Numerical Methods I Solving Nonlinear Equations

Aleksandar Donev

Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu
${ }^{1}$ Course G63.2010.001 / G22.2420-001, Fall 2010

October 14th, 2010

Outline

(1) Basics of Nonlinear Solvers
(2) One Dimensional Root Finding
(3) Systems of Non-Linear Equations
(4) Intro to Unconstrained Optimization
(5) Conclusions

Final Presentations

- The final project writeup will be due Sunday Dec. 26th by midnight (I have to start grading by $12 / 27$ due to University deadlines).
- You will also need to give a 15 minute presentation in front of me and other students.
- Our last class is officially scheduled for Tuesday $12 / 14,5-7 \mathrm{pm}$, and the final exam Thursday $12 / 23,5-7 \mathrm{pm}$. Neither of these are good!
- By the end of next week, October 23rd, please let me know the following:
- Are you willing to present early Thursday December 16th during usual class time?
- Do you want to present during the official scheduled last class, Thursday 12/23, 5-7pm.
- If neither of the above, tell me when you cannot present Monday Dec. 20th to Thursday Dec. 23rd (finals week).

Fundamentals

- Simplest problem: Root finding in one dimension:

$$
f(x)=0 \text { with } x \in[a, b]
$$

- Or more generally, solving a square system of nonlinear equations

$$
\mathbf{f}(\mathbf{x})=\mathbf{0} \quad \Rightarrow f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \text { for } i=1, \ldots, n
$$

- There can be no closed-form answer, so just as for eigenvalues, we need iterative methods.
- Most generally, starting from $m \geq 1$ initial guesses $x^{0}, x^{1}, \ldots, x^{m}$, iterate:

$$
x^{k+1}=\phi\left(x^{k}, x^{k-1}, \ldots, x^{k-m}\right)
$$

Order of convergence

- Consider one dimensional root finding and let the actual root be α, $f(\alpha)=0$.
- A sequence of iterates x^{k} that converges to α has order of convergence $p>1$ if as $k \rightarrow \infty$

$$
\frac{\left|x^{k+1}-\alpha\right|}{\left|x^{k}-\alpha\right|^{p}}=\frac{\left|e^{k+1}\right|}{\left|e^{k}\right|^{p}} \rightarrow C=\text { const }
$$

where the constant $0<C<1$ is the convergence factor.

- A method should at least converge linearly, that is, the error should at least be reduced by a constant factor every iteration, for example, the number of accurate digits increases by 1 every iteration.
- A good method for root finding coverges quadratically, that is, the number of accurate digits doubles every iteration!

Local vs. global convergence

- A good initial guess is extremely important in nonlinear solvers!
- Assume we are looking for a unique root $a \leq \alpha \leq b$ starting with an initial guess $a \leq x_{0} \leq b$.
- A method has local convergence if it converges to a given root α for any initial guess that is sufficiently close to α (in the neighborhood of a root).
- A method has global convergence if it converges to the root for any initial guess.
- General rule: Global convergence requires a slower (careful) method but is safer.
- It is best to combine a global method to first find a good initial guess close to α and then use a faster local method.

Conditioning of root finding

$$
\begin{gathered}
f(\alpha+\delta \alpha) \approx f(\alpha)+f^{\prime}(\alpha) \delta \alpha=\delta f \\
|\delta \alpha| \approx \frac{|\delta f|}{\left|f^{\prime}(\alpha)\right|} \Rightarrow \kappa_{a b s}=\left|f^{\prime}(\alpha)\right|^{-1}
\end{gathered}
$$

- The problem of finding a simple root is well-conditioned when $\left|f^{\prime}(\alpha)\right|$ is far from zero.
- Finding roots with multiplicity $m>1$ is ill-conditioned:

$$
\left|f^{\prime}(\alpha)\right|=\cdots=\left|f^{(m-1)}(\alpha)\right|=0 \quad \Rightarrow \quad|\delta \alpha| \approx\left[\frac{|\delta f|}{\left|f^{m}(\alpha)\right|}\right]^{1 / m}
$$

- Note that finding roots of algebraic equations (polynomials) is a separate subject of its own that we skip.

The bisection and Newton algorithms

LOCAL FAST
convergence

Bisection

- First step is to locate a root by searching for a sign change, i.e., finding a^{0} and b^{0} such that

$$
f\left(a^{0}\right) f\left(b^{0}\right)<0
$$

- The simply bisect the interval,

$$
x^{x}=\frac{a^{k}+b^{k}}{2}
$$

and choose the half in which the function changes sign by looking at the sign of $f\left(x^{k}\right)$.

- Observe that each step we need one function evaluation, $f\left(x^{k}\right)$, but only the sign matters.
- The convergence is essentially linear because

$$
\left|x^{k}-\alpha\right| \leq \frac{b^{k}}{2^{k+1}} \quad \Rightarrow \frac{\left|x^{k+1}-\alpha\right|}{\left|x^{k}-\alpha\right|} \leq 2
$$

Newton's Method

- Bisection is a slow but sure method. It uses no information about the value of the function or its derivatives.
- Better convergence, of order $p=(1+\sqrt{5}) / 2 \approx 1.63$ (the golden ratio), can be achieved by using the value of the function at two points, as in the secant method.
- Achieving second-order convergence requires also evaluating the function derivative.
- Linearize the function around the current guess using Taylor series:

$$
\begin{gathered}
f\left(x^{k+1}\right) \approx f\left(x^{k}\right)+\left(x^{k+1}-x^{k}\right) f^{\prime}\left(x^{k}\right)=0 \\
x^{k+1}=x^{k}-\frac{f\left(x^{k}\right)}{f^{\prime}\left(x^{k}\right)}
\end{gathered}
$$

Convergence of Newton's method

Taylor series with remainder:
$f(\alpha)=0=f\left(x^{k}\right)+\left(\alpha-x^{k}\right) f^{\prime}\left(x^{k}\right)+\frac{1}{2}\left(\alpha-x^{k}\right)^{2} f^{\prime \prime}(\xi)=0$, for some $\xi \in\left[x_{n}, \alpha\right]$
After dividing by $f^{\prime}\left(x^{k}\right) \neq 0$ we get

$$
\begin{gathered}
{\left[x^{k}-\frac{f\left(x^{k}\right)}{f^{\prime}\left(x^{k}\right)}\right]-\alpha=-\frac{1}{2}\left(\alpha-x^{k}\right)^{2} \frac{f^{\prime \prime}(\xi)}{f^{\prime}\left(x^{k}\right)}} \\
x^{k+1}-\alpha=e^{k+1}=-\frac{1}{2}\left(e^{k}\right)^{2} \frac{f^{\prime \prime}(\xi)}{f^{\prime}\left(x^{k}\right)}
\end{gathered}
$$

which shows second-order convergence

$$
\frac{\left|x^{k+1}-\alpha\right|}{\left|x^{k}-\alpha\right|^{2}}=\frac{\left|e^{k+1}\right|}{\left|e^{k}\right|^{2}}=\left|\frac{f^{\prime \prime}(\xi)}{2 f^{\prime}\left(x^{k}\right)}\right| \rightarrow\left|\frac{f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}\right|
$$

Proof of Local Convergence

$$
\begin{gathered}
\frac{\left|x^{k+1}-\alpha\right|}{\left|x^{k}-\alpha\right|^{2}}=\left|\frac{f^{\prime \prime}(\xi)}{2 f^{\prime}\left(x^{k}\right)}\right| \leq M=\sup _{\alpha-\left|e^{0}\right| \leq x, y \leq \alpha+\left|e^{0}\right|}\left|\frac{f^{\prime \prime}(x)}{2 f^{\prime}(y)}\right| \\
M\left|x^{k+1}-\alpha\right|=E^{k+1} \leq\left(M\left|x^{k}-\alpha\right|\right)^{2}=\left(E^{k}\right)^{2}
\end{gathered}
$$

which will converge if $E^{0}<1$, i.e., if

$$
\left|x^{0}-\alpha\right|=\left|e^{0}\right|<M^{-1}
$$

Newton's method thus always converges quadratically if we start sufficiently close to a simple root.

Fixed-Point Iteration

- Another way to devise iterative root finding is to rewrite $f(x)$ in an equivalent form

$$
x=\phi(x)
$$

- Then we can use fixed-point iteration

$$
x^{k+1}=\phi\left(x^{k}\right)
$$

whose fixed point (limit), if it converges, is $x \rightarrow \alpha$.

- For example, recall from first lecture solving $x^{2}=c$ via the Babylonian method for square roots

$$
x_{n+1}=\phi\left(x_{n}\right)=\frac{1}{2}\left(\frac{c}{x}+x\right)
$$

which converges (quadratically) for any non-zero initial guess.

Convergence theory

- It can be proven that the fixed-point iteration $x^{k+1}=\phi\left(x^{k}\right)$ converges if $\phi(x)$ is a contraction mapping:

$$
\left|\phi^{\prime}(x)\right| \leq K<1 \quad \forall x \in[a, b]
$$

$x^{k+1}-\alpha=\phi\left(x^{k}\right)-\phi(\alpha)=\phi^{\prime}(\xi)\left(x^{k}-\alpha\right)$ by the mean value theorem

$$
\left|x^{k+1}-\alpha\right|<K\left|x^{k}-\alpha\right|
$$

- If $\phi^{\prime}(\alpha) \neq 0$ near the root we have linear convergence

$$
\frac{\left|x^{k+1}-\alpha\right|}{\left|x^{k}-\alpha\right|} \rightarrow \phi^{\prime}(\alpha)
$$

- If $\phi^{\prime}(\alpha)=0$ we have second-order convergence if $\phi^{\prime \prime}(\alpha) \neq 0$, etc.

Applications of general convergence theory

- Think of Newton's method

$$
x^{k+1}=x^{k}-\frac{f\left(x^{k}\right)}{f^{\prime}\left(x^{k}\right)}
$$

as a fixed-point iteration method $x^{k+1}=\phi\left(x^{k}\right)$ with iteration function:

$$
\phi(x)=x-\frac{f(x)}{f^{\prime}(x)}
$$

- We can directly show quadratic convergence because (also see homework)

$$
\begin{gathered}
\phi^{\prime}(x)=\frac{f(x) f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{2}} \Rightarrow \phi^{\prime}(\alpha)=0 \\
\phi^{\prime \prime}(\alpha)=\frac{f^{\prime \prime}(\alpha)}{f^{\prime}(\alpha)} \neq 0
\end{gathered}
$$

Stopping Criteria

- A good library function for root finding has to implement careful termination criteria.
- An obvious option is to terminate when the residual becomes small

$$
\left|f\left(x^{k}\right)\right|<\varepsilon
$$

which is only good for very well-conditioned problems, $\left|f^{\prime}(\alpha)\right| \sim 1$.

- Another option is to terminate when the increment becomes small

$$
\left|x^{k+1}-x^{k}\right|<\varepsilon
$$

- For fixed-point iteration

$$
x^{k+1}-x^{k}=e^{k+1}-e^{k} \approx\left[1-\phi^{\prime}(\alpha)\right] e^{k} \quad \Rightarrow \quad\left|e^{k}\right| \approx \frac{\varepsilon}{\left[1-\phi^{\prime}(\alpha)\right]}
$$

so we see that the increment test works for rapidly converging iterations $\left(\phi^{\prime}(\alpha) \ll 1\right)$.

In practice

- A robust but fast algorithm for root finding would combine bisection with Newton's method.
- Specifically, a method like Newton's that can easily take huge steps in the wrong direction and lead far from the current point must be safeguarded by a method that ensures one does not leave the search interval and that the zero is not missed.
- Once x^{k} is close to α, the safeguard will not be used and quadratic or faster convergence will be achieved.
- Newton's method requires first-order derivatives so often other methods are preferred that require function evaluation only.
- Matlab's function fzero combines bisection, secant and inverse quadratic interpolation and is "fail-safe".

Find zeros of $a \sin (x)+b \exp \left(-x^{2} / 2\right)$ in MATLAB

\% $f=@ m f i l e$ uses a function in an m-file
\% Parameterized functions are created with:
$\mathrm{a}=1$; $\mathrm{b}=2$;
$\mathrm{f}=@(\mathrm{x}) \quad \mathrm{a} * \boldsymbol{\operatorname { s i n }}(\mathrm{x})+\mathrm{b} * \boldsymbol{\operatorname { e x p }}\left(-\mathrm{x}^{\wedge} 2 / 2\right) ; \%$ Handle
figure(1)
ezplot(f,[-5,5]); grid
x1=fzero(f, $[-2,0])$
[x2,f2]=fzero(f, 2.0)
$\times 1=-1.227430849357917$
$\times 2=3.155366415494801$
$\mathrm{f} 2=-2.116362640691705 \mathrm{e}-16$

Figure of $f(x)$

Multi-Variable Taylor Expansion

- We are after solving a square system of nonlinear equations for some variables \mathbf{x} :

$$
\mathbf{f}(\mathbf{x})=\mathbf{0} \quad \Rightarrow f_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \text { for } i=1, \ldots, n
$$

- It is convenient to focus on one of the equations, i.e., consider a scalar function $f(\mathbf{x})$.
- The usual Taylor series is replaced by

$$
f(\mathbf{x}+\Delta \mathbf{x})=f(\mathbf{x})+\mathbf{g}^{T}(\Delta \mathbf{x})+\frac{1}{2}(\Delta \mathbf{x})^{T} \mathbf{H}(\Delta \mathbf{x})
$$

where the gradient vector is

$$
\mathbf{g}=\nabla_{\mathbf{x}} f=\left[\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \cdots, \frac{\partial f}{\partial x_{n}}\right]^{T}
$$

and the Hessian matrix is

$$
\mathbf{H}=\nabla_{\mathbf{x}}^{2} f=\left\{\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right\}_{i j}
$$

Newton's Method for Systems of Equations

- It is much harder if not impossible to do globally convergent methods like bisection in higher dimensions!
- A good initial guess is therefore a must when solving systems, and Newton's method can be used to refine the guess.
- The first-order Taylor series is

$$
\mathbf{f}\left(\mathbf{x}^{k}+\Delta \mathbf{x}\right) \approx \mathbf{f}\left(\mathbf{x}^{k}\right)+\left[\mathbf{J}\left(\mathbf{x}^{k}\right)\right] \Delta \mathbf{x}=\mathbf{0}
$$

where the Jacobian \mathbf{J} has the gradients of $f_{i}(\mathbf{x})$ as rows:

$$
[\mathbf{J}(\mathbf{x})]_{i j}=\frac{\partial f_{i}}{\partial x_{j}}
$$

- So taking a Newton step requires solving a linear system:

$$
\begin{gathered}
{\left[\mathbf{J}\left(\mathbf{x}^{k}\right)\right] \Delta \mathbf{x}=-\mathbf{f}\left(\mathbf{x}^{k}\right) \text { but denote } \mathbf{J} \equiv \mathbf{J}\left(\mathbf{x}^{k}\right)} \\
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\Delta \mathbf{x}=\mathbf{x}^{k}-\mathbf{J}^{-1} \mathbf{f}\left(\mathbf{x}^{k}\right)
\end{gathered}
$$

Convergence of Newton's method

- Newton's method converges quadratically if started sufficiently close to a root \mathbf{x}^{\star} at which the Jacobian is not singular.

$$
\left\|\mathbf{x}^{k+1}-\mathbf{x}^{\star}\right\|=\left\|\mathbf{e}^{k+1}\right\|=\left\|\mathbf{x}^{k}-\mathbf{J}^{-1} \mathbf{f}\left(\mathbf{x}^{k}\right)-\mathbf{x}^{\star}\right\|=\left\|\mathbf{e}^{k}-\mathbf{J}^{-1} \mathbf{f}\left(\mathbf{x}^{k}\right)\right\|
$$

but using second-order Taylor series

$$
\begin{aligned}
& \mathbf{J}^{-1}\left\{\mathbf{f}\left(\mathbf{x}^{k}\right)\right\} \approx \mathbf{J}^{-1}\left\{\mathbf{f}\left(\mathbf{x}^{\star}\right)+\mathbf{J} \mathbf{e}^{k}+\frac{1}{2}\left(\mathbf{e}^{k}\right)^{T} \mathbf{H}\left(\mathbf{e}^{k}\right)\right\} \\
&=\mathbf{e}^{k}+\frac{\mathbf{J}^{-1}}{2}\left(\mathbf{e}^{k}\right)^{T} \mathbf{H}\left(\mathbf{e}^{k}\right) \\
&\left\|\mathbf{e}^{k+1}\right\|=\left\|\frac{\mathbf{J}^{-1}}{2}\left(\mathbf{e}^{k}\right)^{T} \mathbf{H}\left(\mathbf{e}^{k}\right)\right\| \leq \frac{\left\|\mathbf{J}^{-1}\right\|\|\mathbf{H}\|}{2}\left\|\mathbf{e}^{k}\right\|^{2}
\end{aligned}
$$

- Fixed point iteration theory generalizes to multiple variables, e.g., replace $f^{\prime}(\alpha)<1$ with $\rho\left(\mathbf{J}\left(\mathbf{x}^{\star}\right)\right)<1$.

Problems with Newton's method

- Newton's method requires solving many linear systems, which can become complicated when there are many variables.
- It also requires computing a whole matrix of derivatives, which can be expensive or hard to do (differentiation by hand?)
- Newton's method converges fast if the Jacobian $\mathbf{J}\left(\mathbf{x}^{\star}\right)$ is well-conditioned, otherwise it can "blow up".
- For large systems one can use so called quasi-Newton methods:
- Approximate the Jacobian with another matrix $\widetilde{\mathbf{J}}$ and solve $\widetilde{\mathbf{J}} \Delta \mathbf{x}=\mathbf{f}\left(\mathbf{x}^{k}\right)$.
- Damp the step by a step length $\alpha_{k} \lesssim 1$,

$$
\mathbf{x}^{k+1}=\mathbf{x}^{k}+\alpha_{k} \Delta \mathbf{x} .
$$

- Update $\tilde{\mathbf{J}}$ by a simple update, e.g., a rank-1 update (recall homework 2).

In practice

- It is much harder to construct general robust solvers in higher dimensions and some problem-specific knowledge is required.
- There is no built-in function for solving nonlinear systems in MATLAB, but the Optimization Toolbox has fsolve.
- In many practical situations there is some continuity of the problem so that a previous solution can be used as an initial guess.
- For example, implicit methods for differential equations have a time-dependent Jacobian $\mathbf{J}(t)$ and in many cases the solution $\mathbf{x}(t)$ evolves smootly in time.
- For large problems specialized sparse-matrix solvers need to be used.
- In many cases derivatives are not provided but there are some techniques for automatic differentiation.

Formulation

- Optimization problems are among the most important in engineering and finance, e.g., minimizing production cost, maximizing profits, etc.

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})
$$

where \mathbf{x} are some variable parameters and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar objective function.

- Observe that one only need to consider minimization as

$$
\max _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})=-\min _{\mathbf{x} \in \mathbb{R}^{n}}[-f(\mathbf{x})]
$$

- A local minimum x^{\star} is optimal in some neighborhood,

$$
f\left(\mathbf{x}^{\star}\right) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \quad \text { s.t. } \quad\left\|\mathbf{x}-\mathbf{x}^{\star}\right\| \leq R>0 .
$$

(think of finding the bottom of a valley)

- Finding the global minimum is generally not possible for arbitrary functions
(think of finding Mt. Everest without a satelite)

Connection to nonlinear systems

- Assume that the objective function is differentiable (i.e., first-order Taylor series converges or gradient exists).
- Then a necessary condition for a local minimizer is that \mathbf{x}^{\star} be a critical point

$$
\mathbf{g}\left(\mathbf{x}^{\star}\right)=\nabla_{\mathbf{x}} f\left(\mathbf{x}^{\star}\right)=\left\{\frac{\partial f}{\partial x_{i}}\left(\mathbf{x}^{\star}\right)\right\}_{i}=\mathbf{0}
$$

which is a system of non-linear equations!

- In fact similar methods, such as Newton or quasi-Newton, apply to both problems.
- Vice versa, observe that solving $\mathbf{f}(\mathbf{x})=\mathbf{0}$ is equivalent to an optimization problem

$$
\min _{x}\left[\mathbf{f}(\mathbf{x})^{T} \mathbf{f}(\mathbf{x})\right]
$$

although this is only recommended under special circumstances.

Sufficient Conditions

- Assume now that the objective function is twice-differentiable (i.e., Hessian exists).
- A critical point \mathbf{x}^{\star} is a local minimum if the Hessian is positive definite

$$
\mathbf{H}\left(\mathbf{x}^{\star}\right)=\nabla_{\mathbf{x}}^{2} f\left(\mathbf{x}^{\star}\right) \succ \mathbf{0}
$$

which means that the minimum really looks like a valley or a convex bowl.

- At any local minimum the Hessian is positive semi-definite, $\nabla_{\mathbf{x}}^{2} f\left(\mathbf{x}^{\star}\right) \succeq \mathbf{0}$.
- Methods that require Hessian information converge fast but are expensive (next class).

Direct-Search Methods

- A direct search method only requires $f(\mathbf{x})$ to be continuous but not necessarily differentiable, and requires only function evaluations.
- Methods that do a search similar to that in bisection can be devised in higher dimensions also, but they may fail to converge and are usually slow.
- The MATLAB function fminsearch uses the Nelder-Mead or simplex-search method, which can be thought of as rolling a simplex downhill to find the bottom of a valley. But there are many others and this is an active research area.
- Curse of dimensionality: As the number of variables (dimensionality) n becomes larger, direct search becomes hopeless since the number of samples needed grows as 2^{n} !

Minimum of $100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(a-x_{1}\right)^{2}$ in MATLAB

\% Rosenbrock or 'banana' function:
a = 1;
banana $=@(x) 100 *\left(x(2)-x(1)^{\wedge} 2\right)^{\wedge} 2+(a-x(1))^{\wedge} 2$;
\% This function must accept array arguments!
banana_xy $=@(x 1, x 2) 100 *(x 2-x 1 . \wedge 2) . \wedge 2+(a-x 1) .{ }^{\wedge} 2$;
figure (1); ezsurf(banana_xy, $[0,2,0,2])$
$[x, y]=$ meshgrid (linspace $(0,2,100))$;
figure (2) ; contourf (x,y,banana_xy (x,y),100)
\% Correct answers are $x=[1,1]$ and $f(x)=0$
$[x, f v a l]=$ fminsearch (banana, $[-1.2,1]$, optimset ('TolX', 1e-8))
$x=0.999999999187814 \quad 0.999999998441919$
fval $=1.099088951919573 \mathrm{e}-18$

Intro to Unconstrained Optimization Figure of Rosenbrock $f(\mathbf{x})$

Conclusions/Summary

- Root finding is well-conditioned for simple roots (unit multiplicity), ill-conditioned otherwise.
- Methods for solving nonlinear equations are always iterative and the order of convergence matters: second order is usually good enough.
- A good method uses a higher-order unsafe method such as Newton method near the root, but safeguards it with something like the bisection method.
- Newton's method is second-order but requires derivative/Jacobian evaluation. In higher dimensions having a good initial guess for Newton's method becomes very important.
- Quasi-Newton methods can aleviate the complexity of solving the Jacobian linear system.

