Numerical Methods |
Solving Nonlinear Equations

Aleksandar Donev
Courant Institute, NYU!
donev@courant.nyu.edu

1Course G63.2010.001 / G22.2420-001, Fall 2010

October 14th, 2010

A. Donev (Courant Institute) Lecture VI 10/14/2010

Outline

@ Basics of Nonlinear Solvers

© One Dimensional Root Finding

© Systems of Non-Linear Equations
@ Intro to Unconstrained Optimization

© Conclusions

A. Donev (Courant Institute) Lecture VI 10/14/2010 2/31

Final Presentations

@ The final project writeup will be due Sunday Dec. 26th by midnight (I
have to start grading by 12/27 due to University deadlines).

@ You will also need to give a 15 minute presentation in front of me and
other students.

@ Our last class is officially scheduled for Tuesday 12/14, 5-7pm, and
the final exam Thursday 12/23, 5-7pm. Neither of these are good!

@ By the end of next week, October 23rd, please let me know the
following:

e Are you willing to present early Thursday December 16th during usual
class time?

e Do you want to present during the official scheduled last class,
Thursday 12/23, 5-7pm.

o If neither of the above, tell me when you cannot present Monday Dec.
20th to Thursday Dec. 23rd (finals week).

A. Donev (Courant Institute) Lecture VI 10/14/2010 3/31

Basics of Nonlinear Solvers
Fundamentals

@ Simplest problem: Root finding in one dimension:

f(x) = 0 with x € [a, b]
@ Or more generally, solving a square system of nonlinear equations
f(x) =0 = fi(x,x2,...,x,) =0fori=1,...,n.

@ There can be no closed-form answer, so just as for eigenvalues, we
need iterative methods.

@ Most generally, starting from m > 1 initial guesses x°, x!, ..., x™

iterate:

XKL = (K XK= xkem),

A. Donev (Courant Institute) Lecture VI 10/14/2010 4 /31

Basics of Nonlinear Solvers
Order of convergence

@ Consider one dimensional root finding and let the actual root be «,
f(a) =0.

@ A sequence of iterates x¥ that converges to a has order of
convergence p > 1 if as k — oo

k+1 k+1‘

X —a] e
Xk —al® — Jek]?

— C = const,

where the constant 0 < C < 1 is the convergence factor.

@ A method should at least converge linearly, that is, the error should
at least be reduced by a constant factor every iteration, for example,
the number of accurate digits increases by 1 every iteration.

@ A good method for root finding coverges quadratically, that is, the
number of accurate digits doubles every iteration!

A. Donev (Courant Institute) Lecture VI 10/14/2010 5/31

Basics of Nonlinear Solvers
Local vs. global convergence

o A good initial guess is extremely important in nonlinear solvers!

@ Assume we are looking for a unique root a < o < b starting with an
initial guess a < xg < b.

@ A method has local convergence if it converges to a given root « for
any initial guess that is sufficiently close to « (in the neighborhood
of a root).

@ A method has global convergence if it converges to the root for any
initial guess.

@ General rule: Global convergence requires a slower (careful) method
but is safer.

@ It is best to combine a global method to first find a good initial guess
close to « and then use a faster local method.

A. Donev (Courant Institute) Lecture VI 10/14/2010 6 /31

Basics of Nonlinear Solvers
Conditioning of root finding

fla+da) ~ f(a)+ f'(a)da = 6f

|67]
()]

@ The problem of finding a simple root is well-conditioned when |f'(a))|
is far from zero.

6al & = kaps = |F'(@)| .

e Finding roots with multiplicity m > 1 is ill-conditioned:

1/m
Pa) == |rr D) =0 =]5@]%[197 }

fm(a)]

e Note that finding roots of algebraic equations (polynomials) is a
separate subject of its own that we skip.

A. Donev (Courant Institute) Lecture VI 10/14/2010 7/31

One Dimensional Root Finding

The bisection and Newton algorithms

intecwal
&e—> halges

ﬁ"il QL‘\(/@\ ‘//'\ ;0) %(‘l)
/,:‘7) - x
Glo BAL Slow

Sy —) R NT 12 =
C ONVELGEN (B W o O TiEolceDn

A. Donev (Courant Institute) Lecture VI 10/14/2010 8 /31

One Dimensional Root Finding
Bisection

o First step is to locate a root by searching for a sign change, i.e.,
finding a® and b° such that

f(a%)F(b°) < 0.
@ The simply bisect the interval,
ak + bk
2

and choose the half in which the function changes sign by looking at
the sign of f(x¥).

o Observe that each step we need one function evaluation, f(x*), but
only the sign matters.

X

@ The convergence is essentially linear because

bk ‘Xk+1 _ a‘
2k+1

¥ —af <

A. Donev (Courant Institute) Lecture VI 10/14/2010 9 /31

One Dimensional Root Finding
Newton's Method

@ Bisection is a slow but sure method. It uses no information about the
value of the function or its derivatives.

o Better convergence, of order p = (1 + v/5)/2 ~ 1.63 (the golden
ratio), can be achieved by using the value of the function at two
points, as in the secant method.

@ Achieving second-order convergence requires also evaluating the
function derivative.

@ Linearize the function around the current guess using Taylor series:

FXEE) = F() + (41— X F/(xK) = 0

A. Donev (Courant Institute) Lecture VI 10/14/2010 10 / 31

One Dimensional Root Finding

Convergence of Newton's method

Taylor series with remainder:

1
fla)=0= f(xk)—l—(a—xk)f’(xk)+§(a—xk)2f”(§) =0, for some § € [xp, A
After dividing by f'(x¥) # 0 we get

[Xk . f(Xk)] o= —1(04 _Xk)2 f"(€)
f'(xk) 2 f'(xk)

1 2 (&)
k+1 _ k1 k
X a=Ee - _E (e) f’(Xk)
which shows second-order convergence
|Xk+1 o Oz’ B |ek—|—1‘ B f”(f) f”(a)
Ixk—a> ek [2f'(x})| " [2f'(a)

A. Donev (Courant Institute) Lecture VI 10/14/2010 11 /31

One Dimensional Root Finding
Proof of Local Convergence

" (x)
2f'(y)

M‘XkJrl _a| — fk+1 < (M‘Xk _0‘})2 _ (Ek)2

<M= sup

B a—|e0|<x,y<a-+|e|

‘Xk-i-l —Oé| B ‘ fl/(é—)
2

| 2f7(xK)

Xk —af

which will converge if EC <1, ie,if
50— af = [¢%] < M

Newton's method thus always converges quadratically if we start
sufficiently close to a simple root.

A. Donev (Courant Institute) Lecture VI 10/14/2010 12 /31

One Dimensional Root Finding
Fixed-Point lteration

@ Another way to devise iterative root finding is to rewrite f(x) in an
equivalent form

x = ¢(x)

@ Then we can use fixed-point iteration

whose fixed point (limit), if it converges, is x — .

@ For example, recall from first lecture solving x2 = ¢ via the
Babylonian method for square roots

w1 = 000) = 5 (S x).

which converges (quadratically) for any non-zero initial guess.

A. Donev (Courant Institute) Lecture VI 10/14/2010 13 /31

One Dimensional Root Finding

Convergence theory

o It can be proven that the fixed-point iteration xkT1 = ¢(x*)
converges if ¢(x) is a contraction mapping:

|¢/(x)| <K <1 Vxelab]

X —a = ¢(x¥)—p(a) = ¢/(€) (x* — @) by the mean value theorem

|Xk+1 — a‘ <K ‘xk — a‘
o If ¢/(«) # 0 near the root we have linear convergence

‘XkJrl —Oz‘

— ¢/(a).

[xk —a
e If ¢’(a)) = 0 we have second-order convergence if ¢’ (a) # 0, etc.

A. Donev (Courant Institute) Lecture VI 10/14/2010 14 / 31

One Dimensional Root Finding
Applications of general convergence theory

@ Think of Newton’s method

f(xk)
as a fixed-point iteration method x**1 = ¢(x*) with iteration
function: Fx)
X
¢(X) =X f/(X)‘
@ We can directly show quadratic convergence because (also see
homework)
f(x)f"(x)
/ X)) = —~ = /) = 0
dORE e ()
()

#'(0) = iy #0

A. Donev (Courant Institute) Lecture VI 10/14/2010 15 / 31

One Dimensional Root Finding
Stopping Criteria

@ A good library function for root finding has to implement careful
termination criteria.

@ An obvious option is to terminate when the residual becomes small
|f(xk)‘ < g,

which is only good for very well-conditioned problems, |f'(«)| ~ 1.
@ Another option is to terminate when the increment becomes small

‘xkﬂ — Xk‘ <e.
@ For fixed-point iteration

k+1 k k+1 _ .k / k k €

X —x"=eT —e"xm|l-¢ ()| e = |e|rRT—F,
-t <1~ g

so we see that the increment test works for rapidly converging

iterations (¢/(a) < 1).

A. Donev (Courant Institute) Lecture VI 10/14/2010 16 / 31

One Dimensional Root Finding
In practice

@ A robust but fast algorithm for root finding would combine bisection
with Newton’s method.

o Specifically, a method like Newton's that can easily take huge steps in
the wrong direction and lead far from the current point must be
safeguarded by a method that ensures one does not leave the search
interval and that the zero is not missed.

@ Once x¥ is close to «, the safeguard will not be used and quadratic or
faster convergence will be achieved.

@ Newton's method requires first-order derivatives so often other
methods are preferred that require function evaluation only.

@ Matlab's function fzero combines bisection, secant and inverse
quadratic interpolation and is “fail-safe”.

A. Donev (Courant Institute) Lecture VI 10/14/2010 17 / 31

One Dimensional Root Finding

Find zeros of asin(x) + bexp(—x2/2) in MATLAB

% f=@mfile uses a function in an m—file

% Parameterized functions are created with:
a=1; b = 2;
f = 0(x) axsin(x) + bxexp(—x"2/2) ; % Handle

figure (1)
ezplot(f,[—5,5]); grid

xl=fzero (f, [—2,0])
[x2,f2]=fzero(f, 2.0)

x1l = —1.227430849357917
X2 = 3.155366415494801
f2 = —2.116362640691705e—16

A. Donev (Courant Institute) Lecture VI 10/14/2010 18 / 31

One Dimensional Root Finding

Figure of f(x)

a sin(x)+b exp(-x?/2)
25F T T T m|

onev (Courant Institute) Lecture VI 10/14/20 19 / 31

Systems of Non-Linear Equations
Multi-Variable Taylor Expansion

@ We are after solving a square system of nonlinear equations for
some variables x:

f(X):O :>ff(X17X27"‘7Xn):Of0r/.:1,...7n.

@ It is convenient to focus on one of the equations, i.e., consider a
scalar function f(x).
@ The usual Taylor series is replaced by

1
f(x+ Ax) = f(x) +g" (Ax) + 5 (Ax)T H(AX)
where the gradient vector is

of of af]T

_Wv.f = |2 Y
g X [axl’ Ox2’ 7 Ox,

and the Hessian matrix is

2
H:Vif:{ af}
0x;0x; i

A. Donev (Courant Institute) Lecture VI 10/14/2010 20 /31

Systems of Non-Linear Equations
Newton's Method for Systems of Equations

@ It is much harder if not impossible to do globally convergent methods
like bisection in higher dimensions!

@ A good initial guess is therefore a must when solving systems, and
Newton's method can be used to refine the guess.

@ The first-order Taylor series is

f (xk + Ax) ~ f (xk) +[J (xk)] Ax =0
where the Jacobian J has the gradients of f;(x) as rows:

;=

@ So taking a Newton step requires solving a linear system:

[J (xk)] Ax = —f (xk) but denote J =J (xk)

XKL = xk £ Ax = xk — J1f (xk) .

A. Donev (Courant Institute) Lecture VI 10/14/2010 21 /31

Systems of Non-Linear Equations

Convergence of Newton's method

@ Newton's method converges quadratically if started sufficiently close
to a root x*at which the Jacobian is not singular.

I =[] = [Je* T =[x — 37 (xF) = x| = [|e* =37 (x") |

but using second-order Taylor series

()} ! {f(x*) bk 42 (&) H (ek)}
=ek+ J; (ek)T H (e*)

@)@ < e

@ Fixed point iteration theory generalizes to multiple variables, e.g.,
replace f'(a)) < 1 with p (J(x*)) < 1.

I IHI
e =i

A. Donev (Courant Institute) Lecture VI 10/14/2010 22 /31

Systems of Non-Linear Equations
Problems with Newton'’s method

@ Newton's method requires solving many linear systems, which can
become complicated when there are many variables.

@ It also requires computing a whole matrix of derivatives, which can
be expensive or hard to do (differentiation by hand?)

e Newton's method converges fast if the Jacobian J (x*) is
well-conditioned, otherwise it can “blow up”.

@ For large systems one can use so called quasi-Newton methods:

o Approximate the Jacobian with another matrix J and solve
JAx = f(x).
e Damp the step by a step length oy < 1,

X = xk ¢+ a Ax.

e Update J by a simple update, e.g., a rank-1 update (recall homework
2).

A. Donev (Courant Institute) Lecture VI 10/14/2010 23 /31

Systems of Non-Linear Equations
In practice

@ It is much harder to construct general robust solvers in higher
dimensions and some problem-specific knowledge is required.

@ There is no built-in function for solving nonlinear systems in
MATLAB, but the Optimization Toolbox has fsolve.

@ In many practical situations there is some continuity of the problem
so that a previous solution can be used as an initial guess.

@ For example, implicit methods for differential equations have a
time-dependent Jacobian J(t) and in many cases the solution x(t)
evolves smootly in time.

@ For large problems specialized sparse-matrix solvers need to be used.

@ In many cases derivatives are not provided but there are some
techniques for automatic differentiation.

A. Donev (Courant Institute) Lecture VI 10/14/2010 24 /31

Intro to Unconstrained Optimization
Formulation

@ Optimization problems are among the most important in engineering
and finance, e.g., minimizing production cost, maximizing profits,
etc.

in f
fin 1)

where x are some variable parameters and f : R” — R is a scalar
objective function.
@ Observe that one only need to consider minimization as
max f(x) = — min [—f(x
max f(x) = — min [~f(x)]
@ A local minimum x* is optimal in some neighborhood,

f(x*)<f(x) ¥x st. [x—x*|<R>0.

(think of finding the bottom of a valley)

e Finding the global minimum is generally not possible for arbitrary
functions
(think of finding Mt. Everest without a satelite)

A. Donev (Courant Institute) Lecture VI 10/14/2010 25 /31

Intro to Unconstrained Optimization

Connection to nonlinear systems

@ Assume that the objective function is differentiable (i.e., first-order
Taylor series converges or gradient exists).

@ Then a necessary condition for a local minimizer is that x* be a
critical point

g (x*) = Vyf (x*) = {g)’; (x*)}i -0

which is a system of non-linear equations!

@ In fact similar methods, such as Newton or quasi-Newton, apply to
both problems.

@ Vice versa, observe that solving f (x) = 0 is equivalent to an
optimization problem

min [f (x)Tf(x)}
X
although this is only recommended under special circumstances.

A. Donev (Courant Institute) Lecture VI 10/14/2010 26 / 31

Intro to Unconstrained Optimization

Sufficient Conditions

@ Assume now that the objective function is twice-differentiable (i.e.,
Hessian exists).

@ A critical point x*is a local minimum if the Hessian is positive
definite
H(x*) = V2f (x*) = 0
which means that the minimum really looks like a valley or a convex
bowl.

@ At any local minimum the Hessian is positive semi-definite,
V2f (x*) = 0.

@ Methods that require Hessian information converge fast but are
expensive (next class).

A. Donev (Courant Institute) Lecture VI 10/14/2010 27 /31

Intro to Unconstrained Optimization

Direct-Search Methods

e A direct search method only requires f(x) to be continuous but
not necessarily differentiable, and requires only function evaluations.

@ Methods that do a search similar to that in bisection can be devised
in higher dimensions also, but they may fail to converge and are
usually slow.

@ The MATLAB function fminsearch uses the Nelder-Mead or
simplex-search method, which can be thought of as rolling a simplex
downhill to find the bottom of a valley. But there are many others
and this is an active research area.

@ Curse of dimensionality: As the number of variables
(dimensionality) n becomes larger, direct search becomes hopeless
since the number of samples needed grows as 2"!

A. Donev (Courant Institute) Lecture VI 10/14/2010 28 /31

Intro to Unconstrained Optimization

Minimum of 100(x; — x?)? + (a — x1)? in MATLAB

% Rosenbrock or ’'banana’ function:
a=1;
banana = ©@(x) 100%(x(2)—x(1)"2)"2+4+(a—x(1))"2;

% This function must accept array arguments/!
banana_xy = ©@(x1,x2) 100%(x2—x1.72)."24(a—x1)."2

figure (1); ezsurf(banana_xy, [0,2,0,2])

[x,y] = meshgrid(linspace (0,2,100));
figure (2); contourf(x,y,banana_xy(x,y),100)

% Correct answers are x=[1,1] and f(x)=0

[x,fval] = fminsearch(banana, [—1.2, 1], optimset(’'TolX',1e—38))
X = 0.999999999187814 0.999999998441919

fval = 1.099088951919573e—18

A. Donev (Courant Institute) Lecture VI 10/14/2010 29 /31

=
o
=]
©
=
1S
B
o
o
o
53
-5
°
5
0]
o
5}
o
9
2
o
5
ic]

—
X
~
S
e
9]
©)
=
0
c
Q
(%)
@)
o
Y—
(©)
()
—
>
&0
L

100 (x,-x,2%+(@x,)?

—
™
~
=]
(5]

>
4
g
S
2
13
L
|

%
%%

R

SRR

TR
R
ST

SRR

SeE ARSI

N

o

Conclusions
Conclusions/Summary

@ Root finding is well-conditioned for simple roots (unit multiplicity),
ill-conditioned otherwise.

@ Methods for solving nonlinear equations are always iterative and the
order of convergence matters: second order is usually good enough.

@ A good method uses a higher-order unsafe method such as Newton
method near the root, but safeguards it with something like the
bisection method.

e Newton's method is second-order but requires derivative/Jacobian
evaluation. In higher dimensions having a good initial guess for
Newton's method becomes very important.

@ Quasi-Newton methods can aleviate the complexity of solving the
Jacobian linear system.

A. Donev (Courant Institute) Lecture VI 10/14/2010 31/31

	Basics of Nonlinear Solvers
	One Dimensional Root Finding
	Systems of Non-Linear Equations
	Intro to Unconstrained Optimization
	Conclusions

