
Numerical Methods I
Numerical Computing

Aleksandar Donev
Courant Institute, NYU1

donev@courant.nyu.edu

1Course G63.2010.001 / G22.2420-001, Fall 2010

September 9th, 2010

A. Donev (Courant Institute) Lecture I 9/9/2010 1 / 40

Outline

1 Logistics

2 Sources of Error

3 IEEE Floating-Point Numbers

4 Floating-Point Computations
Floating-Point Arithmetic

A. Donev (Courant Institute) Lecture I 9/9/2010 2 / 40

Logistics

Course Essentials

Course webpage:
http://cims.nyu.edu/~donev/Teaching/NMI-Fall2010

Registered students: Blackboard page for announcements, grades,
and sample solutions. Sign up for Blackboard ASAP.

Office hours: 3 - 5 pm Tuesdays but open to discussion, or by
appointment.

Main textbook: Numerical Mathematics by Alfio Quarteroni,
Riccardo Sacco & Fausto Saleri, Springer, any edition.

Secondary textbook: Scientific Computing with MATLAB and
Octave, Alfio M. Quarteroni & Fausto Saleri, Springer, any edition.

Other optional readings linked on course page.

Computing is an essential part: MATLAB and preferably compiled
languages. Get access to them asap (e.g., Courant Labs).

A. Donev (Courant Institute) Lecture I 9/9/2010 3 / 40

http://cims.nyu.edu/~donev/Teaching/NMI-Fall2010

Logistics

Assignment 0: Questionnaire

Please log into Blackboard (email me for access if not registered or there is
a problem) and submit the following information (also under Assignments
on Blackboard and course webpage):

1 Name, degree, and class, any prior degree(s) or professional
experience.

2 List all programming languages/environments that you have used,
when and why, and your level of experience (just starting, beginner,
intermediate, advanced, wizzard).

3 Why did you choose this course instead of Scientific Computing
(spring)? Have you taken or plan to take any other course in applied
mathematics or computing (e.g., Numerical Methods II)?

4 Was the first lecture at a reasonable level/pace for your background?
5 What are your future plans/hopes for activities in the field of applied

and computational mathematics? Is there a specific area or
application you are interested in (e.g., theoretical numerical analysis,
finance, computational genomics)?

A. Donev (Courant Institute) Lecture I 9/9/2010 4 / 40

Logistics

Agenda

If you have not done it already: Review Linear Algebra through
Chapter I of the textbook. Start playing with MATLAB.

There will be regular homework assignments, usually computational,
but with lots of freedom. Submit the solutions on time (preferably
early), preferably as a PDF (give LaTex/lyx a try!), via email or
BlackBoard, or handwritten. Always submit codes electronically.
First assignment posted and due in two weeks.

Very important to the grade is your final research project: choose
topic early on! Writeup and presentation due at the end of the
semester.

Final presentations: Officially scheduled for 5pm Dec. 23rd (!?!).
Email me if you want an alternate earlier date or time (12/20-12/23).

Please ask questions! Note that I am not a MATLAB expert (I am a
Fortran fan).

A. Donev (Courant Institute) Lecture I 9/9/2010 5 / 40

Sources of Error

Conditioning of a Computational Problem

A rather generic computational problem is to find a solution x that
satisfies some condition F (x , d) = 0 for given data d .
Well-posed problem: Unique solution that depends continuously on
the data. Otherwise it is an intrinsically ill-posed problem and no
numerical method will work.
Absolute error δx and relative error ε

x̂ = x + δx , x̂ = (1 + ε)x

The relative conditioning number

K = sup
δd 6=0

‖δx‖ / ‖x‖
‖δd‖ / ‖d‖

is an important intrinsic property of a computational problem. If
K ∼ 1 the problem is well-conditioned. An ill-conditioned problem
is one that has a large condition number, i.e., one for which a given
target relative accuracy of the solution cannot be computed for a
given accuracy of the data.

A. Donev (Courant Institute) Lecture I 9/9/2010 6 / 40

Sources of Error

Computational Error

A numerical method must use a finite representation for numbers
and thus cannot possibly produce an exact answer for all problems,
e.g, 3.14159 but never π.

Instead, we want to control the computational errors (other
terms/meanings are used in the literature!):

Approximation error due to replacing the computational problem with an
easier-to-solve approximation F̂n(x̂n, d̂n) = 0. Also called
discretization error.

Truncation error due to replacing limits and infinite sequences and sums
by a finite number of steps.

Roundoff error due to finite representation of real numbers and arithmetic
on the computer, x 6= x̂ .

Propagated error due to errors in the data from user input or previous
calculations in iterative methods.

Statistical error in stochastic calculations such as Monte Carlo
calculations.

A. Donev (Courant Institute) Lecture I 9/9/2010 7 / 40

Sources of Error

Consistency, Stability and Convergence

Many methods generate a sequence of solutions to

F̂n(x̂n, d̂n) = 0,

where for each n there is an algorithm that produces x̂n given d̂n.

A numerical method is consistent if the approximation error vanishes
as n →∞.

A numerical method is stable if propagated errors decrease as the
computation progresses.

A numerical method is convergent if the numerical error can be
made arbitrarily small by increasing the computational effort. Rather
generally

consistency+stability→convergence

Not less important are: accuracy, reliability/robustness, and
efficiency.

A. Donev (Courant Institute) Lecture I 9/9/2010 8 / 40

Sources of Error

A Priori Error Analysis

It is great when the computational error in a given numerical result
can be bounded or estimated and the absolute or relative error
reported along with the result.

A priori analysis gives guaranteed error bounds but it may involve
quantities that are difficult to compute (e.g., matrix inverse, condition
number).

A posteriori analysis tries to estimate the error from quantities that
are actually computed.

Take the example

Solve the linear system Ax = b

where the matrix A is considered free of errors, but b is some input
data that has some error.

A. Donev (Courant Institute) Lecture I 9/9/2010 9 / 40

Sources of Error

A priori Analysis

In forward error analysis one tries to estimate the error bounds on
the result in each operation in the algorithm in order to bound the
error in the result

‖δx‖ given ‖δb‖

It is often too pessimistic and hard to calculate: δx = A−1 (δb).

In backward error analysis one calculates, for a given output, how
much one would need to perturb the input in order for the answer to
be exact.

‖δb‖ given x̂ ≈ x

It is often much tighter and easier to perform than forward analysis:
δb = r = Ax̂− b.

Note that if b is only known/measured/represented with accuracy
smaller than ‖r‖ then x̂ is a perfectly good solution.

A posteriori analysis tries to estimate ‖δx‖ given ‖r‖.

A. Donev (Courant Institute) Lecture I 9/9/2010 10 / 40

Sources of Error

Example: Convergence

[From Dahlquist & Bjorck] Consider solving

F (x) = f (x)− x = 0

by using a fixed-point iteration

xn+1 = f (xn), i.e., Fn+1 = f (xn)− xn+1

along with some initial guess x0. This is (strongly) consistent with the
mathematical problem since Fn+1(x) = 0.

Consider the calculation of square roots, x =
√

c.
First, take the numerical method xn+1 = f (xn) = c/xn. It is obvious
this oscillates between x0 and c/x0 since c/(c/x0) = x0. The error
does not decrease and the method does not converge.
On the other hand, the Babylonian method for square roots

xn+1 = f (xn) =
1

2

(c

x
+ x

)
,

is also consistent but it also converges (quadratically) for any
non-zero initial guess (see Wikipedia article)!

A. Donev (Courant Institute) Lecture I 9/9/2010 11 / 40

Sources of Error

Example: Stability

[From Dahlquist & Bjorck, also homework] Consider error propagation in
evaluating

yn =

∫ 1

0

xn

x + 5
dx

based on the identity
yn + 5yn−1 = n−1.

Forward iteration yn = n−1 − 5yn−1, starting from y0 = ln(1.2),
enlarges the error in yn−1 by 5 times, and is thus unstable.

Backward iteration yn−1 = (5n)−1 − yn/5 reduces the error by 5 times
and is thus stable. But we need a starting guess?

Since yn < yn−1,

6yn < yn + 5yn−1 = n−1 < 6yn−1

and thus 0 < yn < 1
6n < yn−1 < 1

6(n−1) so for large n we have tight
bounds on yn−1 and the error should decrease as we go backward.

A. Donev (Courant Institute) Lecture I 9/9/2010 12 / 40

IEEE Floating-Point Numbers

The IEEE Standard for Floating-Point Arithmetic (IEEE
754)

Computers represent everything using bit strings, i.e., integers in base-2.
Integers can thus be exactly represented. But not real numbers!
The IEEE 754 (also IEC559) standard documents:

Formats for representing and encoding real numbers using bit strings
(single and double precision).

Rounding algorithms for performing accurate arithmetic operations
(e.g., addition,subtraction,division,multiplication) and conversions
(e.g., single to double precision)

Exception handling for special situations (e.g., division by zero and
overflow).

A. Donev (Courant Institute) Lecture I 9/9/2010 13 / 40

IEEE Floating-Point Numbers

Floating Point Representation

Assume we have N digits to represent real numbers on a computer
that can represent integers using a given number system, say decimal
for human purposes.

Fixed-point representation of numbers

x = (−1)s · [aN−2aN−3 . . . ak . ak−1 . . . a0]

has a problem with representing large or small numbers: 1.156 but
0.011.

Instead, it is better to use a floating-point representation

x = (−1)s · [0 . a1a2 . . . at] · βe = (−1)s ·m · βe−t ,

akin to the common scientific number representation: 0.1156 · 101

and 0.1156 · 10−1.

A floating-point number in base β is represented using one sign bit
s = 0 or 1, a t-digit integer mantissa 0 ≤ m = [a1a2 . . . at] ≤ βt − 1,
and an integer exponent L ≤ e ≤ U.

A. Donev (Courant Institute) Lecture I 9/9/2010 14 / 40

IEEE Floating-Point Numbers

IEEE Standard Representations

Computers today use binary numbers (bits), β = 2. Also, for various
reasons, numbers come in 32-bit and 64-bit packets (words),
sometimes 128 bits also.
Note that this is different from whether the machine is 32-bit or
64-bit, which refers to memory address widths.

Normalized single precision IEEE floating-point numbers (single
in MATLAB, float in C/C++, REAL in Fortran) have the
standardized storage format (sign+power+fraction)

Ns + Np + Nf = 1 + 8 + 23 = 32 bits

and are interpreted as

x = (−1)s · 2p−127 · (1.f)2,

where the sign s = 1 for negative numbers, the power 1 ≤ p ≤ 254
determines the exponent, and f is the fractional part of the mantissa.

A. Donev (Courant Institute) Lecture I 9/9/2010 15 / 40

IEEE Floating-Point Numbers

IEEE representation example

[From J. Goodman’s notes] Take the number x = 2752 = 0.2752 · 104.
Converting 2752 to the binary number system

x = 211 + 29 + 27 + 26 = (101011000000)2 = 211 · (1.01011)2

= (−1)02138−127 · (1.01011)2 = (−1)02(10001010)2−127 · (1.01011)2

On the computer:

x = [s | p | f]

= [0 | 100, 0101, 0 | 010, 1100, 0000, 0000, 0000, 0000]

= (452c0000)16

fo rmat hex ;
>> a=s i n g l e (2 . 752 E3)
a =

452 c0000

A. Donev (Courant Institute) Lecture I 9/9/2010 17 / 40

IEEE Floating-Point Numbers

IEEE formats contd.

Double precision numbers (default in MATLAB, double in C/C++,
REAL(KIND(0.0d0)) in Fortran) follow the same principle, but use 64
bits to give higher precision and range

Ns + Np + Nf = 1 + 11 + 52 = 64 bits

x = (−1)s · 2p−1023 · (1.f)2.

Higher (extended) precision formats are not really standardized or
widely implemented/used (e.g., quad=1 + 15 + 112 = 128 bits,
double double, long double).

There is also software-emulated variable precision arithmetic (e.g.,
Maple, MATLAB’s symbolic toolbox, libraries).

A. Donev (Courant Institute) Lecture I 9/9/2010 18 / 40

IEEE Floating-Point Numbers

IEEE non-normalized numbers

The extremal exponent values have special meaning:

value power p fraction f

±0 0 0

denormal (subnormal) 0 > 0

±∞(inf) 255 = 0

Not a number (NaN) 255 > 0

A denormal/subnormal number is one which is smaller than the
smallest normalized number (i.e., the mantissa does not start with 1).
For example, for single-precision IEEE

x̃ = (−1)s · 2−126 · (0.f)2.

Denormals are not always supported and may incur performance
penalties in implementing gradual underflow arithmetic.

A. Donev (Courant Institute) Lecture I 9/9/2010 19 / 40

Floating-Point Computations

Important Facts about Floating-Point

Not all real numbers x , or even integers, can be represented exactly as
a floating-point number, instead, they must be rounded to the
nearest floating point number x̂ = fl(x).

The relative spacing or gap between a floating-point x and the
nearest other one is at most ε = 2−Nf , sometimes called ulp (unit of
least precision). In particular, 1 + ε is the first floating-point number
larger than 1.

Floating-point numbers have a relative rounding error that is
smaller than the machine precision or roundoff-unit u,

|x̂ − x |
|x |

≤ u = 2−(Nf +1) =

{
2−24 ≈ 6.0 · 10−8 for single precision

2−53 ≈ 1.1 · 10−16 for double precision

The rule of thumb is that single precision gives 7-8 digits of precision
and double 16 digits.
There is a smallest and largest possible number due to the limited
range for the exponent (note denormals).

A. Donev (Courant Institute) Lecture I 9/9/2010 20 / 40

Floating-Point Computations

Important Floating-Point Constants

Important: MATLAB uses double precision by default (for good reasons!).
Use x=single(value) to get a single-precision number.

MATLAB code Single precision Double precision

ε eps, eps(’single’) 2−23 ≈ 1.2 · 10−7 2−52 ≈ 2.2 · 10−16

xmax realmax 2128 ≈ 3.4 · 1038 21024 ≈ 1.8 · 10308

xmin realmin 2−126 ≈ 1.2 · 10−38 2−1022 ≈ 2.2 · 10−308

x̃max realmin*(1-eps) 2−126 ≈ 1.2 · 10−38 21024 ≈ 1.8 · 10308

x̃min realmin*eps 2−149 ≈ 1.4 · 10−45 2−1074 ≈ 4.9 · 10−324

A. Donev (Courant Institute) Lecture I 9/9/2010 21 / 40

Floating-Point Computations Floating-Point Arithmetic

IEEE Arithmetic

The IEEE standard specifies that the basic arithmetic operations
(addition,subtraction,multiplication,division) ought to be performed
using rounding to the nearest number of the exact result:

x̂ } ŷ = x̂ ◦ y

This guarantees that such operations are performed to within machine
precision in relative error (requires a guard digit for subtraction).

Floating-point addition and multiplication are not associative but
they are commutative.

Operations with infinities follow sensible mathematical rules (e.g.,
finite/inf = 0).

Any operation involving NaN’s gives a NaN (signaling or not), and
comparisons are tricky (see homework).

A. Donev (Courant Institute) Lecture I 9/9/2010 22 / 40

Floating-Point Computations Floating-Point Arithmetic

Practical advice about IEEE arithmetic

Most scientific software uses double precision to avoid range and
accuracy issues with single precision (better be safe then sorry).
Single precision may offer speed/memory/vectorization advantages
however (e.g. GPU computing).

Optimization, especially in compiled languages, can rearrange terms
or perform operations using unpredictable alternate forms.
Using parenthesis helps , e.g. (x + y)− z instead of x + y − z , but
does not eliminate the problem.

Intermediate results of calculations do not have to be stored in IEEE
formats (e.g., Intel chips may use 80-bits internally), which helps with
accuracy but leads to unpredictable results.

Do not compare floating point numbers (especially for loop
termination), or more generally, do not rely on logic from pure
mathematics.

Library functions such as sin and ln will typically be computed almost
to full machine accuracy, but do not rely on that.

A. Donev (Courant Institute) Lecture I 9/9/2010 23 / 40

Floating-Point Computations Floating-Point Arithmetic

Floating-Point Exceptions

Computing with floating point values may lead to exceptions, which
may be trapped and halt the program:

Divide-by-zero if the result is ±∞
Invalid if the result is a NaN

Overflow if the result is too large to be represented
Underflow if the result is too small to be represented

Numerical software needs to be careful about avoiding exceptions
where possible.
For example, computing

√
x2 + y2 may lead to overflow in computing

x2 + y2 even though the result does not overflow.
MATLAB’s hypot function guards against this. For example (see
Wikipedia“hypot”),√

x2 + y2 = |x |
√

1 +
(y

x

)2
ensuring that |x | > |y |

works correctly!

A. Donev (Courant Institute) Lecture I 9/9/2010 24 / 40

Floating-Point Computations Floating-Point Arithmetic

Propagation of Errors

For multiplication and division, the bounds for the relative error in
the operands are added to give an estimate of the relative error in the
result. This is good!

For addition and subtraction, the bounds on the absolute errors add
to give an estimate of the absolute error in the result.
This is much more dangerous since the relative error is not controlled!

Adding two numbers of widely-differing magnitude leads to loss of
accuracy due to roundoff error. This can become a problem when
adding many terms, such as infinite series.

As an example, consider computing the harmonic sum numerically:

H(N) =
N∑

i=1

1

i
= Ψ(N + 1) + γ,

where the digamma special function Ψ is psi in MATLAB.
We can do the sum in forward or in reverse order.

A. Donev (Courant Institute) Lecture I 9/9/2010 25 / 40

Floating-Point Computations Floating-Point Arithmetic

Growth of Truncation Error

% Ca l c u l a t i n g the harmonic sum f o r a g i v en i n t e g e r N:
funct ion nhsum=harmonic (N)

nhsum=0.0;
f o r i =1:N

nhsum=nhsum+1.0/ i ;
end

end

% Sing l e−p r e c i s i o n v e r s i o n :
funct ion nhsum=harmonicSP (N)

nhsumSP=s i n g l e (0 . 0) ;
f o r i =1:N % Or , f o r i=N:−1:1

nhsumSP=nhsumSP+s i n g l e (1 . 0) / s i n g l e (i) ;
end
nhsum=doub le (nhsumSP) ;

end

A. Donev (Courant Institute) Lecture I 9/9/2010 27 / 40

Floating-Point Computations Floating-Point Arithmetic

contd.

npt s =25;
Ns=zeros (1 , npt s) ; hsum=zeros (1 , npt s) ;
r e l e r r=zeros (1 , npt s) ; r e l e r r SP=zeros (1 , npt s) ;
nhsum=zeros (1 , npt s) ; nhsumSP=zeros (1 , npt s) ;
f o r i =1: npt s

Ns (i)=2ˆ i ;
nhsum(i)=harmonic (Ns (i)) ;
nhsumSP(i)=harmonicSP (Ns (i)) ;
hsum(i)=(p s i (Ns (i)+1)− p s i (1)) ; % The o r e t i c a l r e s u l t
r e l e r r (i)=abs (nhsum(i)−hsum(i))/ hsum(i) ;
r e l e r r SP (i)=abs (nhsumSP(i)−hsum(i))/ hsum(i) ;

end

A. Donev (Courant Institute) Lecture I 9/9/2010 29 / 40

Floating-Point Computations Floating-Point Arithmetic

contd.

f i g u r e (1) ;
l o g l o g (Ns , r e l e r r , ’ ro−− ’ , Ns , r e l e r r SP , ’ bs− ’) ;
t i t l e (’ E r r o r i n harmonic sum ’) ;
x l a b e l (’N ’) ; y l a b e l (’ R e l a t i v e e r r o r ’) ;
l egend (’ doub l e ’ , ’ s i n g l e ’ , ’ Lo ca t i on ’ , ’ NorthWest ’) ;

f i g u r e (2) ;
semi logx (Ns , nhsum , ’ ro−− ’ , Ns , nhsumSP , ’ bs : ’ , Ns , hsum , ’ g.− ’) ;
t i t l e (’ Harmonic sum ’) ;
x l a b e l (’N ’) ; y l a b e l (’H(N) ’) ;
l egend (’ doub l e ’ , ’ s i n g l e ’ , ’ ”e xac t ” ’ , ’ Loca t i on ’ , ’ NorthWest ’) ;

A. Donev (Courant Institute) Lecture I 9/9/2010 31 / 40

Floating-Point Computations Floating-Point Arithmetic

Results: Forward summation

10
0

10
2

10
4

10
6

10
8

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Error in harmonic sum

N

R
el

at
iv

e
er

ro
r

double
single

10
0

10
2

10
4

10
6

10
8

0

2

4

6

8

10

12

14

16

18
Harmonic sum

N

H
(N

)

double
single
"exact"

A. Donev (Courant Institute) Lecture I 9/9/2010 32 / 40

Floating-Point Computations Floating-Point Arithmetic

Results: Backward summation

10
0

10
2

10
4

10
6

10
8

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Error in harmonic sum

N

R
el

at
iv

e
er

ro
r

double
single

10
0

10
2

10
4

10
6

10
8

0

2

4

6

8

10

12

14

16

18
Harmonic sum

N

H
(N

)

double
single
"exact"

A. Donev (Courant Institute) Lecture I 9/9/2010 33 / 40

Floating-Point Computations Floating-Point Arithmetic

Numerical Cancellation

If x and y are close to each other, x − y can have reduced accuracy
due to cancellation of digits.
Note: If gradual underflow is not supported x − y can be zero even if
x and y are not exactly equal.

Benign cancellation: subtracting two exactly-known IEEE numbers
with the use of a guard digit results in a relative error of no more than
an ulp. The result is precise.

Catastrophic cancellation occurs when subtracting two nearly equal
inexact numbers and leads to loss of accuracy and a large relative
error in the result.
For example, 1.1234− 1.1223 = 0.0011 which only has 2 significant
digits instead of 4. The result is not accurate.

A. Donev (Courant Institute) Lecture I 9/9/2010 34 / 40

Floating-Point Computations Floating-Point Arithmetic

Cancellation Example

>> fo rmat l ong % or format hex
>> x=p i
x = 3.141592653589793
x = 400921 fb54442d18 % Note 8=1000
>> y=x+eps (x)
y = 3.141592653589794
y = 400921 fb54442d19 % Note 9=1001
>> z=x∗(1+ eps)
z = 3.141592653589794
z = 400921 fb54442d1a % Note a=1010
>> w=x+x∗ eps (x)
w = 3.141592653589794
w = 400921 fb54442d1b % Note b=1011

A. Donev (Courant Institute) Lecture I 9/9/2010 36 / 40

Floating-Point Computations Floating-Point Arithmetic

Cancellation Example

>> y−x
ans = 4.440892098500626 e−16
ans = 3 cc0000000000000
>> z−x % Benign c a n c e l l a t i o n (r e s u l t i s p r e c i s e)
ans = 8.881784197001252 e−16
ans = 3cd0000000000000
>> w−x % Benign (?) (r e s u l t i s not a c cu r a t e)
ans = 1.332267629550188 e−15
ans = 3cd8000000000000
>> 2ˆ(−51)
ans = 4.440892098500626 e−16
ans = 3 cc0000000000000

>> x∗ eps % This i s the a c t u a l r e s u l t we a r e a f t e r !
ans = 1.395147399203453 e−15
ans = 3 cc921fb54442d18

A. Donev (Courant Institute) Lecture I 9/9/2010 38 / 40

Floating-Point Computations Floating-Point Arithmetic

Avoiding Cancellation

Rewriting in mathematically-equivalent but numerically-preferred form
is the first try, e.g., instead of

√
x + δ −

√
x use

δ√
x + δ +

√
x
,

or instead of x2 − y2 use (x − y)(x + y) to avoid catastrophic
cancellation instead of just benign cancellation in x and y .
But what about the extra cost?

Sometimes one can use Taylor series or other approximation to get an
approximate but stable result, e.g.,

√
x + δ −

√
x ≈ δ

2
√

x
for δ � x .

See homework for some examples.

A. Donev (Courant Institute) Lecture I 9/9/2010 39 / 40

Floating-Point Computations Floating-Point Arithmetic

Conclusions/Summary

No numerical method can compensate for an ill-conditioned problem.
But not every numerical method will be a good one for a
well-conditioned problem.

A numerical method needs to control the various computational errors
(approximation, truncation, roundoff, propagated, statistical) while
balancing computational cost.

A numerical method must be consistent and stable in order to
converge to the correct answer.

The IEEE standard (attempts?) standardizes the single and double
precision floating-point formats, their arithmetic, and exceptions. It is
widely implemented but almost never in its entirety.

Numerical overflow, underflow and cancellation need to be carefully
considered and may be avoided.
Mathematically-equivalent forms are not numerically-equivalent!

A. Donev (Courant Institute) Lecture I 9/9/2010 40 / 40

	Logistics
	Sources of Error
	IEEE Floating-Point Numbers
	Floating-Point Computations
	Floating-Point Arithmetic

