Numerical Methods I Fourier and Wavelet Transforms

Aleksandar Donev

Courant Institute, $N Y U^{1}$ donev@courant.nyu.edu
${ }^{1}$ Course G63.2010.001 / G22.2420-001, Fall 2010

Nov. 18th, 2010

Outline

(1) Fourier Orthogonal Basis
(2) Fast Fourier Transform
(3) Applications of FFT
(4) Wavelets
(5) Conclusions

Periodic Functions

- We are considering the space $L_{2 \pi}^{2}$ of square-integrable periodic functions defined on the interval $I=[0,2 \pi]$.
- The Fourier basis is a family of orthogonal exponential functions

$$
\begin{gathered}
\phi_{k}(x)=e^{i k x}=\cos (k x)+i \sin (k x), \quad k=0, \pm 1, \pm 2, \ldots \\
\left(\phi_{j}, \phi_{k}\right)=\int_{x=0}^{2 \pi} \phi_{j}(x) \phi_{k}^{\star}(x) d x=\int_{0}^{2 \pi} \exp [i(j-k) x] d x=2 \pi \delta_{j k}
\end{gathered}
$$

- The complex exponentials can be shown to form a complete trigonometric polynomial basis for the space $L_{2 \pi}^{2}$, i.e.,

$$
\begin{gathered}
\forall f \in L_{2 \pi}^{2}: \quad f(x)=\sum_{k=-\infty}^{\infty} \hat{f}_{k} e^{i k x} \\
\hat{f}_{k}=\frac{\left(f, \phi_{k}\right)}{2 \pi}=\frac{1}{2 \pi} \cdot \int_{0}^{2 \pi} f(x) e^{-i k x} d x
\end{gathered}
$$

Discrete Fourier Basis

$$
\forall \Delta k \in \mathbb{Z}: \quad \frac{2 \pi}{N} \sum_{j} \exp \left[i \frac{2 \pi}{N} j \Delta k\right]=2 \pi \delta_{\Delta k}
$$

- The Fourier basis is discretely orthogonal

$$
\phi_{k} \cdot \phi_{k^{\prime}}=\frac{2 \pi}{N} \sum_{j=0}^{N-1}\left(\phi_{k}\right)_{j}\left(\phi_{k^{\prime}}\right)_{j}=2 \pi \delta_{k, k^{\prime}}
$$

- This gives the Fourier interpolating polynomial (spectral approximation):

$$
\text { Forward } \mathbf{f} \rightarrow \hat{\mathbf{f}}: \quad \hat{f}_{k}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} \exp \left(-\frac{2 \pi i j k}{N}\right)
$$

$$
\text { Inverse } \hat{\mathbf{f}} \rightarrow f: \quad f(x) \approx \phi(x)=\sum_{k=-(N-1) / 2}^{(N-1) / 2} \hat{f}_{k} e^{i k x}
$$

Spectral Convergence (or not)

- The Fourier interpolating polynomial $\phi(x)$ has spectral accuracy, i.e., exponential in the number of nodes N

$$
\|f(x)-\phi(x)\| \sim e^{-N}
$$

for sufficiently smooth functions.

- Specifically, what is needed is sufficiently rapid decay of the Fourier coefficients with k, e.g., exponential decay $\left|\hat{f}_{k}\right| \sim e^{-|k|}$.
- Discontinuities cause slowly-decaying Fourier coefficients, e.g., power law decay $\left|\hat{f}_{k}\right| \sim k^{-1}$ for jump discontinuities.
- Jump discontinuities lead to slow convergence of the Fourier series for non-singular points (and no convergence at all near the singularity), so-called Gibbs phenomenon (ringing):

$$
\|f(x)-\phi(x)\| \sim \begin{cases}N^{-1} & \text { at points away from jumps } \\ \text { const. } & \text { at the jumps themselves }\end{cases}
$$

Gibbs Phenomenon

Approximation of a square wave timing signal ($f_{\sigma}=20 \mathrm{MHz}$)

Gibbs Phenomenon

Reconstruction of the periodic square waveform with $1,3,5,7,9$ sinusoids

Aliasing

If we sample a signal at too few points the Fourier interpolant may be wildly wrong: aliasing of frequencies k and $2 k, 3 k, \ldots$

- Recall the transformation from real space to frequency space and back:

$$
\begin{aligned}
& \mathbf{f} \rightarrow \hat{\mathbf{f}}: \quad \hat{f}_{k}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} \exp \left(-\frac{2 \pi i j k}{N}\right), \quad k=-\frac{(N-1)}{2}, \ldots, \frac{(N-1)}{2} \\
& \hat{\mathbf{f}} \rightarrow \mathbf{f}: \quad f_{j}=\sum_{k=-(N-1) / 2}^{(N-1) / 2} \hat{f}_{k} \exp \left(\frac{2 \pi i j k}{N}\right), \quad j=0, \ldots, N-1
\end{aligned}
$$

- We can make the forward-reverse Discrete Fourier Transform
(DFT) more symmetric if we shift the frequencies to $k=0, \ldots, N$:
Forward $\mathbf{f} \rightarrow \hat{\mathbf{f}}: \quad \hat{f}_{k}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} f_{j} \exp \left(-\frac{2 \pi i j k}{N}\right), \quad k=0, \ldots, N-1$
Inverse $\hat{\mathbf{f}} \rightarrow \mathbf{f}: \quad f_{j}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \hat{f}_{k} \exp \left(\frac{2 \pi i j k}{N}\right), \quad j=0, \ldots, N-1$
- We can write the transforms in matrix notation:

$$
\begin{aligned}
\hat{\mathbf{f}} & =\frac{1}{\sqrt{N}} \mathbf{U}_{N} \mathbf{f} \\
\mathbf{f} & =\frac{1}{\sqrt{N}} \mathbf{U}_{N}^{\star} \hat{\mathbf{f}}
\end{aligned}
$$

where the unitary Fourier matrix (fft(eye (N)) in MATLAB) is an $N \times N$ matrix with entries

$$
u_{j k}^{(N)}=\omega_{N}^{j k}, \quad \omega_{N}=e^{-2 \pi i / N} .
$$

- A direct matrix-vector multiplication algorithm therefore takes $O\left(N^{2}\right)$ multiplications and additions.
- Is there a faster way to compute the non-normalized

$$
\hat{f}_{k}=\sum_{j=0}^{N-1} f_{j} \omega_{N}^{j k} \quad ?
$$

- For now assume that N is even and in fact a power of two, $N=2^{n}$.
- The idea is to split the transform into two pieces, even and odd points:

$$
\sum_{j=2 j^{\prime}} f_{j} \omega_{N}^{j k}+\sum_{j=2 j^{\prime}+1} f_{j} \omega_{N}^{j k}=\sum_{j^{\prime}=0}^{N / 2-1} f_{2 j^{\prime}}\left(\omega_{N}^{2}\right)^{j^{\prime} k}+\omega_{N}^{k} \sum_{j^{\prime}=0}^{N / 2-1} f_{2 j^{\prime}+1}\left(\omega_{N}^{2}\right)^{j^{\prime} k}
$$

- Now notice that

$$
\omega_{N}^{2}=e^{-4 \pi i / N}=e^{-2 \pi i /(N / 2)}=\omega_{N / 2}
$$

- This leads to a divide-and-conquer algorithm:

$$
\begin{aligned}
& \hat{f}_{k}=\sum_{j^{\prime}=0}^{N / 2-1} f_{2 j^{\prime}} \omega_{N / 2}^{j^{\prime} k}+\omega_{N}^{k} \sum_{j^{\prime}=0}^{N / 2-1} f_{2 j^{\prime}+1} \omega_{N / 2}^{j^{\prime} k} \\
& \hat{f}_{k}=\mathbf{U}_{N} \mathbf{f}=\left(\mathbf{U}_{N / 2} \mathbf{f}_{\text {even }}+\omega_{N}^{k} \mathbf{U}_{N / 2} \mathbf{f}_{\text {odd }}\right)
\end{aligned}
$$

FFT Complexity

- The Fast Fourier Transform algorithm is recursive:

$$
F F T_{N}(\mathbf{f})=F F T_{\frac{N}{2}}\left(\mathbf{f}_{\text {even }}\right)+\mathbf{w} \boxtimes F F T_{\frac{N}{2}}\left(\mathbf{f}_{o d d}\right)
$$

where $w_{k}=\omega_{N}^{k}$ and \square denotes element-wise product. When $N=1$ the FFT is trivial (identity).

- To compute the whole transform we need $\log _{2}(N)$ steps, and at each step we only need N multiplications and $N / 2$ additions at each step.
- The total cost of FFT is thus much better than the direct method's $O\left(N^{2}\right)$: Log-linear

$$
O(N \log N)
$$

- Even when N is not a power of two there are ways to do a similar splitting transformation of the large FFT into many smaller FFTs.
- Note that there are different normalization conventions used in different software.

Applications of FFTs

- Because FFT is a very fast, almost linear algorithm, it is used often to accomplish things that are not seemingly related to function approximation.
- Denote the Discrete Fourier transform, computed using FFTs in practice, with

$$
\hat{\mathbf{f}}=\mathcal{F}(\mathbf{f}) \text { and } \mathbf{f}=\mathcal{F}^{-1}(\hat{\mathbf{f}})
$$

- Plain FFT is used in signal processing for digital filtering: Multiply the spectrum by a filter $\hat{S}(k)$ discretized as $\hat{\mathbf{s}}=\{\hat{S}(k)\}_{k}$:

$$
\mathbf{f}_{\text {filt }}=\mathcal{F}^{-1}(\hat{\mathbf{s}} \odot \hat{\mathbf{f}})=\mathbf{f} \circledast \mathbf{s}
$$

where \circledast denotes convolution, to be described shortly.

- Examples include low-pass, high-pass, or band-pass filters. Note that aliasing can be a problem for digital filters.

Convolution

- For continuous function, an important type of operation found in practice is convolution of a (periodic) function $f(x)$ with a (periodic) kernel $K(x)$:

$$
(K \circledast f)(x)=\int_{0}^{2 \pi} f(y) K(x-y) d y=(f \circledast K)(x)
$$

- It is not hard to prove the convolution theorem:

$$
\mathcal{F}(K \circledast f)=\mathcal{F}(K) \cdot \mathcal{F}(f)
$$

- Importantly, this remains true for discrete convolutions:

$$
\begin{gathered}
(\mathbf{K} \circledast \mathbf{f})_{j}=\frac{1}{N} \sum_{j^{\prime}=0}^{N-1} f_{j^{\prime}} \cdot K_{j-j^{\prime}} \Rightarrow \\
\mathcal{F}(\mathbf{K} \circledast \mathbf{f})=\mathcal{F}(\mathbf{K}) \cdot \mathcal{F}(\mathbf{f}) \quad \Rightarrow \quad \mathbf{K} \circledast \mathbf{f}=\mathcal{F}^{-1}(\mathcal{F}(\mathbf{K}) \cdot \mathcal{F}(\mathbf{f}))
\end{gathered}
$$

Proof of Discrete Convolution Theorem

Assume that the normalization used is a factor of N^{-1} in the forward and no factor in the reverse DFT:

$$
\begin{gathered}
\mathcal{F}^{-1}(\mathcal{F}(\mathbf{K}) \cdot \mathcal{F}(\mathbf{f}))=\mathbf{K} \circledast \mathbf{f} \\
{\left[\mathcal{F}^{-1}(\mathcal{F}(\mathbf{K}) \cdot \mathcal{F}(\mathbf{f}))\right]_{k}=\sum_{k=0}^{N-1} \hat{f}_{k} \hat{K}_{k} \exp \left(\frac{2 \pi i j k}{N}\right)=} \\
N^{-2} \sum_{k=0}^{N-1}\left(\sum_{l=0}^{N-1} f_{l} \exp \left(-\frac{2 \pi i l k}{N}\right)\right)\left(\sum_{m=0}^{N-1} K_{m} \exp \left(-\frac{2 \pi i m k}{N}\right)\right) \exp \left(\frac{2 \pi i j k}{N}\right) \\
=N^{-2} \sum_{l=0}^{N-1} f_{l} \sum_{m=0}^{N-1} K_{m} \sum_{k=0}^{N-1} \exp \left[\frac{2 \pi i(j-l-m) k}{N}\right]
\end{gathered}
$$

contd.

Recall the key discrete orthogonality property

$$
\begin{gathered}
\forall \Delta k \in \mathbb{Z}: \quad N^{-1} \sum_{j} \exp \left[i \frac{2 \pi}{N} j \Delta k\right]=\delta_{\Delta k} \Rightarrow \\
N^{-2} \sum_{l=0}^{N-1} f_{l} \sum_{m=0}^{N-1} K_{m} \sum_{k=0}^{N-1} \exp \left[\frac{2 \pi i(j-l-m) k}{N}\right]=N^{-1} \sum_{l=0}^{N-1} f_{l} \sum_{m=0}^{N-1} K_{m} \delta_{j-l-m} \\
=N^{-1} \sum_{l=0}^{N-1} f_{l} K_{j-l}=(\mathbf{K} \circledast \mathbf{f})_{j}
\end{gathered}
$$

Computing convolutions requires 2 forward FFTs, one element-wise product, and one inverse FFT, for a total cost $N \log N$ instead of N^{2}.

Spectral Derivative

- Consider approximating the derivative of a periodic function $f(x)$, computed at a set of N equally-spaced nodes, \mathbf{f}.
- One way to do it is to use the finite difference approximations:

$$
f^{\prime}\left(x_{j}\right) \approx \frac{f\left(x_{j}+h\right)-f\left(x_{j}-h\right)}{2 h}=\frac{f_{j+1}-f_{j-1}}{2 h} .
$$

- In order to achieve spectral accuracy of the derivative, we can differentiate the spectral approximation: Spectral derivative

$$
\begin{aligned}
f^{\prime}(x) \approx \phi^{\prime}(x) & =\frac{d}{d x} \phi(x)=\frac{d}{d x}\left(\sum_{k=0}^{N-1} \hat{f}_{k} e^{i k x}\right)=\sum_{k=0}^{N-1} \hat{f}_{k} \frac{d}{d x} e^{i k x} \\
\phi^{\prime} & =\sum_{k=0}^{N-1}\left(i k \hat{f}_{k}\right) e^{i k x}=\mathcal{F}^{-1}(i \hat{\mathbf{f}} \bullet \mathbf{k})
\end{aligned}
$$

- Differentiation, like convolution, becomes multiplication in Fourier space.

Multidimensional FFT

- DFTs and FFTs generalize straightforwardly to higher dimensions due to separability: Transform each dimension independently

$$
\begin{gathered}
\hat{f}=\frac{1}{N_{x} N_{y}} \sum_{j_{y}=0}^{N_{y}-1} \sum_{j_{x}=0}^{N_{x}-1} f_{j_{x}, j_{y}} \exp \left[-\frac{2 \pi i\left(j_{x} k_{x}+j_{y} k_{y}\right)}{N}\right] \\
\hat{\mathbf{f}}_{k_{x}, k_{y}}=\frac{1}{N_{x}} \sum_{j_{y}=0}^{N_{y}-1} \exp \left(-\frac{2 \pi i j_{y} k_{x}}{N}\right)\left[\frac{1}{N_{y}} \sum_{j_{y}=0}^{N_{y}-1} f_{j_{x}, j_{y}} \exp \left(-\frac{2 \pi i j_{y} k_{y}}{N}\right)\right]
\end{gathered}
$$

- For example, in two dimensions, do FFTs of each column, then FFTs of each row of the result:

$$
\hat{\mathbf{f}}=\mathcal{F}_{\text {row }}\left(\mathcal{F}_{\text {col }}(\mathbf{f})\right)
$$

- The cost is N_{y} one-dimensional FFTs of length N_{x} and then N_{x} one-dimensional FFTs of length N_{y} :

$$
N_{x} N_{y} \log N_{x}+N_{x} N_{y} \log N_{y}=N_{x} N_{y} \log \left(N_{x} N_{y}\right)=N \log N
$$

The need for wavelets

- Fourier basis is great for analyzing periodic signals, but is not good for functions that are localized in space, e.g., brief bursts of speach.
- Fourier transforms are not good with handling discontinuities in functions because of the Gibbs phenomenon.
- Fourier polynomails assume periodicity and are not as useful for non-periodic functions.
- Because Fourier basis is not localized, the highest frequency present in the signal must be used everywhere: One cannot use different resolutions in different regions of space.

An example wavelet

Wavelet basis

- A mother wavelet function $W(x)$ is a localized function in space. For simplicity assume that $W(x)$ has compact support on $[0,1]$.
- A wavelet basis is a collection of wavelets $W_{s, \tau}(x)$ obtained from $W(x)$ by dilation with a scaling factor s and shifting by a translation factor τ :

$$
W_{s, \tau}(x)=W(s x-\tau)
$$

- Here the scale plays the role of frequency in the FT, but the shift is novel and localized the basis functions in space.
- We focus on discrete wavelet basis, where the scaling factors are chosen to be powers of 2 and the shifts are integers:

$$
W_{j, k}=W\left(2^{j} x-k\right), \quad k \in \mathbb{Z}, j \in \mathbb{Z}, j \geq 0
$$

Haar Wavelet Basis

Wavelet Transform

- Any function can now be represented in the wavelet basis:

$$
f(x)=c_{0}+\sum_{j=0}^{\infty} \sum_{k=0}^{2^{j}-1} c_{j k} W_{j, k}(x)
$$

This representation picks out frequency components in different spatial regions.

- As usual, we truncate the basis at $j<J$, which leads to a total number of coefficients $c_{j k}$:

$$
\sum_{j=0}^{J-1} 2^{j}=2^{J}
$$

Discrete Wavelet Basis

- Similarly, we discretize the function on a set of $N=2^{J}$ equally-spaced nodes $x_{j, k}$ or intervals, to get the vector \mathbf{f} :

$$
\mathbf{f}=c_{0}+\sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} c_{j k} W_{j, k}\left(x_{j, k}\right)=\mathbf{W}_{j} \mathbf{c}
$$

- In order to be able to quickly and stably compute the coefficients c we need an orthogonal wavelet basis:

$$
\int W_{j, k}(x) W_{l, m}(x) d x=\delta_{j, l} \delta_{l, m}
$$

- The Haar basis is discretely orthogonal and computing the transform and its inverse can be done using a fast wavelet transform, in linear time $O(N)$ time.

Discrete Wavelet Transform

Scaleogram

Signal

Another scaleogram

Daubechies Wavelets

- For the Haar basis, the wavelet approximation

$$
\phi(x)=c_{0}+\sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} c_{j k} W_{j, k}(x)
$$

is piecewise constant on each of the N sub-intervals of $[0,1]$.

- It is desirable to construct wavelet basis for which:
- The basis is orthogonal.
- One can exactly represent linear functions (differentiable).
- One can compute the forward and reverse wavelet transforms efficiently.
- Constructions of such basis start from a father wavelet function $\phi(x)$:

$$
\phi(x)=\sum_{k=0}^{N} c_{k} \phi(2 x-k), \text { and } W(x)=\sum_{k=1-N}^{1}(-1)^{k} c_{1-k} \phi(2 x-k)
$$

Mother and Father Wavelets

Daubechies 4 tap wavelet

Conclusions/Summary

- Periodic functions can be approximated using basis of orthogonal trigonometric polynomials.
- The Fourier basis is discretely orthogonal and gives spectral accuracy for smooth functions.
- Functions with discontinuities are not approximated well: Gibbs phenomenon.
- The Discrete Fourier Transform can be computed very efficiently using the Fast Fourier Transform algorithm: $O(N \log N)$.
- FFTs can be used to filter signals, to do convolutions, and to provide spectrally-accurate derivatives, all in $O(N \log N)$ time.
- For signals that have different properties in different parts of the domain a wavelet basis may be more appropriate.
- Using specially-constructed orthogonal discrete wavelet basis one can compute fast discrete wavelet transforms in time $O(N)$.

