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Review of Linear Algebra: Eigenvalues

Eigenvalue Decomposition

For a square matrix A ∈ Cn×n, there exists at least one λ such that

Ax = λx ⇒ (A− λI) y = 0

Putting the eigenvectors xj as columns in a matrix X, and the
eigenvalues λj on the diagonal of a diagonal matrix Λ, we get

AX = XΛ.

A matrix is non-defective or diagonalizable if there exist n linearly
independent eigenvectors, i.e., if the matrix X is invertible:

X−1AX = Λ

A = XΛX−1.

The transformation from A to Λ = X−1AX is called a similarity
transformation and it preserves the eigenspace.

A. Donev (Courant Institute) Lecture IV 9/30/2010 3 / 23



Review of Linear Algebra: Eigenvalues

Unitarily Diagonalizable Matrices

A matrix is unitarily diagonalizable if there exist n linearly
independent orthogonal eigenvectors, i.e., if the matrix X can be
chosen to be unitary (orthogonal), X ≡ U, where U−1 = U?:

A = UΛU?.

Note that unitary matrices generalize orthogonal matrices to the
complex domain, so we use adjoints (conjugate transposes) instead
of transposes throughout.

Theorem: A matrix is unitarily diagonalizable iff it is normal, i.e., it
commutes with its adjoint:

A?A = AA?.

Theorem: Hermitian (symmetric) matrices, A? = A, are unitarily
diagonalizable and have real eigenvalues.
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Review of Linear Algebra: Eigenvalues

Left Eigenvectors

The usual eigenvectors are more precisely called right eigenvectors.
There is also left eigenvector corresponding to a given eigenvalue λ

y?A = λy? ⇒ A?y = λy.

Y?A = ΛY?

For a matrix that is diagonalizable, observe that

Y? = X−1

and so the left eigenvectors provide no new information.

For unitarily diagonalizable matrices, Y =
(
X−1

)?
= U, so that the

left and right eigenvectors coincide.
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Review of Linear Algebra: Eigenvalues

Non-diagonalizable Matrices

For matrices that are not diagonalizable, one can use Jordan form
factorizations, or, more relevant to numerical mathematics, the
Schur factorization (decomposition):

A = UTU?,

where T is upper-triangular.

The eigenvalues are on the diagonal of T.

Note: Observe that A? = (UTU?)? = UT?U? so for Hermitian
matrices T = T? is real diagonal.

An important property / use of eigenvalues:

An = (UTU?) (UTU?) · · · (UTU?) = UT (U?U) T (U?U) · · ·TU?

An = UTnU?
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Conditioning of Eigenvalue Problems

Sensitivity of Eigenvalues

Now consider a perturbation of a diagonalizable matrix δA and see
how perturbed the similar matrix becomes:

X−1 (A + δA) X = Λ + δΛ ⇒

δΛ = X−1 (δA) X ⇒

‖δΛ‖ ≤
∥∥X−1

∥∥ ‖δA‖ ‖X‖ = κ (X) ‖δA‖
Conclusion: The conditioning of the eigenvalue problem is related to
the conditioning of the matrix of eigenvectors.
If X is unitary then ‖X‖2 = 1 (from now on we exclusively work with
the 2-norm): Unitarily diagonalizable matrices are always
perfectly conditioned!
Warning: The absolute error in all eigenvalues is of the same order,
meaning that the relative error will be very large for the smallest
eigenvalues.
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Conditioning of Eigenvalue Problems

Sensitivity of Individual Eigenvalues

A. Donev (Courant Institute) Lecture IV 9/30/2010 8 / 23



Conditioning of Eigenvalue Problems

Sensitivity of Individual Eigenvalues

δλ ≈ y? (δA) x

y?x

Recalling the Cauchy-Schwartz inequality:

|y · x| = ‖x‖ ‖y‖ cos θxy ≤ ‖x‖ ‖y‖

|δλ| ≤ ‖x‖ ‖δA‖ ‖y‖
‖x‖ ‖y‖ cos θxy

=
‖δA‖

cos θxy

Defining a conditioning number for a given eigenvalue

κ (λ,A) = sup
δA

|δλ|
‖δA‖

=
1

cos θxy

For unitarily diagonalizable matrices y = x and thus κ (λ,A) = 1:
perfectly conditioned!
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Conditioning of Eigenvalue Problems

Sensitivity of Eigenvectors

A priori estimate: The conditioning number for the eigenvector itself
depends on the separation between the eigenvalues

κ (x,A) =

(
min
j
|λ− λj |

)−1

This indicates that multiple eigenvalues require care. Even for
Hermitian matrices eigenvectors are hard to compute.

If there is a defective (non-diagonalizable) matrix with eigenvalue for
which the difference between the algebraic and geometric
multiplicities is d > 0, then

δλ ∼ ‖δA‖1/(1+d) ,

which means the conditioning number is infinite: Defective
eigenvalues are very badly conditioned.
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Computing Eigenvalues and Eigenvectors

The need for iterative algorithms

The eigenvalues are roots of the characteristic polynomial of A,
which is generally of order n.

According to Abel’s theorem, there is no closed-form (rational)
solution for n ≥ 5.

All eigenvalue algorithms must be iterative!
This is a fundamental difference from, example, linear solvers.

There is an important distinction between iterative methods to:

Compute all eigenvalues (similarity transformations).
Compute only one or a few eigenvalues, typically the smallest or the
largest one (power-like methods).

Bounds on eigenvalues are important, e.g., Courant-Fisher theorem
for the Rayleigh quotient:

minλ ≤ rA (x) =
x?Ax

x?x
≤ maxλ
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Computing Eigenvalues and Eigenvectors

The Power Method

Recall that for a diagonalizable matrix

An = XΛnX−1

and assume |λ1| > |λ2| ≥ |λ3| · · · |λn| and that the columns of X are
normalized, ‖xj‖ = 1.

Any initial guess vector q0 can be represented in the linear basis
formed by the eigenvectors

q0 = Xa

Recall iterative methods for linear systems: Multiply a vector with
the matrix A many times:

qk+1 = Aqk

qn = Anq0 =
(
XΛnX−1

)
Xa = X (Λna)
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Computing Eigenvalues and Eigenvectors

Power Method

As n→∞, the eigenvalue of largest modulus λ0 will dominate,

Λn = λn1Diag

{
1,

(
λ2
λ1

)n

, . . .

}
→ λn1Diag {1, 0, . . . , 0}

qn = X (Λna)→ λn1X


a1
0
...
0

 = λn1x1

Therefore the normalized iterates converge to the eigenvector:

q̃n =
qn

‖qn‖
→ x1

The Rayleigh quotient converges to the eigenvalue:

rA (qn) =
q?nAqn

qn · qn

= q̃?nAq̃n → λ1

A. Donev (Courant Institute) Lecture IV 9/30/2010 13 / 23



Computing Eigenvalues and Eigenvectors

An alternative derivation
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Computing Eigenvalues and Eigenvectors

Power Method Implementation

Start with an initial guess q0, and then iterate:

1 Compute matrix-vector product and normalize it:

qk =
Aqk−1∥∥Aqk−1

∥∥
2 Use Raleigh quotient to obtain eigenvalue estimate:

λ̂k = q?kAqk

3 Test for convergence: Evaluate the residual

rk = Aqk − λ̂kqk

and terminate if the error estimate is small enough:∣∣∣λ1 − λ̂k ∣∣∣ ≈ ‖rk‖
cos θxy

< ε
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Computing Eigenvalues and Eigenvectors

Convergence Estimates

The normalized iterates converge to the eigenvector linearly:

‖qk − (±x1)‖ = O

(∣∣∣∣λ2λ1
∣∣∣∣k
)

Typically the eigenvalue estimate converges quadratically:∥∥∥λ̂k − λ1∥∥∥ ∼ O

(∣∣∣∣λ2λ1
∣∣∣∣2k
)

The power method is fast when the dominant eigenvalue is
well-separated from the rest (even if it is degenerate).

This conclusion is rather general for all iterative methods:
Convergence is good for well-separated eigenvalues, bad otherwise.

The power method is typically too slow to be used in practice and
there are more sophisticated alternatives (Lanczos/Arnoldi
iteration).
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Computing Eigenvalues and Eigenvectors

Inverse Power Iteration

Observe that applying the power method to A−1 will find the largest
of λ−1

j , i.e., the smallest eigenvalue (by modulus).

If we have an eigenvalue estimate µ ≈ λ, then doing the power
method for the matrix

(A− µI)−1

will give the eigenvalue closest to µ.

Convergence will be faster if µ is much closer to λ then to other
eigenvalues.

Recall that in practice (A− µI)−1 q is computed by solving a linear
system, not matrix inversion (one can reuse an LU factorization)!

Finally, if we have an estimate of both the eigenvalue and the
eigenvector, we can use Rayleigh Quotient Iteration (see
homework).

A. Donev (Courant Institute) Lecture IV 9/30/2010 17 / 23



Methods based on QR factorizations

Estimating all eigenvalues / eigenvectors

Iterative methods akin the power method are not suitable for
estimating all eigenvalues.

Basic idea: Build a sequence of matrices Ak that all share eigenvalues
with A via similarity transformations:

Ak+1 = P−1AkP, starting from A1 = A.

A numerically stable and good way to do this is to use the QR
factorization:

Ak = Qk+1Rk+1

Ak+1 = Q−1
k+1AkQk+1 =

(
Q−1

k+1Qk+1

)
Rk+1Qk+1 = Rk+1Qk+1.

Note that the fact the Q’s are orthogonal is crucial to keep the
conditioning from getting worse.
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Methods based on QR factorizations

The basic QR method

The behavior of the QR iteration can be understood most
transparently as follows [following Trefethen and Bau]:

Observation: The range of the matrix Ak converges to the space
spanned by the eigenvectors of A,
with the eigenvectors corresponding to the largest eigenvalues
dominating as k →∞ (so this is ill-conditioned).

Recall: The columns of Q in A = QR form an orthonormal basis for
the range of A.

Idea: Form a well-conditioned basis for the eigenspace of A by
factorizing:

Ak = Q̃k R̃k

and then calculate

Ak = Q̃−1
k AQ̃k = Q̃?

kAQ̃k .

It is not too hard to show that this produces the same sequence of
matrices Ak as the QR algorithm.
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Methods based on QR factorizations

Why the QR algorithm works

Summary: The columns of Q̃k converge to the eigenvectors, and

Ak = Q̃?
kAQ̃k .

We can recognize the above as a matrix of Rayleigh quotients, which
for diagonalizable matrices

(Ak)ij = q̃?i Aq̃j → λiδij =

{
λi if i = j

0 if i 6= j

showing that (under suitable assumptions):

Ak → Λ

It can also be shown that

Q̃k = Q1Q2 · · ·Qk → X
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Methods based on QR factorizations

More on QR algorithm

The convergence of the basic QR algorithm is closely related to that
of the power method: It is only fast if all eigenvalues are
well-separated.

For more general (non-diagonalizable) matrices in complex arithmetic,
the algorithm converges to the Schur decomposition A = UTU?,

Ak → T and Q̃k → U.

It is possible to implement the algorithm entirely using real arithmetic
(no complex numbers).

There are several key improvements to the basic method that make
this work in practice: Hessenberg matrices for faster QR
factorization, shifts and deflation for acceleration.

There are other sophisticated algorithms as well, such as the
divide-and-conquer algorithm, and the best are implemented in the
library LAPACK (MATLAB).

A. Donev (Courant Institute) Lecture IV 9/30/2010 21 / 23



Conclusions

Eigenvalues in MATLAB

In MATLAB, sophisticated variants of the QR algorithm (LAPACK
library) are implemented in the function eig :

Λ = eig(A)

[X ,Λ] = eig(A)

For large or sparse matrices, iterative methods based on the Arnoldi
iteration (ARPACK library), can be used to obtain a few of the
largest/smallest/closest-to-µ eigenvalues:

Λ = eigs(A, neigs)

[X ,Λ] = eigs(A, neigs)

The Schur decomposition is provided by [U,T ] = schur(A).
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Conclusions

Conclusions/Summary

Eigenvalues are well-conditioned for unitarily diagonalizable
matrices (includes Hermitian matrices), but ill-conditioned for nearly
non-diagonalizable matrices.

Eigenvectors are well-conditioned only when eigenvalues are
well-separated.

Eigenvalue algorithms are always iterative.

The power method and its variants can be used to find the largest
or smallest eigenvalue, and they converge fast if there is a large
separation between the target eigenvalue and nearby ones.

Estimating all eigenvalues and/or eigenvectors can be done by
combining the power method with QR factorizations.

MATLAB has high-quality implementations of sophisticated variants
of these algorithms.
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