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Abstract

In [1], the authors consider the generalization G∨
K of the Erdős-Rényi random graph process

G1, where instead of adding new edges uniformly, G∨
K gives a weight of size 1 to missing edges

between pairs of isolated vertices, and a weight of size K ∈ [0,∞) otherwise. This can correspond

to the linking of settlements or the spreading of an epidemic. The authors investigate t∨g (K),

the critical time for the appearance of a giant component as a function of K, and prove that

t∨g = (1 + o(1)) 4√
3K

, using a proper timescale.

In this work, we show that a natural variation of the model G∨
K has interesting properties.

Define the process G∧
K , where a weight of size K is assigned to edges between pairs of non-

isolated vertices, and a weight of size 1 otherwise. We prove that the asymptotical behavior

of the giant component threshold is essentially the same for G∧
K , and namely t∧g /t∨g tends to

64
√

6
π(24+π2) ≈ 1.47 as K → ∞. However, the corresponding thresholds for connectivity satisfy

t∧c /t∨c = max{ 1
2 , K} for every K > 0. Following the methods of [1], t∧g is characterized as the

singularity point to a system of differential equations, and computer simulations of both models

agree with the analytical results as well as with the asymptotic analysis. In the process, we

answer the following question: when does a giant component emerge in a graph process where

edges are chosen uniformly out of all edges incident to isolated vertices, while such exist, and

otherwise uniformly? This corresponds to the value of t∧g (0), which we show to be 3
2 + 4

3e2−1 .

1 Introduction

1.1 The Erdős-Rényi graph process and biased processes

The random graph process, G1(n), is a sequence of
(n
2

)
+1 graphs on n vertices, G1

0, . . . ,G1
(n
2
), where

G1
0 is the edgeless graph on n vertices, and G1

T is obtained by adding an edge to G1
T−1, chosen

uniformly over all missing edges. This model was introduced by Erdős and Rényi in [9], where it is

∗Weizmann Institute, Rehovot, 76100, Israel. Email: gideon.amir@weizmann.ac.il
†School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,

Tel Aviv, 69978, Israel. Email: lubetzky@tau.ac.il. Research partially supported by a Charles Clore Foundation

Fellowship.

1



shown that for every constant C < 1
2 , the largest component of G1

Cn is typically of size O(log n),

and yet for every constant C > 1
2 there is typically a single component of linear size in G1

Cn and all

other components are of size O(log n). This single component and its evolution are referred to as

the “giant component”, and “the double jump phenomenon” respectively. Using a timescale of n/2

edges, the threshold for the appearance of the giant component is thus tg = 1. Another classical

result of Erdős and Rényi determines that G1
Cn log n is typically connected for C > 1

2 , and typically

disconnected for C < 1
2 . Using a timescale of n

2 log n, the connectivity threshold is thus tc = 1. For

further information on the evolution of the giant component in the random graph process, as well

as on the threshold for connectivity, see, e.g., [3].

There has been extensive study on the thresholds for the appearance of a giant component

and for connectivity in different variations of the random graph process. For instance, in a model

suggested by Achlioptas, two random edges are chosen uniformly out of the missing edges at each

step, out of which some algorithm A selects one to be added to the graph. For results on upper

and lower bounds on the emerging of the giant components for various algorithms in this model,

see [4],[5],[6],[10].

In [7], the authors consider a random graph process on multi-graphs, where at each step an

edge is added between a random vertex of minimal degree and a random uniformly chosen vertex.

The authors analyze the number of vertices of degrees 0, 1, 2 along the process using the differential

equation method for graph processes of Wormald [12], and show that the mentioned graph process

becomes connected typically when the minimal degree becomes 3.

The following generalization of the original graph process G1, which we denote by G∨
K(n), was

studied in [1]: at each step, G∨
K gives a weight of size 1 to missing edges between pairs of isolated

vertices, and a weight of size K ∈ [0,∞) otherwise (when no isolated vertices are left, the distribu-

tion on the missing edges becomes the uniform distribution). This can correspond to the linking

process of n initially isolated settlements, or the spreading of an epidemic, where the probability of

a new link is affected by whether or not one of its endpoints already has other links. The threshold

for the appearance of a giant component in G∨
K , t∨g , becomes a continuous function of the parameter

K, and the authors of [1] use the differential equation method to express t∨g as a singularity point

to a system of coupled non-linear ordinary differential equations (ODEs). By applying methods of

asymptotic analysis of ODEs, it is proved that t∨g (K) = (1 + o(1)) 4√
3K

, where the o(1)-term tends

to 0 as K → ∞.

In this work, we show that a natural variation on the process G∨
K has interesting properties.

Consider the process G∧
K , where instead of placing the weight K when one of the endpoints is

non-isolated (as in G∨
K), it is placed when both endpoints are non-isolated. In other words, G∨

K gives

a weight of size K ∈ [0,∞) to missing edges between pairs of non-isolated vertices, and a weight of

size 1 otherwise. Notice that for K = 1, both processes are equivalent to the original graph process.

Furthermore, for any K, both processes G∨
K and G∧

K apply the rule of the original graph process

G1 once no isolated vertices are left, hence it is interesting to compare the two up to roughly that
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point.

Applying the methods of [1] on G∧
K , we express its threshold for the appearance of a giant

component, t∧g (K), as a singularity point to a system of coupled non-linear ODEs. For the special

case K = 0, we obtain a setting where edges are added uniformly at random out of all edges incident

to an isolated vertex, until no such vertex is left (from that point on, edges are added uniformly at

random). In this special case we get t∧g (0) = 3
2 + 4

3e2−1 .

Using classical methods of asymptotic analysis of ODEs (see, e.g., [2]) we readily calculate the

asymptotic behavior of t∧g (K) for K ≫ 1, and obtain that t∧g (K) = (1 + o(1)) π
2
√

2

(
1 + π2

24

)
1√
K

.

It follows that t∧g /t∨g ≈ 1.47 for K ≫ 1, and we note that obtaining this result via combinatorial

arguments seems challenging. Numerical approximations of the ODEs validate this asymptotic

analysis.

While the behavior of the threshold for the appearance of a giant component is similar for

K ≫ 1, combinatorial arguments yield that for all K > 0, t∨c (K) = 1, whereas t∧c (K) = max{1
2 ,K},

hence t∧c /t∨c = K for every K ≥ 1
2 .

It is possible to implement both processes G∧
K and G∨

K efficiently by choosing an appropriate

data-structure for holding the isolated and non-isolated vertices. Our implementation requires O(n)

memory and runs in time O(n log n), and its results validate the above analytical results.

1.2 Notations and main results

A property of graphs is a collection of graphs closed under isomorphism. A property is said to

be monotone (increasing) if it is closed under the addition of edges. Throughout the paper, we

say that a property of graphs on n vertices occurs with high probability, or almost surely, or that

almost every process G satisfies this property, if the probability for the corresponding event tends

to 1 as n → ∞. Note that, when proving that certain statements hold with high probability, one

may clearly condition on events which hold with high probability.

On several occasions, we examine the processes G∨
K or G∧

K starting from some arbitrary graph

H (instead of the edgeless graph). We denote these processes by G∨
K |H and G∧

K |H .

Given a process G, we let Gi denote G after i edges. It will be convenient to use two timescales

when referring to G, which we denote by:

G(t) := Gtn/2 ,

G[t] := Gtn
2

log n .

We say that t is a threshold for the appearance of a giant component in G if for every ε > 0,

with high probability G(t − ε) does not contain a giant component and yet G(t + ε) does contain

one. Similarly, we say that t is a threshold for connectivity if for every ε > 0, with high probability

G[t−ε] is disconnected whereas G[t+ε] is connected. According to these definitions, both thresholds

equal 1 for the original random graph process G1.
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Theorem 1.1 determines the threshold for connectivity in both processes, t∨c and t∧c , and shows

that t∨c = 1 for any K > 0 whereas t∧c = K for any K > 1
2 , hence their ratio is K for any K > 1

2 .

Furthermore, as we later state, it follows from [1] that a ratio of ⌈max{ 1
K ,K}⌉ is the maximal

possible between the threshold of G∧
K and the threshold of G1 for any monotone property, and

therefore, t∨c achieves this maximum.

Theorem 1.1. For every K > 0, t∨c (K) = 1 and yet t∧c (K) = max{1
2 ,K}. In the special case

K = 0 we have t∨c (0) = t∧c (0) = 1
2 .

For a given graph G = (V,E) on |V | = n vertices, we let C = C(G) denote the set of connected

components of G, and for i ∈ N, we define Ci = Ci(G) to be the set of components of size i:

Ci = {C ∈ C(G) : |C| = i}. Whenever it is clear as to which graph process G we are referring, we

use the abbreviation Ct
i to denote Ci(Gt). The fractions of vertices which belong to components of

size 1 and 2 are defined as:

I(G) =
|C1|
n

, I2(G) =
2|C2|

n
,

and the susceptibility of G, S(G), is defined to be the average size of a connected component,

averaged over all vertices:

S(G) =
1

n

∑

v∈V

|C(v)| =
1

n

∑

C∈C(G)

|C|2,

where C(v) denotes the connected component of v. The relation between S(G) and the existence

of a giant component in G is immediate: if G contains a component of size αn for some α > 0,

then S(G) ≥ α2n, and if S(G) ≥ αn then clearly there exists a component of size αn. Therefore,

G has a giant component iff S(G) = Θ(n).

The methods used in [1] to analyze G∨
K and describe t∨g as a singularity point to a system of ODEs

can in fact be applied to a wider class of graph processes. Namely, these methods can be applied to

every process where the weight function W on the missing edges satisfies max W/ min W ≤ K for

some constant K > 0. Instead of repeating the complete set of arguments of [1] in order to prove

analogous results on G∧
K , we summarize the arguments briefly, and proceed to prove the necessary

conditions required for them to work.

Following the ideas of [1] and previously of [10], define the following system of coupled ODEs:





y′ =
−y

1 + (K − 1)(1 − y)2

y(0) = 1
, (1)





z′ =
z2 + (K − 1)(z − y)2

1 + (K − 1)(1 − y)2

z(0) = 1

. (2)

We further define: 



w′ =
y2 − 2wy − 2Kw(1 − y)

1 + (K − 1)(1 − y)2

w(0) = 0

, (3)
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where y is the solution to (1). Theorem 1.2 states that I(G), S(G) and I2(G) along the process

G∧
K are approximated by the solutions to the ODEs above, and that t∧g is equal to the singularity

point of the solution to (2) for any K > 0:

Theorem 1.2. Let y(t), z(t) and w(t) denote the solutions for (1),(2),(3), and let xc denote the

singularity point of z(t) if such exists, and ∞ otherwise. For 0 < δ < 1, let τδ > 0 be the minimal

point satisfying y(τδ) ≤ δ. The following statements hold almost surely:

1. For every δ > 0, |I (G∧
K(t)) − y(t)| = o(1) and |I2 (G∧

K(t)) − w(t)| = o(1) for all 0 ≤ t ≤ τδ.

2. For every ε, δ > 0, |S (G∧
K(t)) − z(t)| = o(1) for all 0 ≤ t ≤ min{τδ, xc − ε}.

3. For all K > 0, t∧g = xc.

The value of t∧g in the special case K = 0 and the asymptotic behavior of t∧g are stated in the

following theorem:

Theorem 1.3. The threshold for the appearance of a giant component, t∧g (K), is a continuous

function of K on (0,∞), and satisfies:

{
t∧g (0) = 3

2 + 4
3e2−1

t∧g (K) = (1 + o(1)) π
2
√

2

(
1 + π2

24

)
1√
K

,

where the o(1)-term tends to 0 as K → ∞.

The rest of this paper is organized as follows: in Section 2, we prove Theorem 1.1 by exam-

ining second moments of processes which are easier to analyze, and provide results of computer

simulations of t∨c and t∧c . In Section 3, we prove Theorems 1.2 and 1.3 using analysis of differential

equations, and provide results of computer simulations of t∧g .

2 Thresholds for connectivity

The proof of Theorem 1.1 uses the following result of [1]:

Definition. Let M ∈ N. An M-bounded weighted graph process on n vertices, H = H(n),

is an infinite sequence of graphs on n vertices, (H0,H1, . . .), where H0 is some fixed initial graph,

and Ht is generated from Ht−1 by adding one edge at random, according to a distribution of the

following type: the probability of adding the edge e to Ht−1 is proportional to some weight function

Wt(e), satisfying:

max
e/∈Ht−1

Wt(e) ≤ M min
e/∈Ht−1

Wt(e) .

If for some ν ≥ 0 Hν = Kn, we define Ht = Hν = Kn for every t > ν.
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Theorem 2.1 ([1]). Let H denote an M -bounded weighted graph process on n vertices, and let A
denote a monotone increasing property of graphs on n vertices. The following statements hold for

any t ∈ N:

Pr[Ht ∈ A] ≤ Pr[G1
Mt|H0 ∈ A] , (4)

Pr[G1
t|H0 ∈ A] ≤ Pr[HMt ∈ A] . (5)

Notice that for every K > 0, the processes G∨
K and G∧

K are both M -bounded, where M =

⌈max{ 1
K ,K}⌉. As it is well-known that I(t), the fraction of isolated vertices is (1 + o(1)) exp(−C)

at time Cn/2, Theorem 2.1 implies that for any fixed C and K > 0, G∨
K(C) and G∧

K(C) almost

surely contain Θ(n) isolated vertices. On the other hand, it is not difficult to see that G∨
0 (1) has

at most 1 isolated vertex, and we will later show that G∧
0 (3

2 + o(1)) almost surely has no isolated

vertices. For this reason, we treat the cases K > 0 and K = 0 separately. Lemmas 2.2 and 2.3

below establish the precise behavior of these parameters when K > 0:

Lemma 2.2. Let K > 0. For every 0 < ε < 1, G∨
K [1 + ε] is almost surely connected, whereas

G∨
K [1 − ε] is almost surely disconnected. Altogether, t∨c = 1.

Lemma 2.3. Let K > 0. For every 0 < ε < 1, G∧
K [(1 + ε) max{1

2 ,K}] is almost surely connected,

whereas G∧
K [K − ε] and G∧

K [12 − ε] are almost surely disconnected. Altogether, t∧c = max{1
2 ,K}.

As we stated in the introduction, combining the fact that tc = 1 for G1 with Theorem 2.1 yields

that t∧c (K) ≤ ⌈max{ 1
K ,K}⌉, and indeed Lemma 2.3 shows that for K ≥ 1, K ∈ N, this maximum

is achieved.

The remaining case K = 0 is settled by the next lemma:

Lemma 2.4. The threshold for connectivity for K = 0 satisfies t∨c (0) = t∧c (0) = 1
2 .

2.1 Proof of Lemma 2.2

Let 0 < ε < 1; we first show that t∨c ≤ 1 + ε. It is easy and well known that for every ε′ > 0, there

exists some c = c(ε′) such that, with high probability, G1(c) has a giant component of size at least

(1− ε′)n: assume that indeed this holds. Take 0 < ε′ < min{ ε/4

1 + ε
,K} and c = c(ε′) as above, and

notice that:
1 − ε′

1 + ε′
≥ 1 + ε

2

1 + ε
. (6)

By Theorem 2.1, the giant component of G∨
K

c′n/2 typically contains at least (1−ε′)n vertices, where

c′ = ⌈max{K, 1
K }⌉c. Let H i denote the largest component of G∨

K
i, and let Ai

v, v ∈ V , denote the

event: (v /∈ H i). The following holds for every i ≥ c′n/2:

Pr[¬Ai+1
v |Ai

v ] =
K|H i|

K(
(n
2

)
− i) − (K − 1)

(|Ci
1
|

2

) ≥ K(1 − ε′)n

K
(n
2

)
+
(|Ci

1
|

2

) ≥ 1 − ε′

(1 + ε′)n
2

, (7)
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where the last inequality is by the fact that
|Ci

1
|

n ≤ ε′ < K. Setting T0 = c′n/2, this gives the

following upper bound on AT
v for v /∈ HT0 :

Pr[AT
v |¬AT0

v ] =

T∏

j=T0

Pr[Aj
v |Aj−1

v ] ≤
T∏

j=T0

(
1 − 1 − ε′

(1 + ε′)n
2

)
≤

≤ exp

(
−(T − T0)

1 − ε′

(1 + ε′)n
2

)
. (8)

Thus, for T = (1 + ε)n
2 log n we get:

Pr[AT
v ] ≤ exp

(
−1 − ε′

1 + ε′
(
(1 + ε) log n − c′

))
≤ exp

(
−(1 +

ε

2
) log n + O(1)

)
= o(n−1) ,

hence a union bound on the vertices of V \ HT0 implies that, with high probability, G∨
K [1 + ε] is

connected.

The lower bound on t∨c is slightly more delicate. A simple way to show the lower bound in G1

is to apply a second moment argument on the number of isolated vertices of G1(1). However, in

the case of G∨
K , using uniform upper and lower bounds on Ci

1 (such as ε′n and o(n)) does not yield

useful bounds on the above second moment. The following claim resolves this difficulty:

Claim 2.5. Let 0 < δ < 1
2 , and let {H0}n denote a family of arbitrary graphs on n vertices with

(1 + o(1))n1−δ isolated vertices. If H is a biased G∨
K process on n vertices which begins with H0,

that is: H ∼ G∨
K |H0

, then H[1 − 2δ] almost surely contains isolated vertices.

Indeed, to obtain the lower bound on t∨c from the above claim, fix δ = ε/2, and let τ denote the

minimal time at which Cτ
1 ≤ n1−δ. Taking H0 = G∨

K
τ , Claim 2.5 implies that G∨

K |H0
almost surely

has isolated vertices at time τ + (1 − 2δ)n
2 log n, and in particular, we obtain that t∨c ≥ 1 − ε, as

required. It remains to prove Claim 2.5:

Proof of claim. Let H0 and δ be as above, and let H ∼ G∨
K |H0

. Let Bi
u denote the event that the

vertex u is isolated at time i, where i ≤ n log n. Clearly:

Pr[¬Bi+1
u |Bi

u] =
K(n − |Ci

1|) + (|Ci
1| − 1)

K(
(
n
2

)
− i) − (K − 1)

(|Ci
1
|

2

) .

By the assumption on H0, |Ci
1| ≤ |C0

1 | = (1 + o(1))n1−δ , thus:

Pr[¬Bi+1
u |Bi

u] =
2 + O(n−δ)

n
(

1 + O( log n
n ) + O(n−2δ)

) =
2 + O(n−δ)

n
. (9)

Similarly, we can define Bi
u,v = Bi

u ∧ Bi
v for i ≤ n log n and get:

Pr[¬Bi+1
u,v |Bi

u,v] =
2K(n − |Ci

1|) + 2(|Ci
1| − 2) + 1

K(
(n
2

)
− i) − (K − 1)

(|Ci
1
|

2

) =
4 + O(n−δ)

n
. (10)
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Let T = (1 − 2δ)n
2 log n, and define Y =

∑
u 1BT

u
= |CT

1 | to be the number of isolated vertices of

HT . A straightforward second moment consideration implies that Y > 0 almost surely. To see this,

first note that (9) along with the well known bound 1 − x ≥ e−x/(1−x) for 0 ≤ x < 1 yield:

EY = |C0
1 |

T∏

i=1

Pr[Bi
u|Bi−1

u ] = (1 + o(1))n1−δ

(
1 − 2 + O(n−δ)

n

)T

≥

≥ (1 + o(1))n1−δ exp

(
−(2 + o(1)) /n

1 − 2+o(1)
n

(1 − 2δ)
n

2
log n

)
= n1−δn−1+2δ+o(1) = nδ+o(1) . (11)

By (9) and (10), there exist p = p(n) and q = q(n) such that Pr[¬Bi+1
u,v |Bi

u,v] ≥ p = 4+O(n−δ)
n and

Pr[¬Bi+1
u |Bi

u] ≤ q = 2+O(n−δ)
n . The following holds:

Cov(1BT
u
,1BT

v
) = Pr[BT

u,v] − Pr[BT
u ]2 ≤ (1 − p)T − (1 − q)2T =

=
(
1 − p − (1 − q)2

) T−1∑

i=0

(1 − p)i(1 − q)2(T−1−i) =
O(n−δ)

n
T

(
1 − 4 + o(1))

n

)T−1

≤

≤ (1 − 2δ) log n · O(n−δ) exp

(
−(1 + o(1))

4

n
(1 − 2δ)

n

2
log n

)
= n−2+3δ+o(1) .

Therefore,

∑

u∈C0

1

∑

v∈C0

1

Cov(1BT
u
,1BT

v
) ≤ n2(1−δ)n−2+3δ+o(1) = nδ+o(1) = o

(
(EY )2

)
.

As EY = ω(1), applying Chebyshev’s inequality gives:

Pr[Y = 0] ≤ VarY

(EY )2
≤

EY +
∑

u

∑
v Cov(1BT

u
,1BT

v
)

(EY )2
=

1

EY
+ o(1) = o(1) .

This completes the proof of the claim and of Lemma 2.2. �

2.2 Proof of Lemma 2.3

Let 0 < ε < 1. The bounds t∧c ≤ (1 + ε) max{1
2 ,K} and t∧c ≥ K − ε will follow from arguments

similar to the ones in the proof of Lemma 2.2, whereas the bound t∧c ≥ 1
2 − ε requires more work.

To prove that t∧c ≤ (1 + ε) max{1
2 ,K}, take ε′ > 0 which satisfies:





(1 − ε′) ≥ (1 + ε/4)2

1 + ε
1 − (1 − ε′)2 + (1 − ε′)2K <

(
1 +

ε

4

)
K

. (12)

For instance, the following choice is suitable:

ε′ < min

{
εK

4
, 1 −

√
1 − ε

2
min{K, 1}

}
.
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As before, take c = c(ε′) such that, with high probability, G1(c) has a giant component of size

at least (1 − ε′)n. Defining H i to be the largest component of G∧
K

i, Theorem 2.1 implies that

|Hc′n/2| ≥ (1−ε′)n with high probability, where c′ = ⌈max{K, 1
K }⌉c, and therefore we may assume

that this indeed holds. Let Ai
u denote the event that a vertex u ∈ V \ H i, which belongs to some

connected component C, joins the giant component at time i + 1. The following holds:

Pr[Ai
u] =

|H i|wC(
n
2

)
+ (K − 1)

(n−|Ci
1
|

2

)
− Ki

, where wC =

{
1 if |C| = 1

K|C| otherwise
. (13)

By the choice of c′, for all i ≥ c′n/2 we get:

Pr[Ai
u] ≥ wC(1 − ε′)n

(n
2

)
+ (K − 1)

(n−|Ci
1
|

2

) ≥ 2wC(1 − ε′)

n
(

1 − (1 − |Ci
1
|

n )2 + K(1 − |Ci
1
|

n )2
) .

For K ≥ 1, the denominator in the expression above is clearly bounded from above by nK, and for

0 < K < 1 it is bounded from above by n
(
1 − (1 − ε′)2 + (1 − ε′)2K

)
, hence (12) implies:

Pr[Ai
u] ≥ 2wC(1 − ε′)

nK(1 + ε/4)
≥ 2wC(1 + ε/4)

nK(1 + ε)
. (14)

Take T0 = c′n/2 and T = max{1
2 ,K}(1+ε)n

2 log n, and define the following event for every u /∈ HT0 :

BT
u = (u /∈ HT ) .

The definition of wC in (13) implies that wC ≥ min{1, 2K} and when combined with (14) this

gives:

Pr[BT
u ] ≤

T∏

i=T0

(
1 − 2 min{1, 2K}(1 + ε/4)

nK(1 + ε)

)
≤

≤ exp

(
−1 + ε/4

1 + ε
· min{ 1

K , 2}
n/2

(
max{1

2
,K}(1 + ε)

n

2
log n − c′

n

2

))
= n−(1+ε/4)+o(1) .

Therefore, the expected number of vertices of V \HT0 which do not join HT is clearly o(1), implying

that G∧
K [(1 + ε) max{1

2 ,K}] is almost surely connected.

The lower bound t∧c ≥ K − ε follows from the following claim, analogous to Claim 2.5:

Claim 2.6. Let 0 < δ < 1
2 , and let {H0}n denote a family of arbitrary graphs on n vertices with

(1 + o(1))n1−δ isolated vertices. If H ∼ G∧
K |H0

, then H[K − 2δ] almost surely contains isolated

vertices.

Proof. As in the proof of Claim 2.5, let Bi
u denote the event (u is isolated at time i) and let

Bi
u,v = Bi

u ∧ Bi
v, where u, v ∈ V (H0). Clearly:

Pr[¬Bi+1
u |Bi

u] =
n − 1

(
n
2

)
+ (K − 1)

(n−|Ci
1
|

2

)
− Ki

.

9



The assumption on H0 gives |Ci
1| ≤ |C0

1 | = (1 + o(1))n1−δ , and thus for all i = O(n log n):

Pr[¬Bi+1
u |Bi

u] =
2

Kn
(

1 + O( log n
n ) + O(n−δ)

) =
2 + O(n−δ)

Kn
, (15)

and:

Pr[¬Bi+1
u,v |Bi

u,v] =
2n − 3

(n
2

)
+ (K − 1)

(n−|Ci
1
|

2

)
− Ki

=
4 + O(n−δ)

Kn
. (16)

Henceforth, a similar calculation to the one in the proof of Claim 2.5 gives the required result. �

Choosing δ = ε/2 and applying the last claim implies that t∧c ≥ K − ε, and it remains to show

that t∧c ≥ 1
2 − ε. This follows from the fact that G∧

K [12 − ε] contains components of size 2 almost

surely. Unfortunately, we cannot repeat the last argument in order to show that indeed this is the

case, since we have no guarantee that at time τ , the hitting time for the property |C1| ≤ n1−δ, G∧
K

still satisfies |C2| = n1−α for some small α. To prove the next claim, which completes the proof of

Lemma 2.2, we consider a simplified process, where it is possible to give a lower bound on |C2|, and

show that this process stochastically dominates G∧
K with regards to |C2|.

Claim 2.7. For all K ∈ (0, 1] and ε > 0, G∧
K [12 − ε] almost surely contains a connected component

of size 2.

Proof of claim. Define the process G̃∧
K , which is an approximated version of G∧

K , as follows: at each

step, assign a weight K to ordered pairs of the form {(u, v) : u, v /∈ C1}, and a weight 1 otherwise.

If the ordered pair (u, v) chosen at some step i is a (self) loop or corresponds to an edge which

already exists in G̃∧
K , this step is omitted. In other words, G̃∧

K assigns weights to all ordered pairs,

and disregards selections of multiple edges or loops. Clearly, if G̃∧
K

t
contains m ≤ t edges, then

G̃∧
K

t
∼ G∧

K
m. Furthermore, for any t = o(n2) we have:

E

(
t − |E(G̃∧

K

t
)|
)
≤

t∑

i=1

max{ 1

K
,K}t + n

n2
=

(
O

(
t

n2

)
+ O

(
1

n

))
t = o(t) ,

where E(H) denotes the set of edges of the graph H. In particular, for any fixed c, with high

probability G∧
K(c) ∼ G̃∧

K(c + o(1)) and G∧
K [c] ∼ G̃∧

K [c + o(1)], and it is sufficient to prove the claim

for G̃∧
K .

Take 0 < ε < 1
2 . By well known results on the original Erdős-Rényi graph process, for any fixed

t, with high probability: |C2(G1(t))| = Θ(n), with the constant tending to 0 as t → ∞. For a short

proof of this fact, one can verify that the following differential equation approximates the graph

parameter I2 along G1 up to an o(1) error term:

w′(t) = −2w(t) + y2(t) , w(0) = 0 ,

where y(t) is the approximating function of the fraction of isolated vertices, I(t), and the time-

scaling is of n/2 edges at each step. Substituting the well known fact (which also follows from

Theorem 1.2 when substituting K = 1) that y(t) = exp(−t), it follows that w(t) = t exp(−2t).

10



By Theorem 2.1 and the above fact, we deduce that for every sufficiently large c there exist

0 < α1 < α2 < 1
3 such that G̃∧

K(c) almost surely satisfies α1n ≤ |C2| ≤ α2n. Let:

c′ = inf{t > c : y(t) ≤ εK

2
} ,

where y is the solution to the ODE (1)), and set ε′ = y(c′). By Theorem 1.2, with high probability

I
(
G̃∧

K(c′)
)

= y(c′) + o(1), and in particular, G̃∧
K(c′) has (1 + o(1))ε′n isolated vertices almost

surely. Let H0 denote G̃∧
K(c′), and take α1 = α1(c′), α2 = α2(c′) as above. According to these

definitions, S = C1(H0) satisfies s = |S| = (1 + o(1))ε′n almost surely, and W = C2(H0) satisfies

α1n ≤ |W | ≤ α2n almost surely. Assume that indeed this holds.

We consider the graph process H, which begins with H0, and at each step selects an ordered

pair (u, v) ∈ V (H0)2 according to the following probabilities:





1
Kn2 if (u, v) is incident to W and S
1
n2 if (u, v) is incident to W and V \ S

λ otherwise

,

where the value of λ > 0 is chosen such that the probabilities sum up to 1. This is possible, since

the probabilities for the first two types of pairs sum up to at most:

2α2

(
ε′/K + (1 − ε′)

)
≤ 3α2 < 1 ,

as ε′ ≤ K
2 and α2 < 1

3 . We claim that the following two events occur almost surely, and complete

the proof of the claim:

C2(H[12 − ε]) ∩ W 6= ∅ , (17)
∣∣C2(H[12 − ε]) ∩ W

∣∣ ≤
∣∣∣C2(G̃∧

K |H0
[12 − ε]) ∩ W

∣∣∣ . (18)

A standard second moment consideration proves that (17) occurs with high probability. To see

this, set: T =
(

1
2 − ε

)
n
2 log n, and notice that:

2T

Kn2
(K(n − s − 2) + s) =

1

2
(1 − 2ε)

(
(1 − ε′) +

ε′

K
+ o(1)

)
log n =

1

2
(1 − ε′′ + o(1)) log n (19)

for some ε ≤ ε′′ ≤ 2ε (by our choice of ε′). Next, let the random variable Xe (e ∈ W ) be the

indicator of the event:
(
e ∈ C2(H[12 − ε])

)
, and let X =

∑
e∈W Xe. The following holds:

Pr[Xe = 1] =

(
1 − 2K(n − s − 2) + 2s

Kn2

)T

,

Pr[Xe = 1 ∧ Xe′ = 1] =

(
1 − 4K(n − s − 2) − 4K + 4s

Kn2

)T

,

for every e, e′ ∈ W . Thus, a calculation similar to the one in the proof of Claim 2.5 gives:

EX ≥ |W | exp

(
−(2 − o(1))T

K(n − s − 2) + s

Kn2

)
≥ |W |n(−1+ε′′)/2+o(1) = ω(

√
n) ,

11



and:

Cov(Xe,Xe′) ≤
4K

Kn2
exp

(
−4

K(n − s − 4) + K + s

Kn2
T

)
≤ 4n−3+ε′′+o(1) .

Therefore: ∑

e∈W

∑

e′∈W

Cov(Xe,Xe′) ≤ 4|W |2n−3+ε′′+o(1) = o(EX) ,

and in particular, Var(X) = (1 + o(1))EX = o
(
EX)2

)
and by Chebyshev’s inequality we deduce

that X > 0 almost surely.

It remains to prove that (18) occurs almost surely. This is achieved by a coupling argument:

we claim that there exists a coupling of the processes G̃∧
K |H0

and H whose support consists of pairs

(Gt,Ht) such that: Gt ∼ G̃∧
K |tH0

, Ht ∼ Ht, and (C2(Ht) ∩ W ) ⊂ (C2(Gt) ∩ W ). This clearly holds

for t = 0, and by induction, it remains to extend the coupling from (Gt,Ht) to (Gt+1,Ht+1). For

this purpose, we apply the following lemma of [1] (Lemma 2.2), which was first proved by Strassen

[11] in a slightly different setting:

Lemma 2.8 ([1]). Let U, V be two finite sets, and let R ⊂ U × V denote a relation on U, V . Let µ

and ν denote probability measures on U and V respectively, such that the following inequality holds

for every A ⊂ U :

µ(A) ≤ ν({y ∈ V : xRy for some x ∈ A}) . (20)

Then there exists a coupling ϕ of µ, ν whose support is contained in R.

Let U, V be the set of all n2 ordered pairs selected, representing the next pair selected by Gt

and Ht respectively. Let µ denote the probability measure of each selection in U by Gt, and let ν

denote the probability of each selection in V by Ht. Define:

{
X = C2(Gt) ∩ W , Xu,v = C2 (Gt ∪ (u, v)) ∩ W

Y = C2(Ht) ∩ W , Yx,y = C2 (Ht ∪ (x, y)) ∩ W
.

By the induction hypothesis, Y ⊆ X, and we define R to be {((u, v), (x, y)) : Yx,y ⊆ Xu,v}.

Clearly, if (u, v) is a loop or an edge which already belongs to Gt, it has no effect on X, and

as Yx,y ⊆ Y ⊆ X we get (u, v)R(x, y) for all x, y. Furthermore, every (u, v) which is not incident

to any e ∈ Y also satisfies (u, v)R(x, y) for all x, y, as the components (u, v) may remove from X

already do not belong to Y . Therefore, (20) is satisfied for every A ⊂ U which contains such pairs

(u, v).

It remains to prove that (20) holds for sets A ⊂ U such that A ∩ E(Gt) = ∅, and A consists

entirely of edges incident to edges of Y . Let A = {e1, . . . , em}, and notice that ei /∈ E(Ht) for

all i, as ei is incident to some component e ∈ Y of size 2 in Ht, satisfying e 6= ei as Y ⊂ E(Gt).

Furthermore, for all i we have eiRei, since all components that ei removes from X in Xei are also

removed from Y in Yei . Thus, showing that µ(ei) ≤ ν(ei) for all i will imply that A satisfies the

condition of (20). Indeed, if ei = (u, v) is such that u, v /∈ S (u, v are both non-isolated in H0),
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then:

µ(ei) =
K

n2 + (K − 1)(n − C1(Gt))2
≤ K

Kn2
= ν(ei) ,

and otherwise:

µ(ei) ≤
1

n2 + (K − 1)(n − C1(Gt))2
≤ 1

Kn2
= ν(ei) ,

by definition of the process H, completing the proof of the claim and the proof of Lemma 2.2. �

2.3 Proof of Lemma 2.4

To prove that t∨c (0) = 1
2 , we recall the following easy facts stated in [1]: by definition, G∨

0 adds

edges between pairs of isolated vertices until no such pair is left. Hence, after adding ⌊n/2⌋ edges

there is at most 1 isolated vertex in G∨
K , and G∨

K behaves as G1 on ⌊n/2⌋ components of size 2 (and

possibly 1 additional isolated vertex). Thus, t∨g (0) = 1 + 1
2 = 3

2 .

Proving a connectivity threshold of (1
2 + o(1))n

2 log n, we may assume n is even: otherwise, the

single isolated vertex from time ⌊n/2⌋ becomes connected almost surely at time ω(n), and its edge

set accounts to at most n − 1 = o(n log n) edges, not affecting the threshold for connectivity. By

the discussion above, for even values of n, G∨
0 has a linear number of components of size 2 and

no isolated vertices at the time of appearance of the giant component. Thus, we deduce from the

arguments used for the proofs of Lemmas 2.2 and 2.3 that, with high probability, G∨
0 [12 − ε] still

contains components of size 2, whereas G∨
0 [12 + ε] is connected. Altogether, t∨c (0) = 1

2 .

It remains to show that t∧c (0) = 1
2 . Substituting K = 0 in equation (1), it reduces to the form:

y′ =
1

y − 2
, y(0) = 1 ,

provided that y 6= 0. This yields the solution:

y(t) = 2 −
√

1 + 2t . (21)

Notice that y(t) is strictly monotone decreasing, and reaches 0 at t = 3
2 . Therefore, if we denote by

τ0(G∧
0 ) the minimal time t at which I (G∧

0 (t)) = 0, Theorem 1.2 implies that for every 0 < δ < 1,

|τ − 3
2 | < δ almost surely. To see this, let x0 be such that y(x0) = δ, and let x1 = max{x0,

3
2 − δ}.

By Theorem 1.2, with high probability:

I(G∧
0 (

3

2
− δ)) ≥ I

(
G∧

0 (x1)
)

= y(x1) + o(1) ≥ 1

2
y(x1) > 0 ,

where the second from last inequality holds for sufficiently large values of n. On the other hand,

y(x1) < δ, and hence I
(
G∧

0 (3
2 + δ)

)
≤ I (G∧

0 (x1 + δ)) = 0 almost surely, since each edge eliminates

at least one isolated vertex in G∧
0 .

Equation (3) takes the following form after substituting K = 0 and the value of y(t) as it is

given in (21), provided that y 6= 0:

w′(t) =
y − 2w

2 − y
= 2

1 − w√
1 + 2t

− 1 , w(0) = 0 ,
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Figure 1: Comparison of the numerical results for t∧c and t∨c , and estimations of t∧c and t∨c according

to computer simulations of the model.

which has the solution:

w(t) =
5

4
− 3

4
e2(1−

√
1+2t) − 1

2

√
1 + 2t . (22)

For t = 3
2 we have w(t) = 1

4 − 3
4e2

≈ 0.1485, hence from the discussion above we obtain that

H = G∧
K(τ) almost surely satisfies I2(H) = Θ(n) (and I(H) = 0). From that point on, the process

G∧
K is equivalent to G1|H , and from the similar arguments to those used in the proofs of Lemmas

2.2 and 2.3 we obtain that t∨c (0) = 1
2 . �

2.4 Computer experiments of t∧
c

and t∨
c

Maintaining the set of isolated vertices and the edges already added to the process provides all the

information needed to add the next edge to G∧
K and G∨

K at an O(1) cost. In order to recognize the

threshold for connectivity, the set of connected components must be efficiently maintained. Our

implementation holds the components in linked-lists, according to the Weighted-Union Heuristic

(see, e.g., [8] p. 445) which guarantees an average cost of O(log n) for uniting components.

Figure 1 shows the results of t∧c and t∨c according to simulations of both models on n = 104

vertices. The values of t∧c and t∨c were averaged over 100 tests per value of K.
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3 The appearance of a giant component in G∧
K

3.1 Proof of Theorem 1.2

We begin with a short summary of the methods used in [1] to analyze t∨g (K) for K > 0. First, the

authors prove Theorem 2.1 and deduce that the process G∨
K is stochastically dominated by G1, up

to a timescale factor of ⌈max{ 1
K ,K}⌉. By applying the differential equation method of Wormald

[12] to the approximated process G̃∨
K (which selects an ordered pair at each step, similar to the

process G̃∧
K introduced in the proof of Claim 2.7), the parameters I(G) and S(G) are approximated

by y(t) and z(t), solutions to a system of coupled ODEs. Henceforth, a repeated use of Theorem

3.1 of [10], which relates the susceptibility and the appearance of a giant component, implies that

the singularity point z(t) is equal to t∨c .

We note that the methods of [1] can be applied to any family of M -bounded processes PM (as

referred to in Theorem 2.1) provided that the following conditions hold:

1. Attempting to approximate a fixed number of bounded graph parameters Y1, . . . , Yd (such as

I(G) and I2(G)) by functions y1, . . . , yd for 1 ≤ t ≤ T , we require that

E
Yi(Pt+1

M ) − Yi(Pt
M )

2/n
=

dyi

dt

(
Y1(Pt

M ), . . . , Yd(Pt
M ), t

)
+ erryi

(t) , (23)

for all i and t, where maxi,t erryi(t) = o(1).

2. In addition to the above approximations of Y1, . . . , Yd by y1, . . . , yd, when attempting to

approximate S(G) by the function z(t) for 1 ≤ t ≤ T , we require that

E
S(Pt+1

M ) − S(Pt
M )

2/n
=

dz

dt

(
Y1(Pt

M ), . . . , Yd(Pt
M ), S(Pt

M ), t
)

+ errz(t) , (24)

where maxt errz(t) = o(1).

To show the above, we may use the fact that with high probability, the largest component is

of size O(log n) as long as t < xc − ε, where xc is a possible singularity point of z(t). This

follows from the proof of Theorem 1.3 of [1], which applies to this generalized setting as well.

3. Finally, if the above function z(t) has a singularity point, we require that it is uniformly

bounded (regardless of M).

If the above 3 conditions hold, we obtain that Y1, . . . , Yd, S are within o(1) distance from y1, . . . , yd, z

along the process PM for 1 ≤ t ≤ T . Furthermore, if z has a singularity point at xc and the above

conditions hold with T = xc − ε for any ε > 0, it follows that the appearance of a giant component

in PM is at t = xc.

We first show that the above 3 conditions hold for K > 0 under the assumptions of Theorem

1.2. By the well known fact that for any constant t, I(G1(t)) = Θ(n) almost surely, Theorem 2.1
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implies that τδ can be taken to be arbitrarily large. In particular, we can take τδ > xc. In order

to verify that (23) holds for I(G) and I2(G), let G and G′ denote G∧
K

t and G∧
K

t+1 respectively for

some fixed t, and let I = I(G) and I2 = I2(G). We have:

E
I(G′) − I(G)

2/n
= (−1)

I(I − 1
n)

1 + (K − 1)(1 − I)2
+ (−1)

2I(1 − I)

1 + (K − 1)(1 − I)2
=

=
−I

1 + (K − 1)(1 − I)2
+ O(I/n) , (25)

and:

E
I2(G′) − I2(G)

2/n
=

I(I − 1
n) − 2I2I − 2KI2(1 − I − I2) − 2KI2(I2 − 2

n)

1 + (K − 1)(1 − I)2
=

=
I2 − 2I2I − 2KI2(1 − I)

1 + (K − 1)(1 − I)2
+ O(I/n) + O(I2/n)) , (26)

where in both cases we used the fact that K > 0 to obtain an upper bound of o(1) on the error

term. To prove (24), set S = S(G) and observe that:

E
S(G′) − S(G)

2/n
=

=
n/2

1 + (K − 1)(1 − I)2

(
I(I − 1

n
)
2

n
+ 2I

∑

C∈C
|C|>1

|C|
n

2|C|
n

+
∑

C1∈C
|C1|>1

∑

C2∈C\{C1}
|C2|>1

K|C1||C2|
n2

2|C1||C2|
n

)
=

=
2I(S − I) + I2 + K(S − I)2

1 + (K − 1)(1 − I)2
+ O(I/n) + O

( ∑

C∈C
|C|>1

|C|4
n2

)
=

=
S2 + (K − 1)(S − I)2

1 + (K − 1)(1 − I)2
+ O(I/n) + O

( ∑

C∈C
|C|>1

|C|4
n2

)
, (27)

and the assumption that |C| = O(log n) gives a bound of o(1) on errz. The next claim therefore

completes the statements of Theorem 1.2 for the case K > 0:

Claim 3.1. For every K > 0, t∧g (K) < 5.

Proof. Consider the case K ≥ 1, and let y(t) and z(t) denote the solutions to the ODEs (1) and

(2) respectively. Recalling that y(t) ≤ 1 for every t ≥ 0, (2) yields that z′(t) ≥ 0 provided that

z(t) ≥ 1. Thus, the initial condition z(0) = 1 implies that z(t) is monotone increasing in t, and in

particular:

z′ =
z2 + (K − 1)(z − y)2

1 + (K − 1)(1 − y)2
≥ z2 + (K − 1)z2(1 − y)2

1 + (K − 1)(1 − y)2
= z2 , (28)

where inequality is by the fact that y ≥ 0 and z ≥ 1. By standard considerations in differential

analysis , (28) and the initial condition z(0) = 1 imply that z(t) ≥ 1
1−t for every t ≥ 0 (as z̃(t) = 1

1−t

satisfies z̃′ = z̃2 and z̃(0) = 1), and in particular, t∧g ≤ 1 for any K ≥ 1.
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We are left with the case 0 < K < 1. Clearly, (1) implies that y′ ≤ 0 for every t ≥ 0, and

furthermore, y′ < 0 as long as y > 0, hence y is strictly monotone decreasing from 1 to 0. Let t∗

be such that

y(t∗) = 1 −
√

1 − K . (29)

Notice that the solutions to the equation −x2 + 2x − K
1−K = 0 are: x1,2 = 1 ±

√
1 − K

1−K if

0 < K ≤ 1
2 , and no solution exists if 1

2 < K < 1. In both cases, −x2 + 2x − K
1−K < 0 for every

x ≤ 1 −
√

1 − K. Therefore, the definition of t∗ and the fact that y is monotone decreasing give:

−y(t)2 + 2y(t) − K

1 − K
≤ 0 for every t ≥ t∗,

or equivalently:

(1 − K)y(t)(2 − y(t)) ≤ K for every t ≥ t∗ . (30)

Rewriting equation (2) as:

z′ =
z2 − (1 − K)(z − y)2

1 − (1 − K)(1 − y)2
=

Kz2 + (1 − K)y(2z − y)

K + (1 − K)y(2 − y)
, (31)

it follows that for every t ≥ t∗, z′ ≥ 1
2z2. Furthermore, for every t ≥ 0, z′ > 0, and hence

z(t∗) > z(0) = 1. We obtain that the function w(t) = z(t − t∗) satisfies w′ ≥ 1
2w2 for every t ≥ 0

and w(0) ≥ 1, and by the same consideration as above, w(t) ≥ 2
2−t for every t ≥ 0. Altogether, we

deduce that t∧g ≤ t∗ + 2, and it remains to provide an upper bound on t∗.

For this purpose, define u(t) = 1 − y(t), and consider (1) for 0 ≤ t ≤ t∗:

u′ = −y′ =
1 − u

1 − (1 − K)u2
≥ 1 − u

1 − u4
=

1

1 + u + u2 + u3
,

where the inequality is by the fact that u(t) ≤
√

1 − K for 0 ≤ t ≤ t∗. Define w(t) to be the

solution to the differential equation:

w′ =
1

1 + w + w2 + w3
, w(0) = 0 , (32)

it follows from the above mentioned argument that u(t) ≥ w(t) for 0 ≤ t ≤ t∗. The solution to (32)

satisfies: t =
∑4

j=1
wj

j , hence w(t0) =
√

1 − K for t0 =
∑4

j=1
(1−K)j/2

j ≤ 25
12 . As u(t0) ≥ w(t0), it

follows that t∗ ≤ t0 ≤ 25
12 , completing the proof. �

In the special case K = 0, G∧
0 is no longer an M -bounded process, however the assertions of

statements 1, 2 of Theorem 1.2 remain valid and follow from (23) and (24), by applying Wormald’s

differential equation method directly. To see that (23) holds, notice that as long as I(G∧
K(t)) ≥ δ

for some fixed δ > 0, the denominators in (25) and (26) are Θ(1), and the approximation remains

valid (note that z(t) has no singularity point for K = 0). To show that (24) holds, set S = S(G),

and note that:
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Figure 2: Comparison of the numerical results for t∧g , and estimations of t∧g according to computer

simulations of the model.

E
S(G′) − S(G)

2/n
=

n/2

1 − (1 − I)2

(
I(I − 1

n
)
2

n
+ 2I

∑

C∈C
|C|>1

|C|
n

2|C|
n

)
=

=
2I(S − I) + I2

2I − I2
+ O(I/n) =

2S − I

2 − I
+ O(I/n) , (33)

where we used the fact that I > 0 for t ≤ τδ. This implies that the error term errz is o(1) without

making any assumptions on the size of the largest component, and completes the proof of the

theorem. �

3.2 Computer experiments of t∧
g

We conducted simulations of t∧g using the implementation of G∧
K mentioned in 2.4. In these sim-

ulations, the number of vertices was n = 106, and the threshold for the appearance of the giant

component was taken to be the minimal time at which G∧
K contains a component of size αn, where

α = 0.01. The value of t∧g (K) was averaged over 10 tests for each value of K.

Figure 2 shows the comparison between the values of t∧g according to the above computer

simulations, and the values obtained by numerically solving the ODEs (1) and (2) by Mathematica.
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3.3 Proof of Theorem 1.3

First, the fact that t∧c (K) is continuous follows from the general continuous dependence of ODEs

on their parameters (in this case,the single parameter K).

For the special case K = 0, recall that in our treatment of G∧
0 for the proof of Lemma 2.4 we

showed that for every δ > 0, with high probability y(t) = 2 −
√

1 + 2t approximates I(G∧
0 (t)) for

t ≤ 3
2 − δ, and I(G∧

0 (3
2 + δ)) = 0. Take δ > 0 and consider the interval [0, 3

2 − δ]; equation (2) takes

the following form when substituting K = 0 and the solution to y(t):

z′ =
z2 − (z − y)2

2y − y2
=

2z − y

2 − y
=

2(z − 1)√
1 + 2t

+ 1 . (34)

Taking w = z − 1, we obtain the linear equation:

w′ − 2√
1 + 2t

w = 1 . (35)

Multiplying (35) by its integrating factor and integrating by parts, we get:

w(t) = exp

{
2

∫
(1 + 2t)−

1

2 dt

}∫
exp

{
−2

∫
(1 + 2t)−

1

2 dt

}
dx =

= −1

2
(
√

1 + 2t +
1

2
) + C exp(2

√
1 + 2t) .

The initial condition w(0) = 0 gives C = 3
4e−2, hence:

z(t) =
3

4
e2(

√
1+2t−1) − 1

2

√
1 + 2t +

3

4
for all t ∈ [0,

3

2
− δ] .

The above solutions for y(t) and z(t) give y(3
2) = 0 and

z(3/2) =
3

4
e2 − 1

4
. (36)

Let τ0 = τ0(G∧
0 ) denote the first time t at which G∧

0
t has no isolated vertices, i.e., the hitting time

for the property: {G : I(G) = 0}. By the above arguments, we have:

τ0 =

(
3

2
+ o(1)

)
n/2 (37)

almost surely. We claim that proving that with high probability:

S(G∧
0

τ0) = z(3/2) + o(1) (38)

implies the required result on t∧g (0). Indeed, once no isolated vertices are left, the process G∧
0 adds

edges according to the uniform distribution, and hence from that point the susceptibility follows

the equation z′ = z2 (e.g., see the case K = 1 of the analysis of G∧
K or G∨

K). By (37), we obtain

that for some xc > 3
2 :

S(G∧
0 (t)) = (1 + o(1))

1

xc − t
for any

3

2
≤ t < xc ,
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and the value of xc is derived from the initial condition (36):

t∧g (0) = xc =
3

2
+

4

3e2 − 1
. (39)

It is left to show that (38) indeed holds. The lower bound S(G∧
0

τ0) ≥ z(3
2 ) − o(1) follows from

Theorem 1.2, which states that z approximates S until time 3
2 − δ for any δ > 0, and from the

continuity and monotonicity of z. That is, for any fixed ξ > 0, choosing a sufficiently small δ > 0

such that z(3
2 − δ) > z(3

2 ) − ξ gives:

S

(
G∧

0 (
3

2
− δ)

)
= z(

3

2
− δ) + o(1) > z(

3

2
) − ξ + o(1) .

For the upper bound S(G∧
0

τ0) ≤ z(3
2 ) − o(1) we are required to examine the second moment of

S
(
G∧

0 (3
2 + δ)

)
. Assume by contradiction that:

Pr

[
S
(
G∧

0
τ0
)

> z(
3

2
) + ξ

]
> α for some fixed α, ξ > 0 , (40)

and choose δ > 0 small enough such that:

(
z(3

2 )

ξ/2

)2 (
e12δ − e2δ

)
< α , and:

(
e4δ − 1

)
z(

3

2
) ≤ ξ/2 . (41)

Set T0 =
(

3
2 − δ

)
n
2 and T1 = τ0 − 1, and note that, with high probability, ∆ := T1−T0

n/2 satisfies

δ/2 ≤ ∆ ≤ 2δ, and therefore we may assume that this holds. We consider G∧
0

T for T = T0, . . . , T1,

and let S0 = S
(
G∧

0
T0

)
. As I(G∧

0
T ) > 0, the calculation which yielded (34) gives:

E

(
S(G∧

0
T+1

) | S(G∧
0

T
)
)

= S(G∧
0

T
) +

2

n

(
2(S(G∧

0
T ) − 1)

2 − I(G∧
0

T )
+ 1

)
,

and hence: (
1 +

2

n

)
S(G∧

0
T

) ≤ E

(
S(G∧

0
T+1

) | S(G∧
0

T
)
)
≤
(

1 +
4

n

)
S(G∧

0
T

) .

Therefore:

e∆S0 ≤ ES(G∧
0

τ0) ≤ e2∆S0 .

Similarly, we can write the expression for the second moment of S(G∧
0

T1):

E

(
S(G∧

0
T+1

)2 | S(G∧
0

T
)2
)
≤ S(G∧

0
T

)2

(
1 +

4

n
· 3

2 − I(G∧
0

T )

)
,

and hence:

E
(
S(G∧

0
τ0)2

)
≤ e6∆S2

0 .

We obtain that:

VarS(G∧
0

τ0) ≤
(
e6∆ − e∆

)
S2

0 ≤
(

e12δ − e2δ
)

S2
0 ,
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Figure 3: Comparison of the values of t∧g (K), obtained by numerical solutions of the ODEs (1)-(2),

and the asymptotic approximation of Theorem 1.3. Logarithmic scale was used in both axes.

where the last inequality is by the fact that ∆ ≤ 2δ almost surely. By (41) and the fact that

S0 < z(3
2 ) almost surely, this implies that:

VarS(G∧
0

τ0) < α (ξ/2)2 . (42)

By (41) we have:

Pr

[
S
(
G∧

0
τ0
)

> z(
3

2
) + ξ

]
≤ Pr

[
S
(
G∧

0
τ0
)
− EG∧

0
τ0 > z(

3

2
)
(

1 − e4δ
)

+ ξ

]
≤

≤ Pr
[
|S
(
G∧

0
τ0
)
− EG∧

0
τ0 | > ξ/2

]
,

and thus combining Chebyshev’s inequality with (42) gives:

Pr

[
S
(
G∧

0
τ0
)

> z(
3

2
) + ξ

]
< α ,

contradicting the assumption (40).

It remains to show that for K ≫ 1, t∧g (K) = (1 + o(1)) π
2
√

2

(
1 + π2

24

)
1√
K

. Consider equation

(1); the initial condition y(0) = 1 suggests that we examine the function u(t) = 1 − y(t), which

satisfies u(t) ≪ 1 near the origin:

−u′ =
u − 1

u2(K − 1) + 1
,
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and substituting the initial condition of y we have:

u′ =
1 − u

u2(K − 1) + 1
, u(0) = 0 . (43)

As u ≪ 1, the u2-term at the denominator is negligible, and we have:

u′ ≈ 1

Ku2 + 1
, u(0) = 0 , (44)

where here and in what the follows, we denote by ≈ equality up to leading order terms. Rearranging

the last equation to the form Ku2u′ + u′ ≈ 1 and integrating, we obtain that, up to leading order

terms, u satisfies the equation:
K

3
u3 + u ≈ t . (45)

We note that this immediately gives u ≈ t for u ≪ 1√
K

, however we are interested in the behavior

of u precisely when t = Θ( 1√
K

). Applying Caradano’s solution to the above cubic equation gives

the following approximation of u when t ≪ 1 (and hence u ≪ 1):

u(t) ≈


 3t

2K
+

√
1

K3
+

(
3t

2K

)2



1/3

+


 3t

2K
−
√

1

K3
+

(
3t

2K

)2



1/3

, t ≪ 1 .

Moving on to z(t), we substitute w = z − 1 in equation (2) and obtain the following:

w′ =
(w + 1)2 + (K − 1)(w + u)2

1 + Ku2 − u2
≈ (w + 1)2 + (K − 1)(w + u)2

1 + Ku2
.

Next, we may replace w + 1 by 1 whenever w ≪ 1, and furthermore, whenever w = Ω(1) clearly

the dominant term is K(w + u)2. Altogether, we obtain the following uniform approximation for

w:

w′ ≈ K(w + u)2 + 1

Ku2 + 1
≈
(
K(w + u)2 + 1

)
u′ .

Adding u′ to both sides of the equation and rearranging, we obtain:

w′ + u′

K(w + u)2 + 2
≈ u′ ,

hence if we define v =
√

K
2 (w + u) we obtain:

v′

v2 + 1
≈

√
2Ku′ ,

and thus:

v ≈ tan(
√

2Ku) .

Returning to z, we get:

z ≈ 1 +

√
2

K
tan(

√
2Ku) − u .
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This implies that the singularity point xc satisfies
√

2Ku(xc) = π
2 . Recalling equation (45), we

have:

xc ≈
K

3
u(xc)

3 + u(xc) =
K

3

π3

16K
√

2K
+

π

2
√

2K
=

π

2
√

2

(
1 +

π2

24

)
1√
K

.

Figure 3 shows the excellent agreement between the above asymptotic approximation of t∧g (K),

and its value as obtained by numerically solving the ODEs (1) and (2) by Mathematica. �
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