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Final Project Presentations

The final presentations will take place on the following three dates
(tentative list!):

© Thursday Dec. 16th 5-7pm (there will be no class on Legislative
Day, Tuesday Dec. 14th)

@ Tuesday Dec. 21st 5-7pm
© Thursday Dec. 23rd 4-7pm (note the earlier start time!)

There will be no homework this week: Start thinking about the project
until next week’s homework.
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Lagrange basis on 10 nodes

A few Lagrange basis functions for 10 nodes
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Runge's phenomenon f(x) = (1 + x?)7!

Runges phenomenon for 10 nodes
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Function spaces
Function Spaces

@ Function spaces are the equivalent of finite vector spaces for
functions (space of polynomial functions P, space of smoothly
twice-differentiable functions C2, etc.).

o Consider a one-dimensional interval | = [a, b]. Standard norms for
functions similar to the usual vector norms:

o Maximum norm: Hf(x)|| = maxxe; |f(x)]
o Ly norm: |[f(x)||; —f |f(x)| dx

) 1/2
o Euclidian L, norm: ||f(x)||, = [ I |f(x)| dx}
1/2
o Weighted norm: ||f(x [f |f(x (x)d }

@ An inner or scalar product (equivalent of dot product for vectors):
b
(rg)= | Fe"(x)o
a
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Function spaces
Finite-Dimensional Function Spaces

e Formally, function spaces are infinite-dimensional linear spaces.
Numerically we always truncate and use a finite basis.

@ Consider aset of m+1nodes x; ¢ X C I, i=0,...,m, and define:

1/2
1 (x Hz—[Z\fX: ] :

which is equivalent to thinking of the function as being the vector
fr=y= {f(XO)v f(Xl)v T 7f(Xm)}'

o Finite representations lead to semi-norms, but this is not that
important.

@ A discrete dot product can be just the vector product:
()" =fx-gx = Zf(xl (%)
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Function spaces
Function Space Basis

@ Think of a function as a vector of coefficients in terms of a set of n
basis functions:

{¢O(X)7 ¢1(X)7 cee 7¢n(X)} 5

for example, the monomial basis ¢x(x) = x* for polynomials.
e A finite-dimensional approximation to a given function f(x):

n

F(x) = Z cidi(x)

i=1

o Least-squares approximation for m > n (usually m > n):
c* = argmin Hf(x) - ?(X)HZ ,
(o}

which gives the orthogonal projection of f(x) onto the
finite-dimensional basis.
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Function spaces
Least-Squares Approximation

@ Discrete case: Think of fitting a straight line or quadratic through
experimental data points.

@ The function becomes the vector y = fy, and the approximation is

yi=Y _qoi(x) = y=dc,
=1
®j = dj(x).

@ This means that finding the approximation consists of solving an
overdetermined linear system

bc=y

@ Note that for m = n this is equivalent to interpolation. MATLAB's
polyfit works for m > n.
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Function spaces
Normal Equations

@ Recall that one way to solve this is via the normal equations:
(P*d)c* = Py

@ A basis set is an orthonormal basis if

o) =S o)) = oy = L T
(050 = 32 01y ) = 0 = {0 il

®*® = | (unitary or orthogonal matrix) =

=0y = c=0¢F fy= Z f (i) di(xi)
k=0
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Orthogonal Polynomials on [—1, 1]
Orthogonal Polynomials

o Consider a function on the interval | = [a, b].
Any finite interval can be transformed to / = [—1, 1] by a simple
transformation.

e Using a weight function w(x), define a function dot product as:

b
(F.g) = / w(x) [F (x)g(x)] dx

e For different choices of the weight w(x), one can explicitly construct
basis of orthogonal polynomials where ¢,(x) is a polynomial of
degree k (triangular basis):

b
(61, 7) = / w(x) [61(x)6;(x)] dx = 65 [|6n]12
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Orthogonal Polynomials on [—1, 1]
Legendre Polynomials

e For equal weighting w(x) = 1, the resulting triangular family of of
polynomials are called Legendre polynomials:

¢o(x) =1
¢1(x) =x
2(x) =5(36* ~ 1)
63() =3(5° — 31)
Sra() =2 xn ()~ () = o [~ 1)']

@ These are orthogonal on [ = [-1,1]:

-1
/1 ¢i(X)¢j(X)dX = 6’1 . m
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Orthogonal Polynomials on [—1, 1]
Interpolation using Orthogonal Polynomials

@ Let's look at the interpolating polynomial ¢(x) of a function f(x)

on a set of m+ 1 nodes {xp,...,xm} € I, expressed in an orthogonal
basis:
m
¢(x) =Y aii(x)
i=0

@ Due to orthogonality, taking a dot product with ¢; (weak
formulation):

(¢7¢j)zz (¢, ¢;) 23511 il =4dj ”¢J”
i=0

i=0

@ This is equivalent to normal equations if we use the right dot
product:

(*®), = (¢1,¢) = 0y |¢i|> and &*y = (¢, ¢))
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Orthogonal Polynomials on [—1, 1]
Gauss Integration

-1
aillolP =(6.0) = a=(lel?) (6,4
@ Question: Can we easily compute
b b
3 16)1° = (6.6) = | w6065 = [ w(x)pam(x)ds

for a polynomial pom(x) = ¢(x)9j(x) of degree at most 2m?
@ Let's first consider polynomials of degree at most m

/  W()pm(x) =7
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Orthogonal Polynomials on [—1, 1]
Gauss Weights

e Now consider the Lagrange basis {¢o(x), ¢1(X), ..., om(x)}, where
you recall that

pi(xj) = dij.
@ Any polynomial pp,(x) of degree at most m can be expressed in the
Lagrange basis:

pm(x) =D Pm(xi)pi(x),
i=0

/ab w(x)pm(x)dx = épm(x,') [/a w(x)pi(x) dx] Z Wipm(x:),

where the Gauss weights w are given by

W, = / ’ w(x)i(x)dx.
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Orthogonal Polynomials on [—1, 1]
Back to Interpolation

e For any polynomial pam(x) there exists a polynomial quotient ¢pm—1
and a remainder r,, such that:

p2m(x) = dm41(x)gm-1(x) + rm(x)

b b
/a w(x)pam(x)dx = / W) b1 () dm1(x) + W(x)rm()] dx

b
= (ém+1, m-1) +/ w(x)rm(x)dx

@ But, since ¢ 11(x) is orthogonal to any polynomial of degree at most
m, (¢m+1,dm-1) = 0 and we thus get:

b m
[ w0pan(x)e = " wirm(x)

i=0

A. Donev (Courant Institute) Lecture VIII 11/04/2010 16 / 40



Orthogonal Polynomials on [—1, 1]
Gauss nodes

e Finally, if we choose the nodes to be zeros of ¢,,1(x), then

rm(xi) = p2m(Xi) - ¢m+1(Xi)qm—1(Xi) = sz(Xi)

b m
/a w(x)pam(x)dx = Z W, pam(x;i)

i=0
and thus we have found a way to quickly project any polynomial
onto the basis of orthogonal polynomials:

(pm7 ¢J) = Z Wipm(Xi)¢j(Xf)

i=0
(6:9)) = Y wid(xi)dj(xi) = Y wif (x;)8;(x)
i=0 i=0

A. Donev (Courant Institute) Lecture VIII 11/04/2010



Orthogonal Polynomials on [—1, 1]
Gauss-Legendre polynomials

e For any weighting function the polynomial ¢« (x) has k simple zeros
all of which are in (—1,1), called the (order k) Gauss nodes,

Pmt1(xi) = 0.
@ The interpolating polynomial ¢(x;) = f(x;) on the Gauss nodes is the
Gauss-Legendre interpolant ¢¢(x).

@ The orthogonality relation can be expressed as a sum instead of

integral:
m

(60 0)) = > widi(xi) () = 65 || |
i=0
@ We can thus define a new weighted discrete dot product

m
f-g=> wfg
i=0
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Orthogonal Polynomials on [—1, 1]

Discrete Orthogonality of Polynomials

@ The orthogonal polynomial basis is discretely-orthogonal in the new
dot product,

@ - ¢j = (i, ¢j) = 0ij (i - D))
@ This means that the matrix in the normal equations is diagonal:
f-¢;
¢ b

@ The Gauss-Legendre interpolant is thus easy to compute:

®*® = Disg {00/, ... [éml’} = &=

m

par(x Z

O I

().
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Spectral Approximation
; 2
Hilbert Space L,

@ Consider the Hilbert space Lﬁ, of square-integrable functions on
[—1,1]:

1
WFE L2 (F.f)=||f]? = / w(x) [FO dx < oc.

-1

o Legendre polynomials form a complete orthogonal basis for L2 :
VFeL: f(x)=) figi(x)
i=0
- (f,9)
" (¢, 00)

@ The least-squares approximation of f is a spectral approximation
and is obtained by simply truncating the infinite series:

Psp(X Z fipi(x
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Spectral Approximation
Spectral approximation

Continuous (spectral approximation): ¢s(x) = Z (f, i) oi(x).
— (i, i)
. : , : = f- 9
Discrete (interpolating polynomial): ¢gi(x) = Z o ¢'¢;(x).
i=0 7T

o If we approximate the function dot-products with the discrete
weighted products

(f,60) = > wif(x)di(x) = F- ¢,

j=0

we see that the Gauss-Legendre interpolant is a discrete spectral
approximation:

deL(x) = gsp(x).
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Spectral Approximation

Discrete spectral approximation

@ Using a spectral representation has many advantages for function
approximation: stability, rapid convergence, easy to add more
basis functions.

@ The convergence, for sufficiently smooth (nice) functions, is more
rapid than any power law

1) = e ()N = g (Zka)H>

where the multiplier is related to the Sobolev norm of f(x).

e For f(x) € C!, the convergence is also pointwise with similar
accuracy (N9=1/2 in the denominator).

@ This so-called spectral accuracy (limited by smoothness only)
cannot be achived by piecewise, i.e., local, approximations (limited by
order of local approximation).
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Spectral Approximation
Regular grids

. @(x) cos(2xexp(axx));

x_fine=linspace(—1,1,100);
y_fine=f(x_fine);

% Equi—spaced nodes:

n=10;
x=linspace(—1,1,n);
y=Ff(x);

c=polyfit(x,y,n);
y_interp=polyval(c, x_fine);

% Gauss nodes:

[x,w]=GLNodeWt(n); % See webpage for code
y=Ff(x);

c=polyfit(x,y,n);

y_interp=polyval(c, x_fine);
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Spectral Approximation

Gauss-Legendre Interpolation

Function and approximations for n=10
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Spectral Approximation
Global polynomial interpolation error

Error for equispaced nodes for n=8,16,32,.128

Error for Gauss nodes for n=8,16,32,..128

MU
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Spectral Approximation
Local polynomial interpolation error

Error for cubic spline for n=8,16,32,..256
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Fourier Orthogonal Trigonometric Polynomials
Periodic Functions

e Consider now interpolating / approximating periodic functions
defined on the interval | = [0, 27]:

Vx  f(x+27m) = f(x),

as appear in practice when analyzing signals (e.g., sound/image
processing).

@ Also consider only the space of complex-valued square-integrable
functions [3_,

21w
Vfel? (f,f):||f||2:/ |F(x)]? dx < oc.
0

@ Polynomial functions are not periodic and thus basis sets based on
orthogonal polynomials are not appropriate.

@ Instead, consider sines and cosines as a basis function, combined
together into complex exponential functions

di(x) = €™ = cos(kx) + isin(kx), k=0,%£1,42,...
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Fourier Orthogonal Trigonometric Polynomials
Fourier Basis

du(x) = e™, k=0,+1,42, ...

@ It is easy to see that these are orhogonal with respect to the

continuous dot product
2w 2w
(0) = | e(06300ck = [ expli — k)x] e = 25
x=0 0
@ The complex exponentials can be shown to form a complete
trigonometric polynomial basis for the space L27r, i.e.,

Vf € L%W o f(x) = Z lfke"kx,

k=—00

where the Fourier coefficients can be computed for any frequency

or wavenumber k using:

n f, ok 1 [ »

f = m —— f(X)e :kde'
27 27 Jo
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Fourier Orthogonal Trigonometric Polynomials
Discrete Fourier Basis

e For a general interval [0, X] the discrete frequencies are

2
k:%;-; k=0,41,42, ...

@ For non-periodic functions one can take the limit X — oo in which
case we get continuous frequencies.
@ Now consider a discrete Fourier basis that only includes the first N
basis functions, i.e.,
k=—-(N-1)/2,...,0,...,(N—1)/2 if Nis odd
k=-N/2,...,0,...,N/2 -1 if N is even,
and for simplicity we focus on N odd.
@ The least-squares spectral approximation for this basis is:
(N-1)/2
F)mpx)= Y Fe™
k=—(N—1)/2
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Fourier Orthogonal Trigonometric Polynomials
Discrete Dot Product

@ Now also discretize the functions on a set of N equi-spaced nodes
27
; = jh where h= —
Xjp=Jnw N

where j = N is the same node as j = 0 due to periodicity so we only
consider N instead of N 4 1 nodes.

@ We also have the discrete dot product between two discrete
functions (vectors) f; = f(x;):

N—1
f-g=h> fg
j=0

@ The discrete Fourier basis is discretely orthogonal

¢k : ¢k/ = 27T5k,k'
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Fourier Orthogonal Trigonometric Polynomials
Proof of Discrete Orthogonality

The case k = k' is trivial, so focus on

(bk-(bk/:Ofork;ék/

N-1
Zexp ikx;) exp (—ik'x;) Zexp [i (Ak)xj] = Z [exp (ih (AK))P
J j=0

where Ak = k — k’. Thisis a geometric series sum:

1—2zN
. ;] = :Ofk k/
R it k #

since z = exp (ih (Ak)) # 1 and
N — exp (ihN (Ak)) = exp (27i (Ak)) =
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Fourier Orthogonal Trigonometric Polynomials
Discrete Fourier Transform

@ The Fourier interpolating polynomial is thus easy to construct

(N-1)/2

T S

k=—(N—1)/2

where the discrete Fourier coefficients are given by

w ¢ ] N1

7 — ) k — . [ .

fo = o =N EO f(x;) exp (—ikx;)
J:

e Simplifying the notation and recalling x; = jh, we define the the
Discrete Fourier Transform (DFT):

N—

fiexp | —
N

=0

[ay

ho—

=2~
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Fourier Orthogonal Trigonometric Polynomials
Fourier Spectral Approximation

N—1
Forward f — f : Ak 1 ( 27rUk>

J:0
(N-1)/2
Inverse f — f:  f(x) = ¢(x) = Z Free
k=—(N—1)/2

@ There is a very fast algorithm for performing the forward and
backward DFTs called the Fast Fourier Transform (FFT), which
we will discuss next time.

@ The Fourier interpolating polynomial ¢(x) has spectral accuracy,
i.e., exponential in the number of nodes N

1£0x) = ¢()| ~ eV

for sufficiently smooth functions (sufficiently rapid decay of the
Fourier coefficients with k, e.g., fi ~ e~ Ikl).

A. Donev (Courant Institute) Lecture VIII 11/04/2010 33 /40



Fourier Orthogonal Trigonometric Polynomials
Discrete spectrum

@ The set of discrete Fourier coefficients f is called the discrete
spectrum, and in particular,

is the power spectrum which measures the frequency content of a
signal.

o If f is real, then f satisfies the conjugacy property
Fu =1,

so that half of the spectrum is redundant and % is real.

@ For an even number of points N the largest frequency k = —N/2
does not have a conjugate partner.
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Fourier Orthogonal Trigonometric Polynomials
In MATLAB

@ The forward transform is performed by the function f = fft(f) and
the inverse by f = fft(f). Note that ifft(fft(f)) = f and f and f may
be complex.

@ In MATLAB, and other software, the frequencies are not ordered in
the "normal” way —(N —1)/2 to +(N — 1)/2, but rather, the
nonnegative frequencies come first, then the positive ones, so the
“funny"” ordering is

0,1,....,(N-1)/2, ——= = _—=41,..., -1

This is because such ordering (shift) makes the forward and inverse
transforms symmetric.

@ The function fftshift can be used to order the frequencies in the
normal way, and ifftshift does the reverse:

f = fftshift(fft(f)) (normal ordering).
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Fourier Orthogonal Trigonometric Polynomials

FFT-based noise filtering (1)

Fs = 1000; %
dt = 1/Fs; %
L = 1000; %
t = (0:L—1)xdt; %
T=Lxdt; %

% Sum of a 50 Hz sinusoid and a

Sampling frequency
Sampling interval
Length of signal
Time vector

Total time interval

120 Hz sinusoid

x = 0.7*xsin(2xpi*x50xt) + sin(2xpi*x120xt);

y = x + 2xrandn(size(t)); %

Sinusoids plus noise

figure(1); clIf; plot(t(1:100),y(1:100), 'b—"); hold on
title(’'Signal_Corrupted _with _Zero—Mean_Random_Noise ")

xlabel ('time")
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Fourier Orthogonal Trigonometric Polynomials

FFT-based noise filtering (2)

if(0)
N=(L/2)%2; % Even N
y_hat = fft(y(1:N));
% Frequencies ordered in a funny way:
f_funny = 2xpi/T+ [0:N/2—-1, —N/2:-1];
% Normal ordering:
f_normal = 2xpi/Tx [-N/2 : N/2-1];
else
N=(L/2)*2—-1; % Odd N
y_hat = fft(y(1:N));
% Frequencies ordered in a funny way:
f_funny = 2xpi/T+ [0:(N-1)/2, —(N-1)/2:-1];
% Normal ordering:
f_normal = 2xpi/T*x [—(N-1)/2 : (N-1)/2];
end
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Fourier Orthogonal Trigonometric Polynomials

FFT-based noise filtering (3)

figure (2); clIf; plot(f_funny, abs(y_hat), 'ro’); hold on;

y_hat=fftshift (y_hat);
figure (2); plot(f_normal, abs(y_hat), 'b—");

title(’'Single—Sided_Amplitude _Spectrum_of_y(t) ")
xlabel ('Frequency_(Hz)")
ylabel ('Power ')

y_hat(abs(y_hat)<250)=0; % Filter out noise
y_filtered = ifft(ifftshift(y_hat));
figure (1); plot(t(1:100),y_filtered (1:100), 'r—")
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Fourier Orthogonal Trigonometric Polynomials

FFT results

Signal Corrupted with Zero-Mean Random Noise
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Conclusions
Conclusions/Summary

@ Once a function dot product is defined, one can construct orthogonal
basis for the space of functions of finite 2—norm.

e For functions on the interval [—1, 1], triangular families of
orthogonal polynomials ¢;(x) provide such a basis, e.g., Legendre
or Chebyshev polynomials.

o If one discretizes at the Gauss nodes, i.e., the roots of the
polynomial ¢p1(x), and defines a suitable discrete Gauss-weighted
dot product, one obtains discretely-orthogonal basis suitable for
numerical computations.

@ The interpolating polynomial on the Gauss nodes is closely related to
the spectral approximation of a function.

@ Spectral convergence is faster than any power law of the number of
nodes and is only limited by the global smoothness of the function,
unlike piecewise polynomial approximations limited by the choice of
local basis functions.

@ One can also consider piecewise-spectral approximations.

A. Donev (Courant Institute) Lecture VIII 11/04/2010 40 / 40



	Function spaces
	Orthogonal Polynomials on [-1,1]
	Spectral Approximation
	Fourier Orthogonal Trigonometric Polynomials
	Conclusions

