Numerical Methods I Monte Carlo Methods

Aleksandar Donev

Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu
${ }^{1}$ Course G63.2010.001 / G22.2420-001, Fall 2010

Dec. 9th, 2010

Outline

(1) Background
(2) Pseudo-Random Numbers

- Inversion Method
- Rejection
- Histogramming
(3) Monte Carlo Integration

4 Conclusions

Logistics for Presentations

- This is the last lecture: Dec. 16th is reserved for final presentations and course evaluation forms.
- We will start at 5pm sharp on Dec. 16th
- Everyone should attend Dec. 16th as if a regular lecture.
- Each presentation is only 15 minutes including questions: I will strictly enforce this!
- People presenting on the 16th (in alphabetical order): Cohen N., Delong S., Guo S., Li X., Liu Y., Lopes D., Lu. L, Ye. S.
- Email me PDF/PowerPoint of your presentation at least 1 h before the scheduled talk time.
- If you need to use your own laptop, explain why and still send me the file.

What is Monte Carlo?

- Monte Carlo is any numerical algorithm that uses random numbers to compute a deterministic (non-random) answer: stochastic or randomized algorithm.
- An important example is numerical integration in higher dimensions:

$$
J=\int_{\Omega \subseteq \mathbb{R}^{n}} f(\mathbf{x}) d \mathbf{x}
$$

- Recall that using a deterministic method is very accurate and fast for low dimensions.
- But for large dimensions we have to deal with the curse of dimensionality:
The number of quadrature nodes scales like at least 2^{n} (exponentially). E.g., $2^{20}=10^{6}$, but $2^{40}=10^{12}$!

Probability Theory

- First define a set Ω of possible outcomes $\omega \in \Omega$ of an "experiment":
- A coin toss can end in heads or tails, so two outcomes.
- A sequence of four coin tosses can end in one of $4^{2}=16$ outcomes, e.g., HHTT or THTH.
- The set Ω can be finite (heads or tails), countably infinite (the number of atoms inside a box), or uncountable (the weight of a person).
- An event $A \subseteq \Omega$ is a set of possible outcomes: e.g., more tails then heads occur in a sequence of four coin tosses,

$$
A=\{H H H H, T H H H, H T H H, H H T H, H H H T\} .
$$

- Each event has an associated probability

$$
0 \leq P(A) \leq 1
$$

with $P(\Omega)=1$ and $P(\emptyset)=0$.

Conditional Probability

- A basic axiom is that probability is additive for disjoint events:

$$
P(A \cup B)=P(A \text { or } B)=P(A)+P(B) \text { if } A \cap B=\emptyset
$$

- Bayes formula gives the conditional probability that an outcome belongs to set B if it belongs to set C :

$$
P(B \mid C)=\frac{P(B \cap C)}{P(C)}=\frac{P(B \text { and } C)}{P(C)}
$$

- Two events are said to be independent if their probabilities are multiplicative:

$$
P(A \cap B)=P(A \text { and } B)=P(A) P(B)
$$

- When the set of all outcomes is countable, we can associate with each event a probability, and then

$$
P(A)=\sum_{\omega_{i} \in A} P\left(\omega_{i}\right)
$$

Probability Distribution

- If Ω is uncountable, think of outcomes as random variables, that is, variables whose value is determined by a random outcome:

$$
X=X(\omega) \in \mathbb{R}
$$

- The probability density function $f(x) \geq 0$ determines the probability for the outcome to be close to x, in one dimension

$$
\begin{gathered}
P(x \leq X \leq x+d x)=f(x) d x \\
P(A)=P(X \in A)=\int_{x \in A} f(x) d x
\end{gathered}
$$

- The concept of a measure and the Lebesque integral makes this all rigorous and axiomatic, for our purposes the traditional Riemann integral will suffice.

Mean and Variance

- We call the probability density or the probability measure the law or the distribution of a random variable X, and write:

$$
X \sim f
$$

- The cummulative distribution function is

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime}
$$

and we will assume that this function is continuous.

- The mean or expectation value of a random variable X is

$$
\mu=\bar{X}=E[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

- The variance σ^{2} and the standard deviation σ measure the uncertainty in a random variable

$$
\sigma^{2}=\operatorname{var}(X)=E\left[(X-\mu)^{2}\right]=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x
$$

Multiple Random Variables

- Consider a set of two random variables $Z=(X, Y)$ and the joint probability distribution $Z \sim f(x, y)$.
- The marginal density for X is the distribution of just X, without regard to Y :

$$
g(x)=\int_{y} f(x, y) d y, \text { similarly } h(y)=\int_{x} f(x, y) d x
$$

- The conditional probability distribution is the distribution of X for a known Y :

$$
f(x \mid y)=\frac{f(x, y)}{h(y)}
$$

- Two random variables X and Y are independent if

$$
f(x, y)=g(x) h(y) \quad \Rightarrow f(x \mid y)=g(x)
$$

Covariance

- The term i.i.d. $=$ independent identically-distributed random variables is used to describe independent samples $X_{k} \sim f, k=1, \ldots$.
- The generalization of variance for two variables is the covariance:

$$
C_{X Y}=\operatorname{cov}(X, Y)=E[(X-\bar{X})(Y-\bar{Y})]=E(X Y)-E(X) E(Y)
$$

- For independent variables

$$
E(X Y)=\int x y f(x, y) d x d y=\int x g(x) d x \int y h(y) d y=E(X) E(Y)
$$

$$
\text { and so } C_{X Y}=0
$$

- Define the correlation coefficient between X and Y as a measure of how correlated two variables are:

$$
r_{X Y}=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}=\frac{C_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

Law of Large Numbers

- The average of N i.i.d. samples of a random variable $X \sim f$ is itself a random variable:

$$
A=\frac{1}{N} \sum_{k=1}^{N} X_{k}
$$

- A is an unbiased estimator of the mean of $X, E(A)=\bar{X}$.
- Numerically we often use a biased estimate of the variance:

$$
\sigma_{X}^{2}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N}\left(X_{k}-\bar{X}\right)^{2} \approx \frac{1}{N} \sum_{k=1}^{N}\left(X_{k}-A\right)^{2}
$$

- The weak law of large numbers states that the estimator is also consistent:

$$
\lim _{N \rightarrow \infty} A=\bar{X}=E(X) \text { (almost surely). }
$$

Central Limit Theorem

- The central value theorem says that if σ_{X} is finite, in the limit $N \rightarrow \infty$ the random variable A is normally-distributed:

$$
A \sim f(a)=\left(2 \pi \sigma_{A}^{2}\right)^{-1 / 2} \exp \left[-\frac{(a-\bar{X})^{2}}{2 \sigma_{A}^{2}}\right]
$$

- The error of the estimator A decreases as N^{-1}, more specifically,

$$
\begin{gathered}
E\left[(A-\bar{X})^{2}\right]=E\left\{\left[\frac{1}{N} \sum_{k=1}^{N}\left(X_{k}-\bar{X}\right)\right]^{2}\right\}=\frac{1}{N^{2}} E\left[\sum_{k=1}^{N}\left(X_{k}-\bar{X}\right)^{2}\right] \\
\operatorname{var}(A)=\sigma_{A}^{2}=\frac{\sigma_{X}^{2}}{N}
\end{gathered}
$$

- The slow convergence of the error, $\sigma \sim N^{-1 / 2}$, is a fundamental characteristic of Monte Carlo.

Monte Carlo on a Computer

- In order to compute integrals using Monte Carlo on a computer, we need to be able to generate samples from a distribution, e.g., uniformly distributed inside an interval $I=[a, b]$.
- Almost all randomized software is based on having a pseudo-random number generator (PRNG), which is a routine that returns a pseudo-random number $0 \leq u \leq 1$ from the standard uniform distribution:

$$
f(u)=\left\{\begin{array}{lc}
1 & \text { if } 0 \leq u \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

- Since computers (Turing machines) are deterministic, it is not possible to generate truly random samples (outcomes):
Pseudo-random means as close to random as we can get it.
- There are well-known good PRNGs that are also efficient: One should use other-people's PRNGs, e.g., the Marsenne Twister.

PRNGs

- The PRNG is a procedure (function) that takes a collection of m integers called the state of the generator $\mathbf{s}=\left\{i_{1}, \ldots, i_{m}\right\}$, and updates it:

$$
\mathbf{s} \leftarrow \Phi(\mathbf{s})
$$

and produces (returns) a number $u=\Psi(\mathbf{s})$ that is a pseudo-random sample from the standard uniform distribution.

- So in pseudo-MATLAB notation, $[u, \mathbf{s}]=r n g(\mathbf{s})$, often called a random stream.
- Simple built-in generator such as the MATLAB/C function rand or the Fortran function RANDOM_NUMBER hide the state from the user (but the state is stored somewhere in some global variable).
- All PRNGs provide a routine to seed the generator, that is, to set the seed \mathbf{s} to some particular value.
This way one can generate the same sequence of "random" numbers over and over again (e.g., when debugging a program).

Generating Non-Uniform Variates

- Using a uniform (pseudo-)random number generator (URNG), it is easy to generate an outcome drawn uniformly in $I=[a, b]$:

$$
X=a+(b-a) U
$$

where $U=r n g()$ is a standard uniform variate.

- We often need to generate (pseudo)random samples or variates drawn from a distribution other than a uniform distribution.
- Almost all non-uniform samplers are based on a URNG.
- Sometimes it may be more efficient to replace the URNG with a random bitstream, that is, a sequence of random bits, if only a few random bits are needed (e.g., for discrete variables).
- We need a method to convert a uniform variate into a non-uniform variate.

Generating Non-Uniform Variates

- Task: We want to sample a random number with probability distribution $f(x)$. For now assume $f(x)$ is a probability density:

$$
P(x \leq X \leq x+d x)=f(x) d x
$$

- Tool: We can generate samples from some special distributions, e.g., a sample U from the standard uniform distribution.
- Consider applying a non-linear differentiable one-to-one function $g(x)$ to U :

$$
X \equiv X(U)=g(U) \Rightarrow d x=g^{\prime}(U) d u
$$

- We can find the probability density of X by using the informal differential notation

$$
\begin{gathered}
P(u \leq U \leq u+d u)=d u=\frac{d x}{g^{\prime}(u)}=P(x \leq X \leq x+d x)=f(x) d x \\
f[x(u)]=\left[g^{\prime}(u)\right]^{-1}
\end{gathered}
$$

Inverting the CDF

$$
f[x(u)]=\left[g^{\prime}(u)\right]^{-1}
$$

- Can we find $g(u)$ given the target $f(x)$? It is simpler to see this if we invert $x(u)$:

$$
u=F(x)
$$

- Repeating the same calculation

$$
\begin{gathered}
P(u \leq U \leq u+d x)=d u=F^{\prime}(x) d x=f(x) d x \\
F^{\prime}(x)=f(x)
\end{gathered}
$$

- This shows that $F(x)$ is the cummulative probability distribution:

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime}
$$

- Note that $F(x)$ is monotonically non-decreasing because $f(x) \geq 0$. Still it is not always easy to invert the CDF efficiently.

Sampling by Inversion

Generate a standard uniform variate u and then solve the non-linear equation $F(x)=u$. If $F(x)$ has finite jumps just think of u as the independent variable instead of x.

Exponentially-Distributed Number

- As an example, consider generating a sample from the exponential distribution with rate λ :

$$
f_{\lambda}(t)= \begin{cases}\lambda e^{-\lambda t} & \text { if } t \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

- Related to the Poisson process of events whose rate of occurence is λ and whose occurence does not depend on the past (history):

$$
P(t \leq T \leq t+d t \mid T \geq t)=P(T<d t)=\lambda d t
$$

- Using the inversion technique we get

$$
\begin{gathered}
F(t)=P(T \leq t)=\int_{t^{\prime}=0}^{t} \lambda e^{-\lambda t} d t=1-e^{-\lambda t}=u^{\prime} \equiv 1-u \\
T=-\lambda^{-1} \ln (U)
\end{gathered}
$$

where numerical care must be taken to ensure the log does not overflow or underflow.

Rejection Sampling

- An alternative method is to use rejection sampling:

Generate a sample X from some other distribution $g(x)$ and accept them with acceptance probability $p(X)$, otherwise reject and try again.

- The rejection requires sampling a standard uniform variate U : Accept if $U \leq p(X)$, reject otherwise.
- It is easy to see that

$$
f(x) \sim g(x) p(x) \quad \Rightarrow p(x)=Z \frac{f(x)}{g(x)}
$$

where Z is determined from the normalization condition:

$$
\int f(x) d x=1 \quad \Rightarrow \quad \int p(x) g(x)=Z
$$

Envelope Function

$$
p(x)=\frac{f(x)}{Z^{-1} g(x)}=\frac{f(x)}{\tilde{g}(x)}
$$

- Since $0 \leq p(x) \leq 1$, we see that $\tilde{g}(x)=Z^{-1} g(x)$ must be a bounding or envelope function:

$$
\tilde{g}(x) \geq f(x), \text { for example, } \tilde{g}(x)=\max f(x)=\text { const. }
$$

- Rejection sampling is very simple:

Generate a sample X from $g(x)$ and a standard uniform variate U and accept X if $U \tilde{g}(x) \leq f(x)$, reject otherwise and try again.

- For efficiency, we want to have the highest possible acceptance probability, that is

$$
P_{a c c}=\frac{\int f(x) d x}{\int \tilde{g}(x) d x}=Z \frac{\int f(x) d x}{\int g(x) d x}=Z
$$

Rejection Sampling Illustrated

Normally-Distributed Numbers

- The standard normal distribution is a Gaussian "bell-curve":

$$
f(x)=\left(2 \pi \sigma^{2}\right)^{-1 / 2} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

where μ is the mean and σ is the standard deviation.

- The standard normal distribution has $\sigma=1$ and $\mu=0$.
- If we have a sample X_{s} from the standard distribution we can generate a sample X from $f(x)$ using:

$$
X=\mu+\sigma X_{s}
$$

- Consider sampling the positive half of the standard normal, that is, sampling:

$$
f(x)=\sqrt{\frac{2}{\pi}} e^{-x^{2} / 2} \text { for } x \geq 0
$$

Optimizing Rejection Sampling

- We want the tighest possible (especially where $f(x)$ is large) easy-to-sample $g(x) \approx f(x)$.
- We already know how to sample an exponential:

$$
g(x)=e^{-x}
$$

- We want the tightest possible $\tilde{g}(x)$:

$$
\begin{gathered}
\min [\tilde{g}(x)-f(x)]=\min \left[Z^{-1} e^{-x}-\sqrt{\frac{2}{\pi}} e^{-x^{2 / 2}}\right]=0 \\
\tilde{g}^{\prime}\left(x^{\star}\right)=f^{\prime}\left(x^{\star}\right) \text { and } \tilde{g}\left(x^{\star}\right)=f\left(x^{\star}\right)
\end{gathered}
$$

- Solving this system of two equations gives $x^{\star}=1$ and

$$
Z=P_{a c c}=\sqrt{\frac{\pi}{2}} e^{-1 / 2} \approx 76 \%
$$

Histogram Validation

- We need some way to test that a sampler is correct, that is, that the generated sequence of random numbers really comes from the specified distribution $f(x)$. One easy way to do that is by computing the histogram of the samples.
- Count how many N_{x} samples of the N samples are inside a bin of width h centered at x :

$$
f(x) \approx P_{x}=\frac{1}{h} P(x-h / 2 \leq X \leq x+h / 2) \approx \frac{1}{h} \frac{N_{x}}{N} .
$$

- If we make the bins smaller, the truncation error will be reduced:

$$
P_{x}-f(x)=\frac{1}{h} \int_{x-h / 2}^{x+h / 2} f\left(x^{\prime}\right) d x^{\prime}-f(x)=\alpha h^{2}+O\left(h^{4}\right)
$$

- But, this means there will be fewer points per bin, i.e., statistical errors will grow. As usual, we want to find the optimal tradeoff between the the two types of error.

Statistical Error in Histogramming

- For every sample point X, define the indicator random variable Y :

$$
Y=\mathbb{I}_{x}(X)= \begin{cases}1 & \text { if } x-h / 2 \leq X \leq x+h / 2 \\ 0 & \text { otherwise }\end{cases}
$$

- The mean and variance of this Bernoulli random variable are:

$$
\begin{gathered}
E(Y)=\bar{Y}=h P_{x} \approx h f(x) \\
\sigma_{Y}^{2}=\int(y-\bar{Y})^{2} f(y) d y=\bar{Y} \cdot(1-\bar{Y}) \approx \bar{Y} \approx h f(x)
\end{gathered}
$$

- The number N_{x} out of N trials inside the bin is a sum of N random Bernoulli variables Y_{i} :

$$
f(x) \approx \frac{1}{h} \frac{N_{x}}{N}=h^{-1}\left(\frac{1}{N} \sum_{i=1}^{N} Y_{i}\right)=\tilde{P}_{x}
$$

Optimal Bin Width

- The central limit theorem says

$$
\sigma\left(\tilde{P}_{x}\right) \approx h^{-1} \frac{\sigma_{Y}}{\sqrt{N}}=\sqrt{\frac{f(x)}{h N}}
$$

- The optimal bin width is when the truncation and statistical errors are equal:

$$
h^{2} \sim \sqrt{\frac{1}{h N}} \Rightarrow h \sim N^{-1 / 5}
$$

with total error $\varepsilon \sim(h N)^{-1 / 2} \sim N^{-2 / 5}$.

- This is because statistical errors dominate and so using a larger bin is better...unless there are small-scale features in $f(x)$ that need to be resolved.

Integration via Monte Carlo

- Define the random variable $Y=f(\mathbf{X})$, and generate a sequence of N independent uniform samples $\mathbf{X}_{k} \in \Omega$, i.e., N random variables distributed uniformly inside Ω :

$$
\mathbf{X} \sim g(\mathbf{x})= \begin{cases}|\Omega|^{-1} & \text { for } \mathbf{x} \in \Omega \\ 0 & \text { otherwise }\end{cases}
$$

and calculate the mean

$$
\hat{Y}=\frac{1}{N} \sum_{k=1}^{N} Y_{k}=\frac{1}{N} \sum_{k=1}^{N} f\left(\mathbf{X}_{k}\right)
$$

- According to the weak law of large numbers,

$$
\lim _{N \rightarrow \infty} \hat{Y}=E(Y)=\bar{Y}=\int f(\mathbf{x}) g(\mathbf{x}) d x=|\Omega|^{-1} \int_{\Omega} f(\mathbf{x}) d \mathbf{x}
$$

Accuracy of Monte Carlo Integration

- This gives a Monte Carlo approximation to the integral:

$$
J=\int_{\Omega \in \mathbb{R}^{n}} f(\mathbf{x}) d \mathbf{x}=|\Omega| \bar{Y} \approx|\Omega| \hat{Y}=|\Omega| \frac{1}{N} \sum_{k=1}^{N} f\left(\mathbf{X}_{k}\right)
$$

- Recalling the central limit theorem, for large N we get an error estimate by evaluating the standard deviation of the estimate \hat{Y} :

$$
\begin{aligned}
\sigma^{2}(\hat{Y}) & \approx \frac{\sigma_{Y}^{2}}{N}=N^{-1} \int_{\Omega}\left[f(\mathbf{x})-|\Omega|^{-1} J\right]^{2} d \mathbf{x} \\
\sigma(\hat{Y}) & \approx \frac{1}{\sqrt{N}}\left[\int_{\Omega}[f(\mathbf{x})-\overline{f(\mathbf{x})}]^{2} d \mathbf{x}\right]^{1 / 2}
\end{aligned}
$$

- Note that this error goes like $N^{-1 / 2}$, which is order of convergence $1 / 2$: Worse than any deterministic quadrature.
- But, the same number of points are needed to get a certain accuracy independent of the dimension.

Integration by Rejection

Note how this becomes less efficient as dimension grows (most points are outside the sphere).

- Integration requires $|\Omega|$:

$$
\int_{\Omega \in \mathbb{R}^{n}} f(\mathbf{x}) d \mathbf{x} \approx|\Omega| \frac{1}{N} \sum_{k=1}^{N} f\left(\mathbf{X}_{k}\right)
$$

- Consider Ω being the unit circle of radius 1.
- Rejection: Integrate by sampling points inside an enclosing region, e.g, a square of area $\left|\Omega_{\text {encl }}\right|=4$, and rejecting any points outside of Ω :
$\int_{\Omega \in \mathbb{R}^{n}} f(\mathbf{x}) d \mathbf{x} \approx\left|\Omega_{e n c \mid}\right| \frac{1}{N} \sum_{\mathbf{X}_{k} \in \Omega} f\left(\mathbf{X}_{k}\right)$

Example of Integration

- Consider computing the integral for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$:

$$
J=\int_{\|\mathbf{x}\|<1} \int_{\|\mathbf{y}\|<1} \frac{e^{-\lambda\|\mathbf{x}-\mathbf{y}\|}}{\|\mathbf{x}-\mathbf{y}\|} d \mathbf{x} d \mathbf{y}
$$

- The integral is related to the expectation value of the random variable

$$
Z=Z(\mathbf{X}, \mathbf{Y})=\frac{e^{-\lambda\|\mathbf{X}-\mathbf{Y}\|}}{\|\mathbf{X}-\mathbf{Y}\|}
$$

where \mathbf{X} and \mathbf{Y} are random variables uniformly sampled from the unit sphere in \mathbb{R}^{n}.

- Specifically, in three dimensions, $n=3$,

$$
J=|\Omega| \bar{Z} \approx\left(\frac{4 \pi}{3}\right)^{2}\left[\frac{1}{N} \sum_{k=1}^{N} Z\left(\mathbf{X}_{k}, \mathbf{Y}_{k}\right)\right]
$$

Variance Reduction

- Recall that the standard deviation of the Monte Carlo estimate for the integral is:

$$
\sigma(\hat{Y}) \approx \frac{1}{\sqrt{N}}\left[\int_{\Omega}[f(\mathbf{x})-\overline{f(\mathbf{x})}]^{2} d \mathbf{x}\right]^{1 / 2}
$$

- Since the answer is approximately normally-distributed, we have the well-known confidence intervals:

$$
\begin{gathered}
P\left(\frac{J}{|\Omega|} \in[\hat{Y}-\sigma, \hat{Y}+\sigma]\right) \approx 66 \% \\
P\left(\frac{J}{|\Omega|} \in[\hat{Y}-2 \sigma, \hat{Y}+2 \sigma]\right) \approx 95 \%
\end{gathered}
$$

- The most important thing in Monte Carlo is variance reduction, i.e., finding methods that give the same answers in the limit $N \rightarrow \infty$ but have a much smaller σ.

Importance Sampling

- As an example of variance reduction, consider rewriting:

$$
\int f(\mathbf{x}) d \mathbf{x}=\int \frac{f(\mathbf{x})}{g(\mathbf{x})} g(\mathbf{x}) d \mathbf{x}=E\left[\frac{f(\mathbf{X})}{g(\mathbf{X})}\right] \text { where } \mathbf{X} \sim g
$$

- This now corresponds to taking samples not uniformly inside Ω, but rather, taking samples from importance function $g(\mathbf{x})$:

$$
\int f(\mathbf{x}) d \mathbf{x} \approx \frac{1}{N} \sum_{k=1}^{N} \frac{f\left(\mathbf{X}_{k}\right)}{g\left(\mathbf{X}_{k}\right)} \text { where } \mathbf{X} \sim g
$$

- Note that $|\Omega|$ does not appear since it is implicitly included in the normalization of $g(\mathbf{x})$.
- The previous uniform sampling algorithm corresponds to $g(\mathbf{x})=|\Omega|^{-1}$ for $\mathbf{x} \in \Omega$.

Variance Reduction via Importance Sampling

- Repeating the variance calculation for

$$
Y(\mathbf{X})=\frac{f(\mathbf{X})}{g(\mathbf{X})}
$$

- The variance is now

$$
\begin{aligned}
\sigma^{2}(\hat{Y}) & \approx \frac{\sigma_{Y}^{2}}{N}=N^{-1} \int[Y(\mathbf{x})-\bar{Y}]^{2} g(\mathbf{x}) d \mathbf{x} \\
\sigma(\hat{Y}) & \approx \frac{1}{\sqrt{N}}\left[\int\left[\frac{f(\mathbf{x})}{g(\mathbf{x})}-\bar{Y}\right]^{2} g(\mathbf{x}) d \mathbf{x}\right]^{1 / 2}
\end{aligned}
$$

- We therefore want $f(\mathbf{x}) / g(\mathbf{x})$ to be as close as possible to a constant, ideally

$$
g_{\text {ideal }}(\mathbf{x})=\frac{f(\mathbf{x})}{\int f(\mathbf{x}) d x}
$$

but this requires being able to create independent samples from $f(\mathbf{x})$, which is rarely the case.

Importance Sampling Example

- Consider again computing:

$$
J=\int_{\|\mathbf{x}\|<1} \int_{\|\mathbf{y}\|<1} \frac{e^{-\lambda\|\mathbf{x}-\mathbf{y}\|}}{\|\mathbf{x}-\mathbf{y}\|} d \mathbf{x} d \mathbf{y}
$$

- The standard Monte Carlo will have a large variance because of the singularity when $\mathbf{x}=\mathbf{y}$:
The integrand is very non-uniform around the singularity.
- If one could sample from the distribution

$$
g(\mathbf{x}, \mathbf{y}) \sim \frac{1}{\|\mathbf{x}-\mathbf{y}\|} \text { when } \mathbf{x} \approx \mathbf{y}
$$

then the importance function will capture the singularity and the variance will be greatly reduced.

Conclusions/Summary

- Monte Carlo is an umbrella term for stochastic computation of deterministic answers.
- Monte Carlo answers are random, and their accuracy is measured by the variance or uncertaintly of the estimate, which typically scales like $\sigma \sim N^{-1 / 2}$, where N is the number of samples.
- Implementing Monte Carlo algorithms on a computer requires a PRNG, almost always a uniform pseudo-random number generator (URNG).
- One often needs to convert a sample from a URNG to a sample from an arbitrary distribution $f(x)$, including inverting the cummulative distribution and rejection sampling.
- Monte Carlo can be used to perform integration in high dimensions by simply evaluating the function at random points.
- Variance reduction is the search for algorithms that give the same answer but with less statistical error. One example is importance sampling.

