Numerical Methods I

Solving Linear Systems:
Sparse Matrices, Iterative Methods and Non-Square Systems

Aleksandar Donev
Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu
${ }^{1}$ Course G63.2010.001 / G22.2420-001, Fall 2010

September 23rd, 2010

Outline

(1) Sparse Matrices
(2) Iterative Methods (briefly)
(3) The $Q R$ Factorization
(4) Conclusions

Banded Matrices

- Banded matrices are a very special but common type of sparse matrix, e.g., tridiagonal matrices

$$
\left[\begin{array}{cccc}
a_{1} & c_{1} & & 0 \\
b_{2} & a_{2} & \ddots & \\
& \ddots & \ddots & c_{n-1} \\
\mathbf{0} & & b_{n} & a_{n}
\end{array}\right]
$$

- There exist special techniques for banded matrices that are much faster than the general case, e.g, only $8 n$ FLOPS and no additional memory for tridiagonal matrices.
- A general matrix should be considered sparse if it has sufficiently many zeros that exploiting that fact is advantageous: usually only the case for large matrices (what is large?)!

Sparse Matrices

Graph representation:
\rightarrow NODES are variables (vertices) equations
\rightarrow Arcs (EDGES) are the non-zeros
UNDIRECTED GRAPH FOR SYMMETRIC MATRICES
>> A $=$ sparse($\left[\begin{array}{lllll}1 & 2 & 2 & 4 & 4\end{array}\right],\left[\begin{array}{lllll}3 & 1 & 4 & 2 & 3\end{array}\right], 1: 5$) A =
$(2,1)$
2
$(4,2)$
4
$(1,3) \quad 1$
$(4,3)$
5
$(2,4) \quad 3$
> nnz(A)
ans $=5$
>> whose A
A
4×4
120 double
sparse
$\gg A=$ sparse ([],[],[],4,4,5); \% Pre-allocate memory
$\gg A(2,1)=2 ; A(4,2)=4 ; A(1,3)=1 ; A(4,3)=5 ; A(2,4)=3$;

Sparse matrix factorization

>> B=sprand(4,4,0.25); \% Density of 25%
> full(B)
ans $=$

0	0	0	0.7655
0	0.7952	0	0
0	0.1869	0	0
0.4898	0	0	0

$\gg B=s p r a n d(100,100,0.1) ;$ spy (B)
$\gg X=$ gallery ('poisson', 10); spy (X)
$\gg[L, U, P]=\mathbf{l u}(B)$; spy (L)
$\gg \mathrm{p}=\operatorname{symrcm}(\mathrm{B})$; \% Symmetric Reverse Cuthill-McKee ol
$\gg P B P=B(p, p) ; \mathbf{s p y}(P B P)$;
$\gg[L, U, P]=\mathbf{l u}(P B P) ; \mathbf{s p y}(L)$;

Random matrix \mathbf{B} and structured matrix \mathbf{X}

The MATLAB function spy shows where the nonzeros are as a plot

$L U$ factors of random matrix \mathbf{B}

Fill-in (generation of lots of nonzeros) is large for a random sparse matrix

LU factors of structured matrix \mathbf{X}

Fill-in is much smaller for the sparse matrix but still non-negligible.

Matrix reordering

Matrix reordering cannot do much for the random matrix \mathbf{B}, but it can help for structured ones!

Reducing fill-in by reordering \mathbf{X}

Fill-in was reduced by about 20\% (from 1000 nonzeros to 800) by the reordering for the structured \mathbf{X}, but does not help much for \mathbf{B}. The actual numbers are different for different classes of matrices!

L for permuted matrix X

U for permuted matrix X

Importance of Sparse Matrix Structure

- Important to remember: While there are general techniques for dealing with sparse matrices that help greatly, it all depends on the structure (origin) of the matrix.
- Pivoting has a dual, sometimes conflicting goal:
(1) Reduce fill-in, i.e., improve memory use: Still active subject of research!
(2) Reduce roundoff error, i.e., improve stability. Typically some threshold pivoting is used only when needed.
- Pivoting for symmetric non-positive definite matrices is trickier: One can permute the diagonal entries only to preserve symmetry, but small diagonal entries require special treatment.
- For many sparse matrices iterative methods (briefly covered next lecture) are required to large fill-in.

Why iterative methods?

- Direct solvers are great for dense matrices and can be made to avoid roundoff errors to a large degree. They can also be implemented very well on modern machines.
- Fill-in is a major problem for certain sparse matrices and leads to extreme memory requirements (e.g., three-d.
- Some matrices appearing in practice are too large to even be represented explicitly (e.g., the Google matrix).
- Often linear systems only need to be solved approximately, for example, the linear system itself may be a linear approximation to a nonlinear problem.
- Direct solvers are much harder to implement and use on (massively) parallel computers.

Stationary Linear Iterative Methods of First Order

- In iterative methods the core computation is iterative matrix-vector multiplication starting from an initial guess $\mathbf{x}^{(0)}$.
- Prototype is the linear recursion:

$$
\mathbf{x}^{(k+1)}=\mathbf{B} \mathbf{x}^{(k)}+\mathbf{f}
$$

where \mathbf{B} is an iteration matrix somehow related to \mathbf{A}.

- For this method to be consistent, we must have that the actual solution $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$ is a stationary point of the iteration:

$$
\begin{gathered}
\mathbf{x}=\mathbf{B} \mathbf{x}+\mathbf{f} \Rightarrow \mathbf{A}^{-1} \mathbf{b}=\mathbf{B A}^{-1} \mathbf{b}+\mathbf{f} \\
\mathbf{f}=\mathbf{A}^{-1} \mathbf{b}-\mathbf{B A}^{-1} \mathbf{b}=(\mathbf{I}-\mathbf{B}) \mathbf{x}
\end{gathered}
$$

- For this method to be stable, and thus convergent, the error $\mathbf{e}^{(k)}=\mathbf{x}^{(k)}-\mathbf{x}$ must decrease:
$\mathbf{e}^{(k+1)}=\mathbf{x}^{(k+1)}-\mathbf{x}=\mathbf{B} \mathbf{x}^{(k)}+\mathbf{f}-\mathbf{x}=\mathbf{B}\left(\mathbf{x}+\mathbf{e}^{(k)}\right)+(\mathbf{I}-\mathbf{B}) \mathbf{x}-\mathbf{x}=\mathbf{B} \mathbf{e}^{(k)}$

Convergence of simple iterative methods

- We saw that the error propagates from iteration to iteration as

$$
\mathbf{e}^{(k)}=\mathbf{B}^{k} \mathbf{e}^{(0)}
$$

- When does this converge? Taking norms,

$$
\left\|\mathbf{e}^{(k)}\right\| \leq\|\mathbf{B}\|^{k}\left\|\mathbf{e}^{(0)}\right\|
$$

which means that $\|\mathbf{B}\|<1$ is a sufficient condition for convergence.

- More precisely, $\lim _{k \rightarrow \infty} \mathbf{e}^{(k)}=\mathbf{0}$ for any $\mathbf{e}^{(0)}$ iff $\mathbf{B}^{k} \rightarrow \mathbf{0}$.
- Theorem: The method converges iff the spectral radius of the iteration matrix is less than unity:

$$
\rho(\mathbf{B})<1 .
$$

Spectral Radius

- The spectral radius $\rho(\mathbf{A})$ of a matrix \mathbf{A} can be thought of as the smallest consistent matrix norm

$$
\rho(\mathbf{A})=\max _{\lambda}|\lambda| \leq\|\mathbf{A}\|
$$

- The spectral radius often determines convergence of iterative schemes for linear systems and eigenvalues and even methods for solving PDEs because it estimates the asymptotic rate of error propagation:

$$
\rho(\mathbf{A})=\lim _{k \rightarrow \infty}\left\|\mathbf{A}^{k}\right\|^{1 / k}
$$

- The iterations of an iterative method can be terminated when:
(1) The residual becomes small,

$$
\left\|\mathbf{r}^{(k)}\right\| \leq \varepsilon\|\mathbf{b}\|
$$

This is good for well-conditioned systems.
(2) The solution $\mathbf{x}^{(k)}$ stops changing, i.e., the increment becomes small,

$$
[1-\rho(\mathbf{B})]\left\|\mathbf{e}^{(k)}\right\| \leq\left\|\mathbf{x}^{(k+1)}-\mathbf{x}^{(k)}\right\| \leq \varepsilon\|\mathbf{b}\|
$$

which can be seen to be good if convergence is rapid, $\rho(\mathbf{B}) \ll 1$.

- Usually a careful combination of the two strategies is employed along with some safeguards.

Fixed-Point Iteration

- A naive but often successful method for solving

$$
x=f(x)
$$

is the fixed-point iteration

$$
x_{n+1}=f\left(x_{n}\right)
$$

- In the case of a linear system, consider rewriting $\mathbf{A x}=\mathbf{b}$ as:

$$
\mathbf{x}=(\mathbf{I}-\mathbf{A}) \mathbf{x}+\mathbf{b}
$$

- Fixed-point iteration gives the consistent iterative method

$$
\mathbf{x}^{(k+1)}=(\mathbf{I}-\mathbf{A}) \mathbf{x}^{(k)}+\mathbf{b}
$$

Preconditioning

- The above method is consistent but it may not converge or may converge very slowly

$$
\mathbf{x}^{(k+1)}=(\mathbf{I}-\mathbf{A}) \mathbf{x}^{(k)}+\mathbf{b} .
$$

- As a way to speed it up, consider having a good approximate solver

$$
\mathbf{P}^{-1} \approx \mathbf{A}^{-1}
$$

called the preconditioner (\mathbf{P} is the preconditioning matrix), and transform

$$
\mathbf{P}^{-1} \mathbf{A x}=\mathbf{P}^{-1} \mathbf{b}
$$

- Now apply fixed-point iteration to this modified system:

$$
\mathbf{x}^{(k+1)}=\left(\mathbf{I}-\mathbf{P}^{-1} \mathbf{A}\right) \mathbf{x}^{(k)}+\mathbf{P}^{-1} \mathbf{b}
$$

which now has an iteration matrix $\mathbf{I}-\mathbf{P}^{-1} \mathbf{A} \approx \mathbf{0}$, which means more rapid convergence.

Preconditioned Iteration

$$
\mathbf{x}^{(k+1)}=\left(\mathbf{I}-\mathbf{P}^{-1} \mathbf{A}\right) \mathbf{x}^{(k)}+\mathbf{P}^{-1} \mathbf{b}
$$

- In practice, we solve linear systems with the matrix \mathbf{P} instead of inverting it:

$$
\mathbf{P x}^{(k+1)}=(\mathbf{P}-\mathbf{A}) \mathbf{x}^{(k)}+\mathbf{b}=\mathbf{P} \mathbf{x}^{(k)}+\mathbf{r}^{(k)}
$$

where $\mathbf{r}^{(k)}=\mathbf{b}-\mathbf{A} \mathbf{x}^{(k)}$ is the residual vector.

- Finally, we obtain the usual form of a preconditioned stationary iterative solver

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}+\mathbf{P}^{-1} \mathbf{r}^{(k)} .
$$

- Note that convergence will be faster if we have a good initial guess $\mathbf{x}^{(0)}$.

Some Standard Examples

$$
\text { Splitting: } \mathbf{A}=\mathbf{L}_{A}+\mathbf{U}_{A}+\mathbf{D}
$$

- Since diagonal systems are trivial to solve, we can use the Jacobi method

$$
\mathbf{P}=\mathbf{D}
$$

- Or since triangular systems are easy to solve by forward/backward substitution, we can use Gauss-Seidel method

$$
\mathbf{P}=\mathbf{L}_{A}+\mathbf{D}
$$

- Both of these converge for strictly diagonally-dominant matrices.
- Gauss-Seidel converges for positive-definite matrices (maybe slowly though!).

A Good Preconditioner

- Note that the matrix \mathbf{A} is only used when calculating the residual through the matrix-vector product $\mathbf{A x}^{(k)}$.
- We must be able to do a direct linear solver for the preconditioner

$$
\mathbf{P}(\Delta \mathbf{x})=\mathbf{r}^{(k)}
$$

so it must be in some sense simpler to deal with than \mathbf{A}.

- Preconditioning is all about a balance between fewer iterations to convergence and larger cost per iteration.
- Making good preconditioners is in many ways an art and very problem-specific:
The goal is to make $\mathbf{P}^{-1} \mathbf{A}$ as close to being a normal (diagonalizable) matrix with clustered eigenvalues as possible.

In the Real World

- Some general preconditioning strategies have been designed, for example, incomplete $L U$ factorization (MATLAB's cholinc).
- There are many more-sophisticated iterative methods (non-stationary, higher-order, etc) but most have the same basic structure:
At each iteration, solve a preconditioning linear system, do a matrix-vector calculation, and a convergence test.
- For positive-(semi)definite matrices the Preconditioned Conjugate Gradient method is good (MATLAB's pcg).
- For certain types of matrices specialized methods have been designed, such as multigrid methods for linear systems on large grids (PDE solvers in Numerical Methods II).

Non-Square Matrices

- In the case of over-determined (more equations than unknowns) or under-determined (more unknowns than equations), the solution to linear systems in general becomes non-unique.
- One must first define what is meant by a solution, and the common definition is to use a least-squares formulation:

$$
\mathbf{x}^{\star}=\arg \min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|_{2}^{2}=\arg \min _{\mathbf{x} \in \mathbb{R}^{n}} \Phi(\mathbf{x})
$$

where the quadratic form is

$$
\Phi(\mathbf{x})=(\mathbf{A} \mathbf{x}-\mathbf{b})^{T}(\mathbf{A} \mathbf{x}-\mathbf{b}) .
$$

- Sometimes the solution to the least-squares is still not unique:
- Under-determined systems (not enough equations to fix all unknowns)
- Singular systems, i.e., A that is not of full rank:

Any solution to $\mathbf{A} \mathbf{x}_{0}=\mathbf{0}$ can be added to \mathbf{x} without changing the left hand side!

- Additional condition: Choose the \mathbf{x}^{\star} that has minimal Euclidean norm.

Over-determined systems: Normal Equations

- Over-determined systems, $m>n$, can be thought of as fitting a linear model (linear regression):
The unknowns \mathbf{x} are the coefficients in the fit, the input data is in \mathbf{A} (one column per measurement), and the output data (observables) are in \mathbf{b}.
- Not worrying about technicalities, set the gradient to zero:

$$
\Phi(\mathbf{x})=(\mathbf{A} \mathbf{x}-\mathbf{b})^{T}(\mathbf{A} \mathbf{x}-\mathbf{b}) \quad \text { and } \quad \nabla \Phi\left(\mathbf{x}^{\star}\right)=\mathbf{0}
$$

$$
\nabla \Phi(\mathbf{x})=\mathbf{A}^{T}[2(\mathbf{A} \mathbf{x}-\mathbf{b})] \text { (calculus with care for order and shapes) }
$$

- This gives the square linear system of normal equations

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{x}^{\star}=\mathbf{A}^{T} \mathbf{b} .
$$

- If \mathbf{A} is of full rank, $\operatorname{rank}(\mathbf{A})=n$, it can be shown (do it!) that $\mathbf{A}^{T} \mathbf{A}$ is positive definite, and Cholesky factorization can be used to solve the normal equations.

Problems with the normal equations

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{x}^{\star}=\mathbf{A}^{T} \mathbf{b}
$$

- The conditioning number of the normal equations is

$$
\kappa\left(\mathbf{A}^{T} \mathbf{A}\right)=[\kappa(\mathbf{A})]^{2}
$$

- Furthermore, roundoff can cause $\mathbf{A}^{T} \mathbf{A}$ to no longer appear as positive-definite and the Cholesky factorization will fail.
- If the normal equations are ill-conditioned, another approach is needed.
- Also note that multiplying $\mathbf{A}^{T}(n \times m)$ and $\mathbf{A}(m \times n)$ takes n^{2} dot-products of length m, so $O\left(m n^{2}\right)$ operations, which can be much larger than $O\left(n^{3}\right)$ for the Cholesky factorization if $m \gg n$ (fitting lots of data with few parameters).

The QR factorization

- For nonsquare or ill-conditioned matrices of full-rank $r=n \leq m$, the $L U$ factorization can be replaced by the $Q R$ factorization:

$$
\begin{aligned}
\mathbf{A} & =\mathbf{Q R} \\
{[m \times n] } & =[m \times n][n \times n]
\end{aligned}
$$

where \mathbf{Q} has orthogonal columns, $\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}_{n}$, and \mathbf{R} is a non-singular upper triangular matrix.

- Observe that orthogonal / unitary matrices are well-conditioned ($\kappa_{2}=1$), so the $Q R$ factorization is numerically better (but also more expensive!) than the $L U$ factorization.
- For matrices not of full rank there are modified $Q R$ factorizations but the SVD decomposition is better (next class).
- In MATLAB, the $Q R$ factorization can be computed using qr (with column pivoting).

Solving Linear Systems via QR factorization

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{x}^{\star}=\mathbf{A}^{T} \mathbf{b} \text { where } \mathbf{A}=\mathbf{Q} \mathbf{R}
$$

- Observe that \mathbf{R} is the Cholesky factor of the matrix in the normal equations:

$$
\begin{gathered}
\mathbf{A}^{T} \mathbf{A}=\mathbf{R}^{T}\left(\mathbf{Q}^{T} \mathbf{Q}\right) \mathbf{R}=\mathbf{R}^{T} \mathbf{R} \\
\left(\mathbf{R}^{T} \mathbf{R}\right) \mathbf{x}^{\star}=\left(\mathbf{R}^{T} \mathbf{Q}^{T}\right) \mathbf{b} \quad \Rightarrow \quad \mathbf{x}^{\star}=\mathbf{R}^{-1}\left(\mathbf{Q}^{T} \mathbf{b}\right)
\end{gathered}
$$

which amounts to solving a triangular system with matrix \mathbf{R}.

- This calculation turns out to be much more numerically stable against roundoff than forming the normal equations (and has similar cost).
- For under-determined full-rank systems, $r=m \leq n$, one does a $Q R$ factorization of $\mathbf{A}^{T}=\tilde{\mathbf{Q}} \tilde{\mathbf{R}}$ and the least-squares solution is

$$
\mathbf{x}^{\star}=\tilde{\mathbf{Q}}\left(\tilde{\mathbf{R}}^{-T} \mathbf{b}\right)
$$

Practice: Derive the above formula and maybe prove least-squares.

Computing the $Q R$ Factorization

- Assume that

$$
\begin{aligned}
& \exists \mathbf{x} \text { s.t. } \mathbf{b}=\mathbf{A} \mathbf{x} \text {, that is, } \mathbf{b} \in \operatorname{range}(\mathbf{A}) \\
& \mathbf{b}=\mathbf{Q}(\mathbf{R} \mathbf{x})=\mathbf{Q} \mathbf{y} \quad \Rightarrow \quad \mathbf{x}=\mathbf{R}^{-1} \mathbf{y}
\end{aligned}
$$

showing that the columns of \mathbf{Q} form an orthonormal basis for the range of \mathbf{A} (linear subspace spanned by the columns of \mathbf{A}).

- The $Q R$ factorization is thus closely-related to the orthogonalization of a set of n vectors (columns) $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}$ in \mathbb{R}^{m}.
- Classical approach is the Gram-Schmidt method: To make a vector b orthogonal to a do:

$$
\tilde{\mathbf{b}}=\mathbf{b}-(\mathbf{b} \cdot \mathbf{a}) \frac{\mathbf{a}}{(\mathbf{a} \cdot \mathbf{a})}
$$

Practice: Verify that $\tilde{\mathbf{b}} \cdot \mathbf{a}=\mathbf{0}$

- Repeat this in sequence: Start with $\tilde{\mathbf{a}}_{1}=\mathbf{a}_{1}$, then make $\tilde{\mathbf{a}}_{2}$ orthogonal to $\tilde{\mathbf{a}}_{1}$, then make $\tilde{\mathbf{a}}_{3}$ orthogonal to $\tilde{\mathbf{a}}_{2}$ and $\tilde{\mathbf{a}}_{3}$.

Modified Gram-Schmidt Orthogonalization

- More efficient formula (standard Gram-Schmidt):

$$
\tilde{\mathbf{a}}_{k+1}=\mathbf{a}_{k+1}-\sum_{j=1}^{k}\left(\mathbf{a}_{k+1} \cdot \mathbf{q}_{j}\right) \mathbf{q}_{j}, \quad \mathbf{q}_{k+1}=\frac{\tilde{\mathbf{a}}_{k+1}}{\left\|\tilde{\mathbf{a}}_{k+1}\right\|},
$$

with cost $\sim m n^{2}$ FLOPS.

- A mathematically-equivalent but numerically much superior against roundoff error is the modified Gram-Schmidt, in which each orthogonalization is carried in sequence and repeated against each of the already-computed basis vectors:
Start with $\tilde{\mathbf{a}}_{1}=\mathbf{a}_{1}$, then make $\tilde{\mathbf{a}}_{2}$ orthogonal to $\tilde{\mathbf{a}}_{1}$, then make $\tilde{\mathbf{a}}_{3}$ orthogonal to $\tilde{\mathbf{a}}_{2}$ and then make it orthogonal to $\tilde{\mathbf{a}}_{3}$.
- The modified procedure is twice more expensive, $\sim 2 m n^{2}$ FLOPS, but usually worth it.
- Pivoting is strictly necessary for matrices not of full rank but it can also improve stability in general.

Conclusions/Summary

- Sparse matrices deserve special treatment but the details depend on the specific field of application.
- In particular, special sparse matrix reordering methods or iterative systems are often required.
- When sparse direct methods fail due to memory or other requirements, iterative methods are used instead.
- Convergence of iterative methods depends strongly on the matrix, and a good preconditioner is often required.
- There are good libraries for iterative methods as well (but you must supply your own preconditioner!).
- The $Q R$ factorization is a numerically-stable method for solving full-rank non-square systems.
- For rank-defficient matrices the singular value decomposition (SVD) is best, discussed in later lectures.

