Numerical Methods I
 Solving Square Linear Systems: GEM and $L U$ factorization

Aleksandar Donev
Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu

${ }^{1}$ Course G63.2010.001 / G22.2420-001, Fall 2010
September 16th, 2010

Outline

(1) Conditioning of linear systems
(2) Gauss elimination and LU factorization

- Pivoting
- Cholesky Factorization
- Pivoting and Stability
(3) Conclusions

Matrices and linear systems

- It is said that 70% or more of applied mathematics research involves solving systems of m linear equations for n unknowns:

$$
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, \quad i=1, \cdots, m
$$

- Linear systems arise directly from discrete models, e.g., traffic flow in a city. Or, they may come through representing or more abstract linear operators in some finite basis (representation).
Common abstraction:

$$
\mathbf{A x}=\mathbf{b}
$$

- Special case: Square invertible matrices, $m=n, \operatorname{det} \mathbf{A} \neq 0$:

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

- The goal: Calculate solution \mathbf{x} given data \mathbf{A}, \mathbf{b} in the most numerically stable and also efficient way.

Vector norms (briefly)

- Norms are the abstraction for the notion of a length or magnitude.
- For a vector $\mathbf{x} \in \mathbb{R}^{n}$, the p-norm is

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

and special cases of interest are:
(1) The 1-norm (L^{1} norm or Manhattan distance), $\|\mathbf{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
(2) The 2-norm (L^{2} norm, Euclidian distance),

$$
\|\mathbf{x}\|_{2}=\sqrt{\mathbf{x} \cdot \mathbf{x}}=\sqrt{\sum_{i=1}^{n}\left|x_{i}\right|^{2}}
$$

(3) The ∞-norm (L^{∞} or maximum norm), $\|\mathbf{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$
(1) Note that all of these norms are inter-related in a finite-dimensional setting.

Matrix norms (briefly)

- Matrix norm induced by a given vector norm:

$$
\|\mathbf{A}\|=\sup _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|} \Rightarrow\|\mathbf{A} \mathbf{x}\| \leq\|\mathbf{A}\|\|\mathbf{x}\|
$$

- The last bound holds for matrices as well, $\|\mathbf{A B}\| \leq\|\mathbf{A}\|\|\mathbf{B}\|$.
- Special cases of interest are:
(1) The 1-norm or column sum norm, $\|\mathbf{A}\|_{1}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|$
(2) The ∞-norm or row sum norm, $\|\mathbf{A}\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right|$
(3) The 2-norm or spectral norm, $\|\mathbf{A}\|_{2}=\sigma_{1}$ (largest singular value)
(9) The Euclidian or Frobenius norm, $\|\mathbf{A}\|_{F}=\sqrt{\sum_{i, j}\left|a_{i j}\right|^{2}}$ (note this is not an induced norm)

Stability analysis: rhs perturbations

Perturbations on right hand side (rhs) only:

$$
\begin{gathered}
\mathbf{A}(\mathbf{x}+\delta \mathbf{x})=\mathbf{b}+\delta \mathbf{b} \quad \Rightarrow \mathbf{b}+\mathbf{A} \delta \mathbf{x}=\mathbf{b}+\delta \mathbf{b} \\
\delta \mathbf{x}=\mathbf{A}^{-1} \delta \mathbf{b} \quad \Rightarrow\|\delta \mathbf{x}\| \leq\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{b}\|
\end{gathered}
$$

Using the bounds

$$
\|\mathbf{b}\| \leq\|\mathbf{A}\|\|\mathbf{x}\| \quad \Rightarrow\|\mathbf{x}\| \geq\|\mathbf{b}\| /\|\mathbf{A}\|
$$

the relative error in the solution can be bounded by

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{b}\|}{\|\mathbf{x}\|} \leq \frac{\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{b}\|}{\|\mathbf{b}\| /\|\mathbf{A}\|}=\kappa(\mathbf{A}) \frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}
$$

where the conditioning number $\kappa(\mathbf{A})$ depends on the matrix norm used:

$$
\kappa(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\| \geq 1
$$

Stability analysis: matrix perturbations

- Perturbations of the matrix only:

$$
\begin{gathered}
(\mathbf{A}+\delta \mathbf{A})(\mathbf{x}+\delta \mathbf{x})=\mathbf{b} \quad \Rightarrow \delta \mathbf{x}=-\mathbf{A}^{-1}(\delta \mathbf{A})(\mathbf{x}+\delta \mathbf{x}) \\
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}+\delta \mathbf{x}\|} \leq\left\|\mathbf{A}^{-1}\right\|\|\delta \mathbf{A}\|=\kappa(\mathbf{A}) \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}
\end{gathered}
$$

- Conclusion: The conditioning of the linear system is determined by

$$
\kappa(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\| \geq 1
$$

- No numerical method can cure an ill-conditioned systems, $\kappa(\mathbf{A}) \gg 1$.
- The conditioning number can only be estimated in practice since \mathbf{A}^{-1} is not available (see MATLAB's rcond function).

Practice: What is $\kappa(\mathbf{A})$ for diagonal matrices in the 1-norm, ∞-norm, and 2-norm?

Mixed perturbations

- Now consider general perturbations of the data:

$$
(\mathbf{A}+\delta \mathbf{A})(\mathbf{x}+\delta \mathbf{x})=\mathbf{b}+\delta \mathbf{b}
$$

- The full derivation is the book [next slide]:

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\kappa(\mathbf{A})}{1-\kappa(\mathbf{A}) \frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}}\left(\frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}+\frac{\|\delta \mathbf{A}\|}{\|\mathbf{A}\|}\right)
$$

- Important practical estimate:

Roundoff error in the data, with rounding unit u (recall $\approx 10^{-16}$ for double precision), produces a relative error

$$
\frac{\|\delta \mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} \lesssim 2 u \kappa(\mathbf{A})
$$

- It certainly makes no sense to try to solve systems with $\kappa(\mathbf{A})>10^{16}$.

$$
\begin{aligned}
& (A+\delta A)(x+\delta x)=b+\delta b \\
b^{\prime}+ & (A+\delta A) \delta x+(\delta A) x=b+\delta b \\
\Rightarrow & \delta x=(A+\delta A)^{-1}[\delta b-(\delta A) x] \\
= & {[A(I+A \delta A)]^{-1}[\delta b-(\delta A) x] } \\
= & \left(I+A^{-1} \delta A\right)^{-1} A^{-1}[\delta b-(\delta A) x] \\
& \|\delta x\| \leqslant\left\|\left(I+A^{-1} \delta A\right)^{-1}\right\|\left\|A^{-1}\right\|\|\delta b-(\delta A) x\|
\end{aligned}
$$

Derived in book:
FACT 1: $\left\|\left(I+A^{-1} \delta A\right)^{-1}\right\| \leq \frac{1}{1-\left\|A^{-1} \delta A\right\|} \leq \frac{1}{1-\left\|A^{-1}\right\| \| C A}$
FACT 2: $\|\delta b-(\delta A) \times\| \leqslant \underset{\text { Lecture } \|}{\| \delta b}+\|(\delta A) \times\| \leqslant \delta b+\|\delta A\|\|\delta \cdot\|(1)$

$$
\begin{aligned}
& \Rightarrow \frac{\|\delta x\|}{\|x\|} \leqslant \frac{\left\|A^{-1}\right\|}{1-\left\|A^{-1}\right\|\|\delta A\|} \cdot\left[\frac{\|\delta b\|}{\|x\|}+\|\delta A\|\right. \\
&=\frac{\left\|A^{-1}\right\|\|A\|}{1-\frac{\left\|A^{-1}\right\|\|A\| \delta A \|}{\|A\|}}\left[\frac{\|\delta b\|}{\|A\|\|x\|}+\frac{\|\delta A\|}{\|A\|}\right] \\
& {\left[\begin{array}{l}
\text { just put }\|A\| \text { in both } \\
\text { numerator and denom. }
\end{array}\right] } \\
& \leqslant \frac{K(A)}{1-k A) \frac{\|\delta A\|}{\|A\|}}\left[\frac{\|\delta b\|}{\|b\|}+\frac{\|\delta A\|}{\|A\|}\right]
\end{aligned}
$$

Numerical Solution of Linear Systems

- There are several numerical methods for solving a system of linear equations.
- The most appropriate method really depends on the properties of the matrix A:
- General dense matrices, where the entries in \mathbf{A} are mostly non-zero and nothing special is known. We focus on the Gaussian Elimination Method (GEM).
- General sparse matrices, where only a small fraction of $a_{i j} \neq 0$.
- Symmetric and also positive-definite dense or sparse matrices.
- Special structured sparse matrices, arising from specific physical properties of the underlying system (more in Numerical Methods II).
- It is also important to consider how many times a linear system with the same or related matrix or right hand side needs to be solved.

Step 1:

1 Eliminate x_{1}
$\left[\begin{array}{c|cc}(1) & a_{12}^{(1)} & a_{13}^{(1)} \\ a_{11} & a_{12}^{(1)} & a_{22}^{(1)}- \\ a_{21}^{(1)} \\ l_{21} \cdot a_{11} & l_{21} \cdot a_{12}^{(1)} & l_{21} \cdot a_{13}^{(1)} \\ - & a_{32}^{(1)}- & a_{33}^{(1)}- \\ 0 & l_{31} \cdot a_{12}^{(1)} & l_{31} \cdot a_{13}^{(1)}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}b_{1} \\ b_{2}-l_{21} b_{1} \\ b_{3}-l_{31} \cdot b_{1}\end{array}\right]$

GEM: Eliminating x_{2}

$$
\left[\begin{array}{l|l|}
a_{11}^{(1)} & a_{12}^{(1)} \\
\hline 0 & a_{13}^{(1)} \\
\hline 0 & a_{22}^{(2)} \\
a_{23}^{(2)} \\
\hline 0 & a_{32}^{(2)}
\end{array} a_{33}^{(2)}\right]\left[\begin{array}{l}
x_{1} \\
\overline{x_{2}} \\
\overline{x_{3}}
\end{array}\right]=\left[\begin{array}{l}
b_{1}^{(2)} \\
\frac{1}{b_{2}^{(2)}} \\
\frac{b_{2}^{(1)}}{b_{3}^{(3)}}
\end{array}\right] \leftarrow \begin{aligned}
& \text { done row! } \\
& \begin{array}{l}
\text { recoup } y_{\text {row }} \text { by } \\
l_{32}=\frac{a_{32}^{(2)}}{a_{22}^{(2)}}
\end{array}
\end{aligned}
$$

$$
\underset{\substack{x_{3} \\
\text { entirely }}}{\text { Eliminate }}\left[\begin{array}{cc}
a_{11}^{(1)} & a_{12}^{(1)} \\
0 & a_{22}^{(2)}
\end{array}\right] \underset{\sim}{\tilde{0}}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{lll}
b_{1}^{(3)}-a_{13}^{(1)} & x_{3} \\
b_{2}^{(3)}-a_{23}^{(2)} & x_{3}
\end{array}\right]=\tilde{b}
$$

solve her $\hat{x}_{2}=\frac{\tilde{e}}{a_{22}^{(2)}}$, then x_{1}, and done!
IDEA: Stere the multipliers in the lower triangle of A :

$$
\left.\begin{array}{c}
\begin{array}{c}
\text { Matrix } \\
\text { at } \\
\text { Step }
\end{array} \\
L^{(k)} \\
A^{(k)}
\end{array}\right]\left[\begin{array}{c|c|c}
u_{11}^{(k)} & u_{12} & u_{13} \\
\hline l_{21} & a_{22}^{(2)} & a_{23}^{(2)} \\
\hline l_{31} & a_{32}^{(2)} & a_{33}^{(2)}
\end{array}\right]
$$

GEM as an $L U$ factorization tool

- Observation, proven in the book (not very intuitively):

$$
\mathbf{A}=\mathbf{L} \mathbf{U}
$$

where \mathbf{L} is unit lower triangular ($\ell_{i i}=1$ on diagonal), and \mathbf{U} is upper triangular.

- GEM is thus essentially the same as the $L U$ factorization method.

GEM in MATLAB

Sample MATLAB code (for learning purposes only, not real computing!): function $A=\operatorname{MyLU}(A)$
\% LU factorization in-place (overwrite A)
[n, m]=size (A);
if ($\mathrm{n}^{\sim}=m$); error('Matrix not square'); end
for $k=1:(n-1)$ \% For variable $x(k)$
\% Calculate multipliers in column k :
$A((k+1): n, k)=A((k+1): n, k) / A(k, k)$;
\% Note: Pivot element $A(k, k)$ assumed nonzero! for $\mathrm{j}=(\mathrm{k}+1)$: n
\% Eliminate variable $\times(k)$:
$A((k+1): n, j)=A((k+1): n, j)-\ldots$

$$
A((k+1): n, k) * A(k, j) ;
$$

end
end
end

Gauss Elimination Method (GEM)

- GEM is a general method for dense matrices and is commonly used.
- Implementing GEM efficiently is difficult and we will not discuss it here, since others have done it for you!
- The LAPACK public-domain library is the main repository for excellent implementations of dense linear solvers.
- MATLAB uses a highly-optimized variant of GEM by default, mostly based on LAPACK.
- MATLAB does have specialized solvers for special cases of matrices, so always look at the help pages!

Zero diagonal entries (picots) pose a problem \rightarrow pivoting (swapping rows and columns)

$$
\begin{gathered}
A x=b \\
{\left[\begin{array}{lll}
1 & 1 & 3 \\
2 & 2 & 2 \\
3 & 6 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
6 \\
13
\end{array}\right] \Rightarrow\left[\begin{array}{ccc}
1 & 1 & 3 \\
\hline 2 & 0 & -4 \\
3 & 3 & -5
\end{array}\right]} \\
{\left[\begin{array}{l|rr}
1 & 1 & 3 \\
\hline 3 & 3 & -5 \\
2 & 0 & -4
\end{array}\right] \Rightarrow\left[\begin{array}{ll|l|}
\hline 1 & 1 & 3 \\
\hline 3 & 1 & 3 \\
\hline 2 & -5 \\
\hline & 0 & 1-4
\end{array} \begin{array}{l}
\text { Observe } \\
L U=A
\end{array}\right.}
\end{gathered}
$$

GEM Matlab example (1)

$$
\begin{aligned}
& \gg \mathrm{L}=\left[\begin{array}{lllllllll}
1 & 0 & 0 ; & 3 & 1 & 0 ; & 2 & 0 & 1
\end{array}\right] \\
& \mathrm{L}= \\
& \\
& 1
\end{aligned}
$$

GEM Matlab example (2)

$\gg \mathrm{AP}=\mathrm{L} * \mathrm{U}$ \% Permuted A
$\mathrm{AP}=$

1	1	3
3	6	4
2	2	2

$\gg A=\left[\begin{array}{lllllllll}1 & 1 & 3 ; & 2 & 2 & 2 ; & 3 & 6 & 4\end{array}\right]$
$\mathrm{A}=$

1	1	3
2	2	2
3	6	4

GEM Matlab example (3)

>> AP=MyLU(AP) \% Two last rows permuted $\mathrm{AP}=$

1	1	3
3	3	-5
2	0	-4

>> MyLU(A) \% No pivoting
ans =

1	1	3
2	0	-4
3	$\mathbf{I n f}$	$\mathbf{l n f}$

GEM Matlab example (3)

>> AP=MyLU(AP) \% Two last rows permuted $\mathrm{AP}=$

1	1	3
3	3	-5
2	0	-4

>> MyLU(A) \% No pivoting
ans =

1	1	3
2	0	-4
3	$\mathbf{I n f}$	$\mathbf{l n f}$

GEM Matlab example (4)

$$
\begin{aligned}
& \text { >> }[\mathrm{Lm}, \mathrm{Um}, \mathrm{Pm}]=\mathrm{lu}(\mathrm{~A}) \\
& \text { Lm }= \\
& \text { Um = }
\end{aligned}
$$

GEM Matlab example (5)

$\gg \mathrm{Lm} * \mathrm{Um}$
ans $=$

3	6	4
2	2	2
1	1	3

$\gg A$
$\mathrm{A}=$

1	1	3
2	2	2
3	6	4

\gg norm ($L m * U m-P m * A)$
ans $=$
0

Pivoting during LU factorization

- Partial (row) pivoting permutes the rows (equations) of \mathbf{A} in order to ensure sufficiently large pivots and thus numerical stability:

$$
\mathbf{P A}=\mathbf{L U}
$$

- Here \mathbf{P} is a permutation matrix, meaning a matrix obtained by permuting rows and/or columns of the identity matrix.
- Complete pivoting also permutes columns, $\mathbf{P A Q}=\mathbf{L U}$.

Solving linear systems

- Once an $L U$ factorization is available, solving a linear system is simple:

$$
\mathbf{A x}=\mathbf{L U x}=\mathbf{L}(\mathbf{U} \mathbf{x})=\mathbf{L} \mathbf{y}=\mathbf{b}
$$

so solve for \mathbf{y} using forward substitution.
This was implicitly done in the example above by overwriting \mathbf{b} to become y during the factorization.

- Then, solve for x using backward substitution

$$
\mathbf{U x}=\mathbf{y}
$$

- If row pivoting is necessary, the same applies if one also permutes the equations (rhs b):

$$
\mathbf{P A x}=\mathbf{L U x}=\mathbf{L y}=\mathbf{P b}
$$

or formally (meaning for theoretical purposes only)

$$
\mathbf{x}=(\mathbf{L U})^{-1} \mathbf{P b}=\mathbf{U}^{-1} \mathbf{L}^{-1} \mathbf{P b}
$$

Solving linear systems contd.

- Observing that permutation matrices are orthogonal matrices, $\mathbf{P}^{-1}=\mathbf{P}^{\top}$,

$$
\mathbf{A}=\mathbf{P}^{-1} \mathbf{L} \mathbf{U}=\left(\mathbf{P}^{T} \mathbf{L}\right) \mathbf{U}=\tilde{\mathbf{L}} \mathbf{U}
$$

where $\widetilde{\mathbf{L}}$ is a row permutation of a unit lower triangular matrix.

- The MATLAB call $[L, U, P]=l u(A)$ returns the permutation matrix but the call $[\tilde{L}, U]=l u(A)$ permutes the lower triangular factor directly.
- In MATLAB, the implicit linear solve backslash operator

$$
x=A \backslash b
$$

is equivalent to performing an $L U$ factorization and doing two triangular solves:

$$
\begin{aligned}
{[\tilde{L}, U] } & =l u(A) \\
y & =\tilde{L} \backslash b \\
x & =U \backslash y
\end{aligned}
$$

Cost estimates for GEM

- For forward or backward substitution, at step k there are $\sim(n-k)$ multiplications and subtractions, plus a few divisions.
The total over all n steps is

$$
\sum_{k=1}^{n}(n-k)=\frac{n(n-1)}{2} \approx \frac{n^{2}}{2}
$$

subtractions and multiplications, giving a total of n^{2} floating-point operations (FLOPs).

- For GEM, at step k there are $\sim(n-k)^{2}$ multiplications and subtractions, plus a few divisions.
The total is

$$
\mathrm{FLOPS}=2 \sum_{k=1}^{n}(n-k)^{2} \approx \frac{2 n^{3}}{3}
$$

and the $O\left(n^{2}\right)$ operations for the triangular solves are neglected.

- When many linear systems need to be solved with the same A the factorization can be reused.

Positive-Definite Matrices

- A real symmetric matrix \mathbf{A} is positive definite iff (if and only if):
(1) All of its eigenvalues are real (follows from symmetry) and positive.
(2) $\forall x \neq \mathbf{0}, \mathbf{x}^{T} \mathbf{A} \mathbf{x}>0$, i.e., the quadratic form defined by the matrix \mathbf{A} is convex.
(3) There exists a unique lower triangular $\mathbf{L}, L_{i i}>0$,

$$
\mathbf{A}=\mathbf{L L}^{\top},
$$

termed the Cholesky factorization of \mathbf{A} (symmetric $L U$ factorization).
(1) For Hermitian complex matrices just replace transposes with adjoints (conjugate transpose), e.g., $\mathbf{A}^{T} \rightarrow \mathbf{A}^{\star}$ (or \mathbf{A}^{H} in the book).

Cholesky Factorization

- The MATLAB built in function

$$
R=\operatorname{chol}(A)
$$

gives the Cholesky factorization and is a good way to test for positive-definiteness.

- For Hermitian/symmetric matrices with positive diagonals MATLAB tries a Cholesky factorization first, before resorting to $L U$ factorization with pivoting.
- The cost of a Cholesky factorization is about half the cost of GEM, $n^{3} / 3$ FLOPS.

When pivoting is unnecessary

- It can be shown that roundoff is not a problem for triangular system $\mathbf{T x}=\mathbf{b}$ (forward or backward substitution). Specifically,

$$
\frac{\|\delta \mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} \lesssim \operatorname{nu\kappa }(\mathbf{T})
$$

so unless the number of unknowns n is very very large the truncation errors are small for well-conditioned systems.

- Special classes of well-behaved matrices A:
(1) Diagonally-dominant matrices, meaning

$$
\left|a_{i i}\right| \geq \sum_{j \neq i}\left|a_{i j}\right| \text { or }\left|a_{i i}\right| \geq \sum_{j \neq i}\left|a_{j i}\right|
$$

(2) Symmetric positive-definite matrices, i.e., Cholesky factorization does not require pivoting,

$$
\frac{\|\delta \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}} \lesssim 8 n^{2} u \kappa(\mathbf{A}) .
$$

When pivoting is necessary

- For a general matrix A, roundoff analysis leads to the following type of estimate

$$
\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \lesssim \operatorname{nu\kappa }(\mathbf{A}) \frac{\|\mid \mathbf{L}\| \mathbf{U} \|}{\|\mathbf{A}\|}
$$

which shows that small pivots, i.e., large multipliers $\iota_{i j}$, can lead to large roundoff errors.
What we want is an estimate that only involves n and $\kappa(\mathbf{A})$.

- Since the optimal pivoting cannot be predicted a-priori, it is best to search for the largest pivot in the same column as the current pivot, and exchange the two rows (partial pivoting).

Partial Pivoting

- The cost of partial pivoting is searching among $O(n)$ elements n times, so $O\left(n^{2}\right)$, which is small compared to $O\left(n^{3}\right)$ total cost.
- Complete pivoting requires searching $O\left(n^{2}\right)$ elements n times, so cost is $O\left(n^{3}\right)$ which is usually not justified.
- The recommended strategy is to use partial (row) pivoting even if not strictly necessary (MATLAB takes care of this).

What pivoting does

- The problem with GEM without pivoting is large growth factors (not large numbers per se)

$$
\rho=\frac{\max _{i, j, k}\left|a_{i j}^{(k)}\right|}{\max _{i, j}\left|a_{i j}\right|}
$$

- Pivoting is not needed for positive-definite matrices because $\rho \leq 2$:

$$
\begin{gathered}
\left|a_{i j}\right|^{2} \leq\left|a_{i i}\right|\left|a_{j j}\right| \text { (so the largest element is on the diagonal) } \\
a_{i j}^{(k+1)}=a_{i j}^{(k)}-l_{i k} a_{k j}^{(k)}=a_{i j}^{(k)}-\frac{a_{k i}^{(k)}}{a_{k k}^{(k)}} a_{k j}^{(k)}(\mathrm{GEM}) \\
a_{i i}^{(k+1)}=a_{i i}^{(k)}-\frac{\left(a_{k i}^{(k)}\right)^{2}}{a_{k k}^{(k)}} \Rightarrow\left|a_{i i}^{(k+1)}\right| \leq\left|a_{i i}^{(k)}\right|+\frac{\left|a_{k i}^{(k)}\right|^{2}}{\left|a_{k k}^{(k)}\right|} \leq 2\left|a_{i i}^{(k)}\right|
\end{gathered}
$$

Matrix Rescaling

- Pivoting is not always sufficient to ensure lack of roundoff problems. In particular, large variations among the entries in A should be avoided.
- This can usually be remedied by changing the physical units for \mathbf{x} and \mathbf{b} to be the natural units \mathbf{x}_{0} and \mathbf{b}_{0}.
- Rescaling the unknowns and the equations is generally a good idea even if not necessary:

$$
\begin{gathered}
\mathbf{x}=\mathbf{D}_{x} \tilde{\mathbf{x}}=\operatorname{Diag}\left\{\mathbf{x}_{0}\right\} \tilde{\mathbf{x}} \text { and } \mathbf{b}=\mathbf{D}_{b} \tilde{\mathbf{b}}=\operatorname{Diag}\left\{\mathbf{b}_{0}\right\} \tilde{\mathbf{b}} . \\
\mathbf{A x}=\mathbf{A D _ { x } \tilde { \mathbf { x } } = \mathbf { D } _ { b } \tilde { \mathbf { b } } \Rightarrow (\mathbf { D } _ { b } ^ { - 1 } \mathbf { A } \mathbf { D } _ { x }) \tilde { \mathbf { x } } = \tilde { \mathbf { b } }}
\end{gathered}
$$

- The rescaled matrix $\widetilde{\mathbf{A}}=\mathbf{D}_{b}^{-1} \mathbf{A} \mathbf{D}_{x}$ should have a better conditioning, but this is hard to achieve in general.
- Also note that reordering the variables from most important to least important may also help.

Special Matrices in MATLAB

- MATLAB recognizes (i.e., tests for) some special matrices automatically: banded, permuted lower/upper triangular, symmetric, Hessenberg, but not sparse.
- In MATLAB one may specify a matrix \mathbf{B} instead of a single right-hand side vector \mathbf{b}.
- The MATLAB function

$$
X=\text { linsolve }(A, B, \text { opts })
$$

allows one to specify certain properties that speed up the solution (triangular, upper Hessenberg, symmetric, positive definite, none), and also estimates the condition number along the way.

- Use linsolve instead of backslash if you know (for sure!) something about your matrix.

Conclusions/Summary

- The conditioning of a linear system $\mathbf{A x}=\mathbf{b}$ is determined by the condition number

$$
\kappa(\mathbf{A})=\|\mathbf{A}\|\left\|\mathbf{A}^{-1}\right\| \geq 1
$$

- Gauss elimination can be used to solve general square linear systems and also produces a factorization $\mathbf{A}=\mathbf{L U}$.
- Partial pivoting is often necessary to ensure numerical stability during GEM and leads to $\mathbf{P A}=\mathbf{L U}$ or $\mathbf{A}=\widetilde{\mathbf{L}} \mathbf{U}$.
- For symmetric positive definite matrices the Cholesky factorization $\mathbf{A}=\mathbf{L L}^{T}$ is preferred and does not require pivoting.
- MATLAB has excellent linear solvers based on well-known public domain libraries like LAPACK. Use them!

