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Final Project Guidelines

Find a numerical application or theoretical problem that interests
you. Examples:

Incompressible fluid dynamics.
Web search engines (google) and database indexing in general.
Surface reconstruction in graphics.
Proving that linear programming can be solved in polynomial time.

Then learn more about it (read papers, books, etc) and find out what
numerical algorithms are important. Examples:

Linear solvers for projection methods in fluid dynamics.
Eigenvalue solvers for the google matrix.
Spline interpolation or approximation of surfaces.
The interior-point algorithm for linear programming.

Discuss your selection with me via email or in person.
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Final Project Deliverables

Learn how the numerical algorithm works, and what the difficulties
are and how they can be addressed. Examples:

Slow convergence of iterative methods for large meshes
(preconditioning, multigrid, etc.).
Matrix is very large but also very sparse (power-like methods).
???
Simplex algorithm has finite termination but not polynomial.

Possibly implement some part of the numerical algorithm yourself
and show some (sample) results.

In the 15min presentation only explain what the problem is, the
mathematical formulation, and what algorithm is used.

In the 10-or-so page writeup, explain the details effectively (think of
a scientific paper).
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Polynomial Interpolation in 1D

Interpolation in 1D (Cleve Moler)
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Polynomial Interpolation in 1D

Interpolation

The task of interpolation is to find an interpolating function φ(x)
which passes through m + 1 data points (xi , yi ):

φ(xi ) = yi = f (xi ) for i = 0, 2, . . . ,m,

where xi are given nodes.

The type of interpolation is classified based on the form of φ(x):

Full-degree polynomial interpolation if φ(x) is globally polynomial.
Piecewise polynomial if φ(x) is a collection of local polynomials:

Piecewise linear or quadratic
Hermite interpolation
Spline interpolation

Trigonometric if φ(x) is a trigonometric polynomial (polynomial of
sines and cosines).
Orthogonal polynomial intepolation (Chebyshev, Legendre, etc.).

As for root finding, in dimensions higher than one things are more
complicated!
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Polynomial Interpolation in 1D

Polynomial interpolation in 1D

The interpolating polynomial is degree at most m

φ(x) =
m∑
i=0

amxm =
m∑
i=0

ampm(x),

where the monomials pm(x) = xm form a basis for the space of
polynomial functions.
The coefficients a = {a1, . . . , am} are solutions to the square linear
system:

φ(xi ) =
m∑
j=0

ajx
j
i = yi for i = 0, 2, . . . ,m

In matrix notation, if we start indexing at zero:

[V(x0, x1, . . . , xm)] a = y

where the Vandermonde matrix V = {vi ,j} is given by

vi ,j = x j
i .
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Polynomial Interpolation in 1D

The Vandermonde approach

Va = x

One can prove by induction that

det V =
∏
j<k

(xk − xj)

which means that the Vandermonde system is non-singular and thus:
The intepolating polynomial is unique if the nodes are distinct.

Polynomail interpolation is thus equivalent to solving a linear system.

However, it is easily seen that the Vandermonde matrix can be very
ill-conditioned.

Solving a full linear system is also not very efficient because of the
special form of the matrix.
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Polynomial Interpolation in 1D

Choosing the right basis functions

There are many mathematically equivalent ways to rewrite the unique
interpolating polynomial:

x2 − 2x + 4 = (x − 2)2.

One can think of this as choosing a different polynomial basis
{φ0(x), φ1(x), . . . , φm(x)} for the function space of polynomials of
degree at most m:

φ(x) =
m∑
i=0

aiφi (x)

For a given basis, the coefficients a can easily be found by solving the
linear system

φ(xj) =
m∑
i=0

aiφi (xj) = yj ⇒ Φa = y
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Polynomial Interpolation in 1D

Lagrange basis

Φa = y

This linear system will be trivial to solve if Φ = I, i.e., if

φi (xj) = δij =

{
1 if i = j

0 if i 6= j
.

The φi (x) is itself a polynomial interpolant on the same nodes but
with function values δij , and is thus unique.

Note that the nodal polynomial

wm+1(x) =
m∏
i=0

(x − xi )

vanishes at all of the nodes but has degree m + 1.
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Polynomial Interpolation in 1D

Lagrange basis on 10 nodes
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Polynomial Interpolation in 1D

Lagrange interpolant

φi (xj) = δij

It can easily be seen that the following characteristic polynomial
provides the desired basis:

φi (x) =

∏
j 6=i (x − xj)∏
j 6=i (xi − xj)

=
wm+1(x)

(x − xi )w ′m+1(xi )

The resulting Lagrange interpolation formula is

φ(x) =
m∑
i=0

yiφi (x) =
m∑
i=0

[
yi∏

j 6=i (xi − xj)

]∏
j 6=i

(x − xj)

This is useful analytically but expensive and cumbersome to use
computationally!
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Polynomial Interpolation in 1D

Newton’s interpolation formula

By choosing a different basis we get different representations, and
Newton’s choice is:

φi (x) = wi (x) =
i−1∏
j=0

(x − xj)

There is a simple recursive formula to calculate the coefficients a in
this basis, using Newton’s divided differences

D0
i f = f (xi ) = yi

Dk
i =

Dk−1
i+1 − Dk−1

i

xi+1 − xi
.

Note that the first divided difference is

D1
i =

f (xi+1)− f (xi )

xi+1 − xi
≈ f ′ (xi ) ,

and D2
i corresponds to second-order derivatives, etc.
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Polynomial Interpolation in 1D

Convergence, stability, etc.

We have lost track of our goal: How good is polynomial interpolation?

Assume we have a function f (x) that we are trying to approximate
over an interval I = [x0, xm] using a polynomial interpolant.

Using Taylor series type analysis it is not hard to show that

∃ξ ∈ I such that Em(x) = f (x)− φ(x) =
f (m+1) (ξ)

(m + 1)!

[
m∏
i=0

(x − xi )

]
.

Question: Does ‖Em(x)‖∞ = maxx∈I |f (x)| → 0 as m→∞.

For equi-spaced nodes, xi+1 = xi + h, a bound is

‖Em(x)‖∞ ≤
hn+1

4(m + 1)

∥∥∥f (m+1) (x)
∥∥∥
∞
.

The problem is that higher-order derivatives of seemingly nice
functions can be unbounded!
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Polynomial Interpolation in 1D

Runge’s counter-example: f (x) = (1 + x2)−1
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Polynomial Interpolation in 1D

Uniformly-spaced nodes

Not all functions can be approximated well by an interpolating
polynomial with equally-spaced nodes over an interval.

Interpolating polynomials of higher degree tend to be very oscillatory
and peaked, especially near the endpoints of the interval.

Even worse, the interpolation is unstable, under small perturbations
of the points ỹ = y + δy,

‖δφ(x)‖∞ ≤
2m+1

m log m
‖δy‖∞

It is possible to improve the situation by using specially-chosen
nodes (e.g., Chebyshev nodes, discussed later), or by interpolating
derivatives (Hermite interpolation).

In general however, we conclude that interpolating using
high-degree polynomials is a bad idea!
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Piecewise Polynomial Interpolation

Interpolation in 1D (Cleve Moler)
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Piecewise Polynomial Interpolation

Piecewise Lagrange interpolants

The idea is to use a different low-degree polynomial function φi (x)
in each interval Ii = [xi , xi+1].

Piecewise-constant interpolation: φ
(0)
i (x) = yi .

Piecewise-linear interpolation:

φ
(1)
i (x) = yi +

yi+1 − yi
xi+1 − xi

(x − xi ) for x ∈ Ii

For node spacing h the error estimate is now bounded and stable:∥∥∥f (x)− φ(1)(x)
∥∥∥
∞
≤ h2

8

∥∥∥f (2) (x)
∥∥∥
∞
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Piecewise Polynomial Interpolation

Piecewise Hermite interpolants

If we are given not just the function values but also the first
derivatives at the nodes:

zi = f ′(xi ),

we can find a cubic polynomial on every interval that interpolates
both the function and the derivatives at the endpoints:

φi (xi ) = yi and φ′i (xi ) = zi

φi (xi+1) = yi+1 and φ′i (xi+1) = zi+1.

This is called the piecewise cubic Hermite interpolant.

If the derivatives are not available we can try to estimate zi ≈ φ′i (xi )
(see MATLAB’s pchip).
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Piecewise Polynomial Interpolation

Splines

Note that in piecewise Hermite interpolation φ(x) has is continuously
differentiable, φ(x) ∈ C 1

I :
Both φ(x) and φ′(x) are continuous across the internal nodes.

We can make this even stronger, φ(x) ∈ C 2
I , leading to piecewise

cubic spline interpolation:

The function φi (x) is cubic in each interval Ii = [xi , xi+1] (requires 4m
coefficients).
We interpolate the function at the nodes: φi (xi ) = φi−1(xi ) = yi .
This gives m + 1 conditions plus m − 1 conditions at interior nodes.
The first and second derivatives are continous at the interior nodes:

φ′i (xi ) = φ′i−1(xi ) and φ′′i (xi ) = φ′′i−1(xi ) for i = 1, 2, . . . ,m − 1,

which gives 2(m − 1) equations, for a total of 4m − 2 conditions.
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Piecewise Polynomial Interpolation

Types of Splines

We need to specify two more conditions arbitrarily (for splines of
order k ≥ 3, there are k − 1 arbitrary conditions).

The most appropriate choice depends on the problem, e.g.:

Periodic splines, if y0 ≡ ym and we think of node 0 and node m as one
interior node.
Natural spline: φ′′(x0) = φ′′(x0) = 0.
Not-a-knot condition: Enforce third-derivative continuity at x1 and
xm−1.

Once the type of spline is chosen, finding the coefficients of the cubic
polynomials requires solving a tridiagonal linear system, which can
be done very fast (O(m)).
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Piecewise Polynomial Interpolation

Nice properties of splines

Minimum curvature property:∫
I

[
φ′′(x)

]2
dx ≤

∫
I

[
f ′′(x)

]2
dx

The spline approximation converges for zeroth, first and second
derivatives (also third for uniformly-spaced nodes):

‖f (x)− φ(x)‖∞ ≤
5

384
· h4 ·

∥∥∥f (4) (x)
∥∥∥
∞∥∥f ′(x)− φ′(x)

∥∥
∞ ≤

1

24
· h3 ·

∥∥∥f (4) (x)
∥∥∥
∞∥∥f ′′(x)− φ′′(x)

∥∥
∞ ≤

3

8
· h2 ·

∥∥∥f (4) (x)
∥∥∥
∞
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Piecewise Polynomial Interpolation

In MATLAB

c = polyfit(x , y , n) does least-squares polynomial of degree n which is
interpolating if n = length(x).

Note that MATLAB stores the coefficients in reverse order, i.e., c(1)
is the coefficient of xn.

y = polyval(c, x) evaluates the interpolant at new points.

y1 = interp1(x , y , xnew ,
′method ′) or if x is ordered use interp1q.

Method is one of ’linear’, ’spline’, ’cubic’.

The actual piecewise polynomial can be obtained and evaluated using
ppval .
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Piecewise Polynomial Interpolation

Interpolating (1 + x2)−1 in MATLAB

n=10;
x=l i n s p a c e (−5 ,5 ,n ) ;
y=(1+x . ˆ2 ) . ˆ ( −1 ) ;
p l o t ( x , y , ’ ro ’ ) ; hold on ;

x f i n e=l i n s p a c e (−5 ,5 ,100) ;
y f i n e=(1+ x f i n e . ˆ2 ) . ˆ ( −1 ) ;
p l o t ( x f i n e , y f i n e , ’ b− ’ ) ;

c=p o l y f i t ( x , y , n ) ;
y i n t e r p=p o l y v a l ( c , x f i n e ) ;
p l o t ( x f i n e , y i n t e r p , ’ k−− ’ ) ;

y i n t e r p=i n t e r p 1 ( x , y , x f i n e , ’ s p l i n e ’ ) ;
p l o t ( x f i n e , y i n t e r p , ’ k−− ’ ) ;
% Or e q u i v a l e n t l y :
pp=s p l i n e ( x , y ) ;
y i n t e r p=ppva l ( pp , x f i n e )
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Piecewise Polynomial Interpolation

Runge’s function with spline
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Higher Dimensions

Regular grids

Now x = {x1, . . . , xn} ∈ Rn is a multidimensional data point. Focus
on 2D since 3D is similar.

The easiest case is when the data points are all inside a rectangle

Ω = [x0, xmx ]× [y0, ymy ]

where m = mxmy and the nodes lie on a regular grid

xi ,j = {xi , yj} , fi ,j = f (xi ,j).

We can use separable basis functions:

φi ,j(x) = φi (x)φj(y).
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Higher Dimensions

Full degree polynomial interpolation

We can directly apply Lagrange interpolation to each coordinate separately:

φ(x) =
∑
i ,j

fi ,jφi ,j(x , y) =
∑
i ,j

fi ,jφi (x)φj(y),

but this still suffers from Runge’s phenomenon:
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Higher Dimensions

Piecewise-Polynomial Interpolation

Juse as in 1D, one can use a different interpolation function
φ(i ,j) : Ωi ,j → R in each rectange of the grid

Ωi ,j = [xi , xi+1]× [yj , yj+1].

For separable polynomials, the equivalent of piecewise linear
interpolation in 1D is the piecewise bilinear interpolation

φ(i ,j)(x , y) = φ
(x)
(i) (x) · φ(y)(j) (y),

where φ
(x)
(i) and φ

(y)
(j) are linear function.

There are 4 unknown coefficients in φ(i ,j) that can be found from the
4 data (function) values at the corners of rectangle Ωi ,j .

Note that the pieces of the interpolating function φ(i ,j)(x , y) are not
linear since they contain quadratic product terms xy : bilinear
functions.
This is because there is not a plane that passes through 4 generic
points in 3D.
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Higher Dimensions

Bilinear Interpolation

It is better to think in terms of a basis set {φi ,j(x , y)}, where each
basis functions is itself piecewise bilinear, and

φi ,j(xi ′ , yj ′) = δi ,i ′δj ,j ′ ⇒

φ(x) =
∑
i ,j

fi ,jφi ,j(x , y).

Furthermore, it is sufficient to look at a unit reference rectangle
Ω̂ = [0, 1]× [0, 1] since any other rectangle or even parallelogram
can be obtained from the reference one via a linear transformation:

Bi ,j Ω̂ + bi ,j = Ωi ,j ,

and the same transformation can then be applied to the interpolation
function:

φi ,j(x) = φ̂(Bi ,j x̂ + bi ,j).
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Higher Dimensions

Bilinear Basis Functions

Consider one of the corners (0, 0) of the reference rectangle and the
corresponding basis φ̂0,0 restricted to Ω̂:

φ̂0,0(x̂ , ŷ) = (1− x̂)(1− ŷ)

For an actual grid, the basis function corresponding to a given interior
node is simply a composite of 4 such bilinear terms, one for each
rectangle that has that interior node as a vertex: Often called a tent
function.

If higher smoothness is required one can consider, for example,
bicubic Hermite interpolation (when derivatives fx , fy and fxy are
known at the nodes as well).
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Higher Dimensions

Bilinear basis functions
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Higher Dimensions

Bicubic basis functions
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Higher Dimensions

Irregular (Simplicial) Meshes

Any polygon can be triangulated into arbitrarily many disjoint triangles.
Similarly tetrahedral meshes in 3D.
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Higher Dimensions

Basis functions on triangles

For irregular grids the x and y directions are no longer separable.

But the idea of using basis functions φi ,j , a reference triangle, and
piecewise polynomial interpolants still applies.

For a linear function we need 3 coefficients (x , y , const), for quadratic
6 (x , y , x2, y2, xy , const):
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Higher Dimensions

Piecewise constant / linear basis functions
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Higher Dimensions

In MATLAB

For regular grids the function

qz = interp2(x , y , z , qx , qy ,′ linear ′)

will evaluate the piecewise bilinear interpolant of the data
x , y , z = f (x , y) at the points (qx , qy).

Other method are ’spline’ and ’cubic’, and there is also interp3 for 3D.

For irregular grids one can use the old function griddata which will
generate its own triangulation or there are more sophisticated routines
to manipulate triangulations also.
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Higher Dimensions

Regular grids

[ x , y ] = meshgrid ( −2 : . 5 : 2 , −2 : . 5 : 2 ) ;
z = x .∗ exp(−x .ˆ2−y . ˆ 2 ) ;

t i = −2 : . 1 : 2 ;
[ qx , qy ] = meshgrid ( t i , t i ) ;

qz= i n t e r p 2 ( x , y , z , qx , qy , ’ c ub i c ’ ) ;

mesh ( qx , qy , qz ) ; hold on ;
p lot3 ( x , y , z , ’ o ’ ) ; hold o f f ;
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Higher Dimensions

MATLAB’s interp2
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Higher Dimensions

Irregular grids

x = rand (100 ,1)∗4−2; y = rand (100 ,1)∗4−2;
z = x .∗ exp(−x .ˆ2−y . ˆ 2 ) ;

t i = −2 : . 1 : 2 ;
[ qx , qy ] = meshgrid ( t i , t i ) ;

qz= g r i d d a t a ( x , y , z , qx , qy , ’ c ub i c ’ ) ;

mesh ( qx , qy , qz ) ; hold on ;
p lot3 ( x , y , z , ’ o ’ ) ; hold o f f ;
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Higher Dimensions

MATLAB’s griddata
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Conclusions

Conclusions/Summary

Interpolation means approximating function values in the interior of a
domain when there are known samples of the function at a set of
interior and boundary nodes.

Given a basis set for the interpolating functions, interpolation
amounts to solving a linear system for the coefficients of the basis
functions.

Polynomial interpolants in 1D can be constructed using several basis.

Using polynomial interpolants of high order is a bad idea: Not
accurate and not stable!

Instead, it is better to use piecewise polynomial interpolation:
constant, linear, Hermite cubic, cubic spline interpolant on each
interval.
In higher dimensions one must be more careful about how the domain
is split into disjoint elements (analogues of intervals in 1D): regular
grids (separable basis such as bilinear), or simplicial meshes
(triangular or tetrahedral).
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