

)
=
n2

4
Var

(
S(X+

t )
)
≤ 4n

δ
.
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(ii) Otherwise, every pair of spins of X+
t is negatively correlated, and it

follows that

Var(M+
t (B)) ≤

∑

i∈B
Var

(1
2
X+
t (i)

)
≤ n

4
.

Altogether, we conclude that for all t ≥ T ,

E|Mt(B)| ≤
√

E (Mt(B))2 ≤
√

2 Var(M+
t (B) + 2 (EMt(B))2

≤
√

8n
δ

+
2n
δ
≤ 8
√
n

δ
. (4.29)

This immediately implies that

ERr1 = E|Mr1(B)− M̃r1(B)| ≤ E|Mr1(B)|+ E|M̃r1(B)| ≤ 16
√
n

δ
,

and an application of Markov’s inequality now gives

P(Rr1 ≥ α
√
n

δ
) ≤ 16

α
. (4.30)

It remains to bound the probability of H2(r1, r2). Define:

Y :=
∑

r1≤t≤r2

1{|Mt(B)| > n/64} ,

and notice that

P
( r2⋃

t=r1

{|Mt(B)| ≥ n/32}
)
≤ P(Y > n/64) ≤ c0E[Y ]

n
.

Recall that the second inequality of (4.29) actually gives E|Mt(B)|2 ≤ 5n
δ .

Hence, a standard second moment argument gives

P(|Mt(B)| > n/64) = O

(
1
δn

)
.

Altogether, Eσ0Y = O(1/δ2) and

Pσ0

( r2⋃

t=r1

{|Mt(B)| ≥ n/32}
)

= O

(
1
δ2n

)
.

Applying an analogous argument to the chain (X̃t), we obtain that

Pσ̃

( r2⋃

t=r1

{
|M̃t(B)| ≥ n/32

})
= O

(
1
δ2n

)
,

and combining the last two inequalities, we conclude that

Pσ0,σ̃

(
H2(r1, r2)

)
= O

(
1
δ2n

)
. (4.31)
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Finally, we have established all the properties needed in order to apply
Theorem 4.6. At the cost of a negligible number of burn-in steps, the state
of (Xt) with high probability belongs to Ω0. We may thus plug in (4.28),
(4.30) and (4.31) into Theorem 4.6, choosing α =

√
γ, to obtain (4.1).

4.3. Spectral gap Analysis. By Proposition 3.9, it suffices to determine
the spectral gap of the magnetization chain. The lower bound will follow
from the next lemma of [4] (see also [12, Theorem 13.1]) along with the
contraction properties of the magnetization chain.

Lemma 4.7 ([4]). Suppose Ω is a metric space with distance ρ. Let P be
a transition matrix for a Markov chain, not necessarily reversible. Suppose
there exists a constant θ < 1 and for each x, y ∈ Ω, there is a coupling
(X1, Y1) of P (x, ·) and P (y, ·) satisfying

Ex,y(ρ(X1, Y1)) ≤ θρ(x, y) .

If λ is an eigenvalue of P different from 1, then |λ| ≤ θ. In particular, the
spectral gap satisfies gap ≥ 1− θ.

Recalling (4.12), the monotone coupling of St and S̃t implies that

Es,s̃

∣∣S1 − S̃1

∣∣ ≤
(

1− δ

n
+ o
( δ
n

))
|s− s̃| .

Therefore, Lemma 4.7 ensures that gap ≥ (1 + o(1)) δn .
It remains to show a matching upper bound on gap, the spectral gap of

the magnetization chain. Let M be the transition kernel of this chain, and π
be its stationary distribution. Similar to our final argument in Proposition
3.9 (recall (3.13)), we apply the Dirichlet representation for the spectral gap
(as given in [12, Lemma 13.7]) with respect to the function f being the
identity map 1 on the space of normalized magnetization, we obtain that

gap ≤ E(1)
〈1,1〉π

=
〈(I −M)1,1〉π
〈1,1〉π

= 1− Eπ [E [StSt+1 | St]]
EπS2

t

, (4.32)

where EπS
k
t is the k-th moment of the stationary magnetization chain (St).

Recall (4.24) (where η = 1 − δ
n), and notice that the following slightly

stronger inequality in fact holds:

E
[
sign(St)St+1

∣∣St
]
≥ η|St| −

|St|3
2n
− |St|

n2
.

(to see this, one needs to apply the same argument that led to (4.24), then
verify the special cases St ∈ {0, 1

n}). It thus follows that

E
[
StSt+1

∣∣St
]
≥ ηS2

t −
S4
t

2n
− S2

t

n2
,
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and plugging the above into (4.32) we get

gap ≤ δ

n
+

1
2n
· EπS

4
t

EπS2
t

+
1
n2

. (4.33)

In order to bound the second term in (4.33), we need to give an upper
bound for the fourth moment in terms of the second moment. The next
argument is similar to the one used earlier to bound the third moment of
the magnetization chain (see (4.20)), and hence will be described in a more
concise manner.

For convenience, we use the abbreviations h+ := tanh
(
β(s+ n−1)

)
and

h− := tanh
(
β(s− n−1)

)
. By definition (see (3.3)) the following then holds:

E[S4
t+1 | St = s] = s4 +

2
n
s3
(
−2s+ h− + h+ + sh− − h+

)

+
6
n2
s2
(
2 + h+ − h− − sh− + h+

)

+
8
n3
s3
(
−2s+ h− + h+ + sh− − h+

)

+
4
n4

(
2 + h+ − h− − sh− + h+

)

≤
(

1− 4δ
n

)
s4 +

12
n2
s2 +

16
n4

.

Now, taking expectation and letting the St be distributed according to π,
we obtain that

EπS
4
t ≤

3
δn

EπS
2
t +

4
δn3

.

Recalling that, as the spins are positively correlated, Varπ(St) ≥ 1
n , we get

EπS
4
t ≤

(
3 +

4
n

)
EπS

2
t

nδ
. (4.34)

Plugging (4.34) into (4.33), we conclude that

gap ≤ δ

n

(
1 +O

( 1
δ2n

))
= (1 + o(1))

δ

n
.

5. The critical window

In this section we prove Theorem 2, which establishes that the critical win-
dow has a mixing-time of order n3/2 without a cutoff, as well as a spectral-
gap of order n−3/2.
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5.1. Upper bound. Let (Xt) denote the Glauber dynamics, started from
an arbitrary configuration σ, and let (X̃t) denote the dynamics started from
the stationary distribution µn. As usual, let (St) and (S̃t) denote the (nor-
malized) magnetization chains of (Xt) and (X̃t) respectively.

Let ε > 0. The case δ2n = O(1) of Theorem 4.3 implies that, for a
sufficiently large γ > 0, Pσ

(
τ0 ≥ γn3/2

)
< ε. Plugging this into Lemma

3.1, we deduce that there exists some cε > 0, such that the chains St and S̃t
coalesce after at most cεn3/2 steps with probability at least 1− ε.

At this point, Lemma 3.3 implies that (Xt) and (X̃t) coalesce after at most
O(n3/2) +O(n log n) = O(n3/2) additional steps with probability arbitrarily
close to 1, as required.

5.2. Lower bound. Throughout this argument, recall that δ is possibly
negative, yet satisfies δ2n = O(1). By (4.22),

E|St+1|3 ≤ E
(
|St|3 − 3

δ

n
|St|3 +

c1

n2
|St|+

c2

n3

)

≤
(

1− 3δ
n

)
E|St|3 +

c1

n2
E|St|+

c2

n3
.

Recalling Lemma 4.4, and plugging the fact that δ = O(n−1/2) in (4.11), the
following holds. If St and S̃t are the magnetization chains corresponding to
two instances of the Glauber dynamics, then for some constant c > 0 and
any sufficiently large n,

Es,s̃|S1 − S̃1| ≤ (1 + cn−3/2)|s− s̃| . (5.1)

Combining this with the extended form of Lemma 3.4, as given in (3.8), we
deduce that if t ≤ εn3/2 for some small fixed ε > 0, then Vars0 St ≤ 4t/n2.
Therefore,

Es0 [|St|] ≤
√
|Es0St|2 + Vars0 St ≤

(
1− δ

n

)t
|s0|+

2
√
t

n
.

Therefore,

Es0 |St+1|3 ≤
(

1− 3δ
n

)
Es0 |St|3 +

c1

n2

(
1− δ

n

)t
|s0|+

c′1
√
t

n3

≤ η3Es0 |St|3 + ηt
c1

n2
|s0|+

c′1
√
t

n3
,
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where again η = 1− δ/n. Iterating, we obtain

Es0 |St+1|3 ≤ η3t|s0|3 + ηt
c1

n2
|s0|

t∑

j=0

η2j +
c′1
√
t

n3

t∑

j=0

η3j

≤ η3t|s0|3 + ηt
c1

n2
· η

2t−1 − 1
η2 − 1

|s0|+
c′1
√
t

n3
· η

3t − 1
η3 − 1

≤ η3t|s0|3 + ηt
c1

n2
· 2t|s0|+

c′1
√
t

n3
· 3t , (5.2)

where the last inequality holds for sufficiently large n and t ≤ εn3/2 with
ε > 0 small enough (such a choice ensures that ηt will be suitably small).
Define Zt := |St|η−t, whence Z0 = |S0| = |s0|. Applying (4.24) (recall that
it holds for any temperature) and using the fact that η−1 ≤ 2, we get

E[Zt+1 | St] ≥ Zt −
1
n

(
η−t|St|3 +O(1/n)

)
,

for n large enough, hence

E[Zt − Zt+1 | St] ≤
1
n

(
η−t|St|3 +O(1/n)

)
.

Taking expectation and plugging in (4.23),

Es0 [Zt − Zt+1] ≤ 1
n

(
η2t|s0|3 +

c2t

n2
|s0|+ η−t

c′2t
3/2

n3
+O(1/n)

)
. (5.3)

Set t = n3/2/A4 for some large constant A such that 1
2 ≤ ηt ≤ 2. Summing

over (5.3) we obtain that

|s0| −Es0Zt ≤
1− η2t

n(1− η2)
|s0|3 + t

2 c2

n3
|s0|+ 2η−t · t5/2/n4 +O(t/n2)

≤ 2
A4

√
n|s0|3 +

c2

A8
|s0|+

2
A10

e
√
δ2n/A4

n−1/4 +O(n−1/2) .

We now select s0 = An−1/4 for some large constant A; this gives

An−1/4 −Es0Zt ≤
(

2
A

+
c2

A7
+

2
A10

e
√
δ2n/A4

)
n−1/4 +O(n−1/2) .

Choosing A large enough to swallow the constant c2 as well as the term δ2n

(using the fact that δ2n is bounded), we obtain that

Es0Zt ≥
1
2
An−1/4 .

Translating Zt back to |St|, we obtain

Es0 |St| ≥ ηt ·
1
2
An−1/4 ≥

√
An−1/4 =: B , (5.4)
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provided that A is sufficiently large (once again, using the fact that ηt is
bounded, this time from below). Since

Vars0(St) ≤ 16t/n2 =
16
A4
n−1/2 , (5.5)

the following concentration result on the stationary chain (S̃t) will complete
the proof:

Pµn(|S̃t| ≥ An−1/4)} ≤ ε(A) , and lim
A→∞

ε(A) = 0 . (5.6)

Indeed, combining the above two statements, Chebyshev’s inequality implies
that

‖Ps0(St ∈ ·)− π‖TV ≥ π([−B/2, B/2])−Ps0(|St| ≤ B/2)

≥ 1− 64
A5
− ε(
√
A) . (5.7)

It remains to prove (5.6). Since we are proving a lower bound for the mixing-
time, it suffices to consider a sub-sequence of the δn-s such that δn

√
n con-

verges to some constant (possibly 0). The following result establishes the
limiting stationary distribution of the magnetization chain in this case.

Theorem 5.1. Suppose that limn→∞ δn
√
n = α ∈ R. The following holds:

Sµn
n−1/4

→ exp
(
− s

4

12
− αs

2

2

)
. (5.8)

Proof. We need the following theorem:

Theorem 5.2 ([8, Theorem 3.9]). Let ρ denote some probability measure,
and let Sn(ρ) = 1

n

∑n
j=1Xj(ρ), where the {Xj(ρ) : j ∈ [n]} have joint

distribution
1
Zn

exp

[
(x1 + . . .+ xn)2

2n

]
n∏

j=1

dρ(xj) ,

and Zn is a normalization constant. Suppose that {ρn : n = 1, 2, . . .} are
measures satisfying

exp(x2/2)dρn → exp(x2/2)dρ . (5.9)

Suppose further that ρ has the following properties:

(1) Pure: the function

Gρ(s) :=
s2

2
− log

∫
esxdρ(x)

has a unique global minimum.
(2) Centered at m: let m denote the location of the above global mini-

mum.
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(3) Strength δ and type k: the parameters k, δ > 0 are such that

Gρ(s) = Gρ(m) + δ
(s−m)2k

(2k)!
+ o((s−m)2k) ,

where the o(·)-term tends to 0 as s→ m.

If, for some real numbers α1, . . . , α2k−1 we have

G(j)
ρn (m) =

αj

n1−j/2k + o(n−1+j/2k) , j = 1, 2, . . . , 2k − 1 , n→∞ ,

then the following holds:

Sn(ρn)→ 1{s 6=m}

and

Sn(ρn)−m
n−1/2k

→





N

(
−α1

δ
,
1
δ
− 1
)
, if k = 1 ,

exp


−δ s

2k

(2k)!
−

2k−1∑

j=1

αj
sj

j!


, if k ≥ 2 .

,

where δ−1 − 1 > 0 for k = 1.

Let ρ denote the two-point uniform measure on {−1, 1}, and let ρn denote
the two-point uniform measure on {−βn, βn}. As |1− βn| = δn = O(1/

√
n),

the convergence requirement (5.9) of the measures ρn is clearly satisfied. We
proceed to verify the properties of ρ:

Gρ(s) =
s2

2
− log

∫
esxdρ(x) =

s2

2
− log cosh(s) =

s4

12
− s6

45
+O(s8) .

This implies that Gρ has a unique global minimum at m = 0, type k = 2
and strength δ = 2. As δn

√
n→ α, we deduce that the Gρn-s satisfy

Gρn(s) =
s2

2
− log cosh(βns) ,

G(1)
ρn (0) = G(3)

ρn (0) = 0 ,

G(2)
ρn (0) = 1− β2

n = δn(2− δn) =
2α√
n

+ o(n−1/2) .

This completes the verification of the conditions of the theorem, and we
obtain that

Sn(ρn)
n−1/4

→ exp
(
− s

4

12
− αs

2

2

)
. (5.10)

Recalling that, if xi = ±1 is the i-th spin,

µn(x1, . . . , xn) =
1

Z(β)
exp

(β
n

∑

1≤i<j≤n
xixj

)
, (5.11)



34 JIAN DING, EYAL LUBETZKY AND YUVAL PERES

clearly Sn(ρn) has the same distribution as Sµn for any n. This completes
the proof of the theorem. �

Remark. One can verify that the above analysis of the mixing time in the
critical window holds also for the censored dynamics (where the magne-
tization is restricted to be non-negative, by flipping all spins whenever it
becomes negative). Indeed, the upper bound immediately holds as the cen-
sored dynamics is a function of the original Glauber dynamics. For the lower
bound, notice that our argument tracked the absolute value of the magneti-
zation chain, and hence can readily be applied to the censored case as-well.
Altogether, the censored dynamics has a mixing time of order n3/2 in the
critical window 1± δ for δ = O(1/

√
n).

5.3. Spectral gap analysis. The spectral gap bound in the critical tem-
perature regime is obtained by combining the above analysis with results of
[5] on birth-and-death chains.

The lower bound on gap is a direct consequence of the fact that the mixing
time has order n3/2, and that the inequality trel ≤ tmix

(
1
4

)
always holds. It

remains to prove the matching bound tmix

(
1
4

)
= O(trel). Suppose that this

is false, that is, trel = o
(
tmix

(
1
4

))
.

Let A be some large constant, and let s0 = An−1/4. Notice that the case
δ2n = O(1) in Theorem 4.3 implies that E1τ0 = O(n3/2). Furthermore, by
Theorem 5.2, there exists a strictly positive function of A, ε(A), such that
limA→∞ ε(A) = 0 and

1
2
ε(A) ≤ π(S ≥ s0) ≤ 2ε(A)

for sufficiently large n. Applying Lemma 3.7 with α = π(S ≥ s0) and
β = 1

2 gives Es0τ0 = o(n3/2). As in Subsection 5.2, set t̄ = n3/2/A4 for some
large constant A. Combining Lemma 3.8 with Markov’s inequality gives the
following total variation bound for this birth-and-death chain:

‖Ps0(St̄ ∈ ·)− π‖TV ≤ 4ε(A) + o(1) . (5.12)

However, the lower bound (5.7) obtained in Subsection 5.2 implies that:

‖Ps0(St̄ ∈ ·)− π‖TV ≥ 1− 4ε(
√
A/2)− 64/A5 . (5.13)

Choosing a sufficiently large constant A, (5.12) and (5.13) together lead to
a contradiction for large n. We conclude that gap = O(n−3/2), completing
the proof.

Note that, as the condition gap · tmix(1
4) → ∞ is necessary for cutoff

in any family of ergodic reversible finite Markov chains (see, e.g., [5]), we
immediately deduce that there is no cutoff in this regime.
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Remark. It is worth noting that the order of the spectral gap at βc = 1
follows from a simpler argument. Indeed, in that case, the upper bound on
gap can alternatively be derived from its Dirichlet representation, similar
to the argument that appeared in the proof of Proposition 3.9 (where we
substitute the identity function, i.e., the sum of spins in the Dirichlet form).
For this argument, one needs a lower bound for the variance of the stationary
magnetization. Such a bound is known for βc = 1 (see [9]), rather than
throughout the critical window.

6. Low temperature regime

In this section we prove Theorem 3, which establishes the order of the
mixing time and the spectral gap in the super critical regime (where the
mixing of the dynamics is exponentially slow and there is no cutoff).

6.1. Exponential mixing. Recall that the normalized magnetization chain
St is a birth-and-death chain on the space X = {−1,−1+ 2

n , . . . , 1− 2
n , 1}, and

for simplicity, assume throughout the proof that n is even (this is convenient
since in this case we can refer to the 0 state. Whenever n is odd, the same
proof holds by letting 1

n take the role of the 0 state).
The following notation will be useful. We define

X [a, b] := {x ∈ X : a ≤ x ≤ b} ,
and similarly define X (a, b), etc. accordingly. For all x ∈ X , let px, qx, hx
denote the transition probabilities of St to the right, to the left and to itself
from the state x, that is:

px := PM
(
x, x+ 2

n

)
=

1− x
2
· 1 + tanh(β(x+ n−1))

2
,

qx := PM
(
x, x− 2

n

)
=

1 + x

2
· 1− tanh(β(x− n−1))

2
,

hx := PM (x, x) = 1− px − qx .
By well known results on birth-and-death chains (see, e.g., [12]), the resis-
tance rx and conductance cx of the edge (x, x+ 2/n), and the conductance
c′x of the self-loop of vertex x for x ∈ X [0, 1] are (the negative parts can be
obtained immediately by symmetry)

rx =
∏

y∈X (0,x]

qy
py

, cx =
∏

y∈X (0,x]

py
qy

, c′x =
hx

px + qx
(cx−2/n + cx) , (6.1)

and the commute-time between x and y, Cx,y for x < y (the minimal time
it takes the chain, starting from x, to hit y then return to x) satisfies

ECx,y = 2cSR(x↔ y) , (6.2)
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where
cS :=

∑

x∈X
(cx + c′x) and R(x↔ y) :=

∑

z∈X [x,y)

rz .

Our first goal is to estimate the expected commute time between 0 and ζ.
This is incorporated in the next lemma.

Lemma 6.1. The expected commute time between 0 and ζ has order

texp :=
n

δ
exp

(
n

2

∫ ζ

0
log

1 + g(x)
1− g(x)

)
dx , (6.3)

where g(x) := (tanh(βx)− x) / (1− x tanh(βx)). In particular, in the spe-
cial case δ → 0 we have EC0,ζ = n

δ exp
(
(3

4 + o(1))δ2n
)
, where the o(1)-term

tends to 0 as n→∞.

Remark. If ζ 6∈ X , instead we simply choose a state in X which is the
nearest possible to ζ. For a sufficiently large n, such a negligible adjustment
would keep our calculations and arguments in tact. For the convenience of
notation, let ζ denote the mentioned state in this case as well.

To prove Lemma 6.1, we need the following two lemmas, which establish
the order of the total conductance and effective resistance respectively.

Lemma 6.2. The total conductance satisfies

cS = Θ
(√

n

δ
exp

(
n

2

∫ ζ

0
log
(

1 + g(x)
1− g(x)

)
dx

))
.

Lemma 6.3. The effective resistance between 0 and ζ satisfies

R(0↔ ζ) = Θ(
√
n/δ) .

Proof of Lemma 6.2. Notice that for any x ∈ X , the holding probability
hx is uniformly bounded from below, and thus c′x can be uniformly bounded
from above by (cx + cx−2/n). It therefore follows that cS = Θ(c̃S) where
c̃S :=

∑
x∈X cx, and it remains to determine c̃S . We first locate the maximal

edge conductance and determine its order, by means of classical analysis.

log cx =
∑

y∈X (0,x]

log
py
qy

=
∑

y∈X (0,x]

log
(

1− y
1 + y

· 1 + tanh(β(y + n−1))
1− tanh(β(y − n−1))

)

=
∑

y∈X (0,x]

log
(

1 + g(y)
1− g(y)

+O(1/n)
)

=
∑

y∈X (0,x]

log
(

1 + g(y)
1− g(y)

)
+O(x)

(6.4)

Note that g(x) has a unique positive root at x = ζ, and satisfies g(x) > 0
for x ∈ (0, ζ) and g(x) < 0 for x > ζ. Therefore,

log cx ≤ log cζ +O(x) ≤ log cζ +O(1) ,
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thus we move to estimate cζ . As log cζ is simply a Riemann sum (after an
appropriate rescaling), we deduce that

log cζ =
∑

x∈X (0,ζ]

log
(

1 + g(x)
1− g(x)

)
+O(1) =

n

2

∫ ζ

0
log
(

1 + g(x)
1− g(x)

)
dx+O(1) ,

and therefore

cζ = Θ
(

exp
(
n

2

∫ ζ

0
log
(

1 + g(x)
1− g(x)

)
dx

))
, (6.5)

cx = O(cζ) . (6.6)

Next, consider the ratio cx+2/n/cx; whenever x ≤ ζ, g(x) ≥ 0, hence we have

cx+2/n

cx
=
px+2/n

qx+2/n
≥ 1 + g(x)

1− g(x)
−O(1/n) ≥ 1 + 2g(x)−O(1/n) .

Whenever 1√
δn
≤ x ≤ ζ − 1√

δn
(using the Taylor expansions around 0 and

around ζ) we obtain that tanh(βx)− x ≥ 1
2

√
δ/n. Combining this with the

fact that x tanh(βx) is always non-negative, we obtain that for any such x,
2g(x) ≥

√
δ/n. Therefore, setting

ξ1 :=

√
1
δn

, ξ2 := ζ −
√

1
δn

, ξ3 := ζ +

√
1
δn

, (6.7)

we get

cx+2/n

cx
≥ 1 +

√
δ

n
−O(1/n) for any x ∈ X [ξ1, ξ2] . (6.8)

Using the fact that δ2n→∞, the sum of cx-s in the above range is at most
the sum of a geometric series with a quotient 1/(1 + 1

2

√
δ/n) and an initial

position cζ :
∑

x∈X [ξ1,ξ2]

cx ≤ 3
√
n

δ
· cζ . (6.9)

We now treat x ≥ ξ3; since g(ζ) = 0 and g(x) is decreasing for any x ≥ ζ,
then in particular whenever ζ+

√
δ/n ≤ x ≤ 1 we have −1 = g(1) ≤ g(x) ≤

0, and therefore
cx+2/n

cx
=
px+2/n

qx+2/n
≤ 1 + g(x) +O(1/n) .

Furthermore, for any ζ +
√
δ/n ≤ x ≤ 1 (using Taylor expansion around ζ)

we have tanh(βx) − x ≤ −
√
δ/n, and hence g(x) ≤ −

√
δ/n. We deduce

that
cx+2/n

cx
≤ 1−

√
δ

n
+O(1/n) for any x ∈ X [ξ3, 1] ,
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and therefore
∑

x∈X [ξ3,1]

cx ≤ 2
√
n

δ
· cζ . (6.10)

Combining (6.9) and (6.10) together, and recalling (6.6), we obtain that

c̃S =
∑

x∈X
cx ≤ 2

(
|X [0, ξ1]|+ 5

√
n/δ + |X [ξ2, ξ3]|

)
cζ = O

(√
n

δ
cζ

)
.

Finally, consider x ∈ X [ξ2, ξ3]; an argument similar to the ones above (i.e.,
perform Taylor expansion around ζ and bound the ratio of cx+2/n/cx) shows
that cx is of order cζ in this region. This implies that for some constant b > 0

c̃S ≥
∑

x∈X [ξ2,ξ2]

cx ≥ b|X [ξ2, ξ3]|cζ ≥ b
√
n

δ
cζ , (6.11)

and altogether, plugging in (6.5), we get

c̃S = Θ
(√

n

δ
exp

(
n

2

∫ ζ

0
log
(

1 + g(x)
1− g(x)

)
dx

))
. (6.12)

�

Proof of Lemma 6.3. Translating the conductances, as given in (6.8), to
resistances, we get

rx+2/n

rx
≤ 1−

√
δ

n
−O(1/n) for any x ∈ X [ξ1, ξ2] ,

and hence ∑

x∈X [ξ1,ξ2]

rx ≤ rξ12
√
n/δ ≤ 2

√
n/δ ,

where in the last inequality we used the fact that rx ≤ rx−2/n (≤ r0 = 1) for
all x ∈ X [0, ζ], which holds since qx ≤ px for such x. Altogether, we have
the following upper bound:

R(0↔ ζ) =
∑

x∈X [0,ξ1]

rx +
∑

x∈X [ξ1,ξ2]

rx +
∑

x∈X [ξ2,ζ]

rx

≤ |X [0, ξ1]|+ 2
√
n

δ
+ |X [ξ2, ζ]| ≤ 4

√
n/δ . (6.13)

For a lower bound, consider x ∈ X [0, ξ1]. Clearly, for any x ≤ 1√
δn

we have

g(x) = tanh(βx−x)
1−x tanh(βx) ≤ 2δx, and hence

rx+2/n

rx
=

1− g(x)
1 + g(x)

+O(1/n) ≥ 1− 5xδ ≥ exp(−6xδ) ,

yielding that
rξ1 ≥ exp

(
−3δn · ξ2

1

)
≥ e−3 .
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Altogether,
R(0↔ ζ) ≥ e−3|X [0, ξ1]| ≥ e−4

√
n/δ ,

and combining this with (6.13) we deduce that R(0↔ ζ) = Θ(
√
n/δ). �

Proof of Lemma 6.1. Plugging in the estimates for c̃S and R(0 ↔ ζ) in
(6.2), we get

EC0,ζ = Θ
(
n

δ
exp

(
n

2

∫ ζ

0
log
(

1 + g(x)
1− g(x)

)
dx

))
. (6.14)

This completes the proof of the lemma 6.1. �

Note that by symmetry, the expected hitting time from ζ to −ζ is exactly
the expected commute time between 0 and ζ. Hence,

Eζ [τ−ζ ] = Θ(texp) . (6.15)

In order to show that the above hitting time is the leading order term in
the mixing-time at low temperatures, we need the following lemma, which
addresses the order of the hitting time from 1 to ζ.

Lemma 6.4. The normalized magnetization chain St in the low temperature
regimes satisfies E1τζ = o(texp) .

Proof. First consider the case where δ is bounded below by some constant.
Notice that, as px ≤ qx for all x ≥ ζ, in this region St is a supermartingale.
Therefore, Lemma 3.5 (or simply standard results on the simple random
walk, which dominates our chain in this case) implies that E1τζ = O(n2).
Combining this with the fact that texp ≥ exp(cn) for some constant c in this
case, we immediately obtain that E1τζ = o(texp).

Next, assume that δ = o(1). Note that in this case, the Taylor expansion
tanh(βx) = βx− 1

3(βx)3 +O((βx)5) implies that

ζ =
√

3δ/β3 −O((βζ))5 =
√

3δ +O(δ3/2) . (6.16)

Recalling that E[St+1 | St = s] ≤ s + 1
n(tanh(βs) − s) (as s ≥ 0), Jensen’s

inequality (using the concavity of the Hyperbolic tangent) gives

E[St+1 − St] = E(E[St+1 − St | St]) ≤
1
n

(E tanh(βSt)−ESt)

≤ 1
n

(tanh(βESt)−ESt) . (6.17)

Further note that the function tanh(βs) has the following Taylor expansion
around ζ (for some ξ between s and ζ):

tanh(βs) = ζ + β(1− ζ2)(s− ζ) + β2(−1 + ζ2)ζ(s− ζ)2

+
β3

3
(−1 + 4ζ2 − ζ4)(s− ζ)3 +

tanh(4)(ξ)
4!

(s− ζ)4 . (6.18)
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Since tanh(4)(x) < 5 for any x ≥ 0, (6.18) implies that for a sufficiently
large n the term −1

3(s − ζ)3 absorbs the last term in the expansion (6.18).
Together with (6.16), we obtain that

tanh(βs) ≤ ζ + β(1− ζ2)(s− ζ) + β2(−1 + ζ2)
√
δ(s− ζ)2 .

Therefore, (6.17) follows:

E[St+1 − St] ≤ −
√
δ

2n
(ESt − ζ)2 . (6.19)

Set

bi = 2−i , i2 = min{i : bi <
√
δ} and ui = min{t : ESt − ζ < bi} ,

noting that this gives bi/2 ≤ ESt − ζ ≤ bi for any t ∈ [ui, ui+1]. It follows
that

ui+1 − ui ≤
bi/2√
δ

2n ( bi2 )2
=

4n√
δbi

,

and hence

i2∑

i=1

ui+1 − ui ≤
∑

i:b2i>δ

4n√
δbi

= O(n/δ) ,

where we used the fact that the series {b−1
i } is geometric with ratio 2. We

claim that this implies the required bound on E1τζ . To see this, recall (6.19),
according to whichWt := n(St−ζ)1{τζ>t} is a supermartingale with bounded
increments, whose variance is uniformly bounded from below on the event
τζ > t (as the holding probabilities of (St) are uniformly bounded from
above, see (3.4)). Moreover, the above argument gives EWt ≤ n

√
δ for some

t = O(n/δ). Thus, applying Lemma 3.5 and taking expectation, we deduce
that E1τζ = O(n/δ+δn2) = O(δn2), which in turns gives E1τζ = o(texp). �

Remark. With additional effort, we can establish that E0τ±ζ = o(texp) (for
more details, see the companion paper [6]), where τ±ζ = min{t : |St| ≥ ζ}.
By combining this with the of St symmetry and applying the geometric trial
method, we can obtain the expected commute time between 0 and ζ:

Eζτ0 = (1
2 + o(1))EC0,ζ = Θ(texp) ,

and therefore conclude that E1τ0 = Θ(texp).
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6.1.1. Upper bound for mixing. Combining Lemma 6.4 and (6.15), we con-
clude that E1τ−ζ = Θ(texp) and hence E1τ0 = O(texp). Together with
Lemma 3.1, this implies that the magnetization chain will coalescence in
O(texp) steps with probability arbitrarily close to 1. At this point, Lemma
3.3 immediately gives that the Glauber dynamics achieves full mixing within
O(n log n) additional steps. The following simple lemma thus completes the
proof of the upper bound for the mixing time.

Lemma 6.5. Let texp be as defined in Lemma 6.1. Then n log n = o(texp).

Proof. In case δ ≥ c > 0 for some constant c, we have texp ≥ n exp(c′n) for
some constant c′ > 0 and hence n log n = o(texp). It remains to treat the
case δ = o(1).

Suppose first that δ = o(1) and δ ≥ cn−1/3 for some constant c > 0. In this
case, we have texp = n

δ exp
(
(3

4 + o(1))δ2n
)

and thus n exp(1
2n

1/3) = O(texp),
giving n log n = o(texp). Finally, if δ = o(n−1/3), we can simply conclude
that n4/3 = O(texp) and hence n log n = o(texp). �

6.1.2. Lower bound for mixing. The lower bound will follow from showing
that the probability of hitting −ζ within εtexp steps is small, for some small
ε > 0 to be chosen later. To this end, we need the following simple lemma:

Lemma 6.6. Let X denote a Markov chain over some finite state space Ω,
y ∈ Ω denote a target state, and T be an integer. Further let x ∈ Ω denote
the state with the smallest probability of hitting y after at most T steps, i.e.,
x minimizes Px(τy ≤ T ). The following holds:

Px(τy ≤ T ) ≤ T

Exτy
.

Proof. Set p = Px(τy ≤ T ). By definition, Pz(τy ≤ T ) ≥ p for all z ∈ Ω,
hence the hitting time from x to y is stochastically dominated by a geometric
random variable with success probability p, multiplied by T . That is, we
have Exτy ≤ T/p, completing the proof. �

The final fact we would require is that the stationary probability of
X [−1,−ζ] is strictly positive. This is stated by the following lemma.

Lemma 6.7. There exists some absolute constant 0 < Cπ < 1 such that

Cπ ≤ π(X [ζ, 1]) ( = π(X [−1,−ζ]) ) .

Proof. Repeating the derivation of (6.11), we can easily get

cX [ζ,1] :=
∑

x∈X [ζ,1]

(cx + c′x) ≥ Θ
(√

n

δ
exp

(
n

2

∫ ζ

0
log

1 + g(x)
1− g(x)

)
dx

)
.
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Combining the above bound with (6.12), we conclude that there exists some
Cπ > 0, such that π(X [ζ, 1]) ≥ Cπ. �

Plugging in the target state −ζ into Lemma 6.6, and recalling that the
monotone-coupling implies that, for any T , the initial state s0 = 1 has the
smallest probability (among all initial states) of hitting −ζ within T steps,
we deduce that, for a sufficiently small ε > 0,

P1(τ−ζ ≤ εtexp) ≤ 1
2
Cπ .

This implies that

texp = O
(
tmix

(1
2
Cπ

))
,

which in turn gives
texp = O

(
tmix

(
1
4

))
.

6.2. Spectral gap analysis. The lower bound is straightforward (as the
relaxation time is always at most the mixing time) and we turn to prove
the upper bound. Note that, by Lemma 6.7, we have π(X [ζ, 1]) ≥ Cπ > 0.
Suppose first that gap · tmix(1

4) → ∞. In this case, one can apply Lemma
3.7 onto the birth-and-death chain (St), with a choice of α = π(X [ζ, 1]) and
β = 1− π(X [ζ, 1]) (recall that tmix(1

4) = Θ(E1τ−ζ)). It follows that

Eζτ−ζ = o (E1τ−ζ) .

However, as both quantities above should have the same order as tmix(1
4), this

leads to a contradiction. We therefore have gap · tmix(1
4) = O(1), completing

the proof of the upper bound.
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