Comment on “Jamming at zero temperature and zero applied stress: The epitome of
disorder”
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O’Hern, Silbert, Liu and Nagel [Phys. Rev. E. 68 , 011306 (2003)] (OSLN) claim that a special
point J of a "jamming phase diagram” (in density, temperature, stress space) is related to random
close packing of hard spheres, and that it represents, for their suggested definitions of jammed and
random, the recently introduced maximally random jammed state. We point out several difficulties
with their definitions and question some of their claims. Furthermore, we discuss the connections
between their algorithm and other hard-sphere packing algorithms in the literature.

Jammed random packings of hard particles have been
and continue to be a subject of intense interest. The
lack of precise definitions of both “jammed” and “random”
have been a hindrance in the field, and recently efforts
have emerged that have attempted to correct these defi-
ciencies [1-3]. In particular, employing these new defini-
tions, it has been shown that the venerable random close
packed (RCP) state is ill-defined but can be replaced by
the well-defined notion of a maximally random jammed
(MRJ) state [1]. O’Hern, Silbert, Liu and Nagel (OSLN)
[4] have recently written an interesting paper [4] that pro-
poses a unified view of jamming for a variety of physical
systems, including hard-sphere packings.

OSLN acknowledge the weaknesses of the conventional
RCP state as stated in Ref. [1], but redefine MRJ (while
still calling it RCP) by proposing new definitions for what
constitutes a jammed and random system [5]. Given the
subtlety of the problem, new definitions of “jammed” and
“random” must be held to high mathematical standards
in order to supplant existing ones. In this Comment, we
question whether OSLN’s “cleaner” definitions for these
terms meet such standards. We also take issue with their
claim to have generated unbiased and universal results
of relevance to random sphere packings. Finally, we dis-
cuss the relationships between their algorithm and other
packing algorithms.

I. WHAT IS “JAMMED”?

OSLN question whether the hard-sphere system is
“physical” and therefore resort to studying particle sys-
tems with soft-sphere interactions to mimic hard-particle
packings. The latter is inherently a geometrical problem.
In fact, there is a simple and rigorous geometrical ap-
proach to jamming in hard-sphere systems that is not
only well-defined, but, as we show below, is closely re-
lated to OSLN’s jamming point J.
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Although the hard-sphere potential is an idealization,
it is no less physical than any soft-sphere potential, espe-
cially in regards to jamming. Indeed, the singular nature
of the hard-sphere potential is crucial because it enables
one to be precise about the concept of “jamming.” Re-
cently, three hierarchically ordered jamming categories
have been introduced [2]: local, collective and strict jam-
ming. Each successive category progressively relaxes the
boundary conditions imposed on the particle displace-
ments. These definitions are very intuitive and com-
pletely geometric, and are closely linked to definitions of
“rigid” or “stable” packings appearing in the mathematics
literature [6, 7].

OSLN’s definition of jamming simply states that the
configuration of particles is at a stable (strict) energy
minimum. Such a definition is dependent on the partic-
ular interparticle potential, and thus it obscures the rel-
evant packing geometry (exclusion-volume effects). Fur-
thermore, the distinctions between different jamming cat-
egories is critical, especially if one is trying to determine
the density of the MRJ state [8]. Specifically, this den-
sity will generally be higher the more demanding is the
jamming category. Clearly, OSLN do not distinguish be-
tween different degrees or levels of jamming. We have re-
cently demonstrated that the distinction between collec-
tive and strict jamming is important even for very large
packings, especially in two dimensions [8] .

For OSLN, a jammed configuration is one where there
are no zero-frequency modes of the Hessian matrix of the
total potential energy with respect to the positions of the
particles (the dynamical matrix), while keeping the peri-
odic unit cell fized. Our definition of strict jamming re-
laxes this requirement and includes the lattice vectors as
additional degrees of freedom [3]. As explained in detail
in Ref. [9], the Hessian consists of two parts, a negative
definite stress matriz and a positive semidefinite stiffness
matriz. OSLN’s definition of jammed means simply that
the Hessian is positive definite at the energy minimum.
A precise phrase for this is a stable or strict (local) en-
ergy minimum, and we see no point in redefining this ele-
mentary concept. In fact, according to OSLN, any stable
energy minimum represents a jammed configuration, and



it is not possible to relate this idea to packing concepts
without numerous additional assumptions about the form
of the pair potential and the interparticle distances at the
energy minimum.

Although OSLN point out themselves that our defi-
nitions of jamming and MRJ are for hard-sphere pack-
ings, they claim to replace them with a “cleaner defi-
nition,” which applies only to systems of soft spheres.
The two definitions cannot directly be compared as they
apply to different systems. However, OSLN themselves
clearly imply that their “jammed” soft-sphere systems
and “jammed” hard-sphere packings are related, by re-
ferring to other works on hard-sphere systems. For ex-
ample, they claim a direct relation between their special
point J and RCP of hard spheres in Section IID of Ref.
[4]. The basic idea, as OSLN explain, is that one “can
approach the hard sphere by making the potential harder
and harder...[to] produce a limiting hard sphere value”.
However, they question whether the hard-sphere limit
is well-defined and “would argue that hard spheres are a
singular limit and thus unphysical” and that “One should
therefore concentrate on softer potentials for which un-
ambiguous definitions can be constructed.”

To demonstrate that the limit is well-defined, let us

first define a collectively jammed sphere packing to be any
nonoverlapping configuration of hard spheres in which no
subset of particles can continuously be displaced so that
its members move out of contact with one another and
with the remainder set (while maintaining nonoverlap)
[2]. The following theorem [9] shows that near the “jam-
ming threshold” ¢., as defined in Section 1IB in Ref. [4],
the jamming of particle systems as defined by OSLN is
directly related to this definition of collective jamming in
hard-sphere packings:
Theorem: Consider an interparticle potential that is
continuous and strictly monotonically decreasing around
riyj = D, and vanishes for r;; > D + §. If in a finite
configuration of particles interacting with such a poten-
tial, all interacting (i.e., closer then D + §) particles are
a distance D apart, and the configuration is a stable lo-
cal energy minimum, then the configuration corresponds
to a collectively jammed packing of hard spheres with
diameter D.

If one relaxes the condition that all interacting parti-
cles are exactly at distance D apart and instead asks only
that the minimum interparticle distance be D, then for
a sufficiently small ¢ one can prove [10] that the above
sphere packing is almost collectively jammed (i.e., it is
trapped in a small neighborhood of the initial configura-
tion [3]). This theorem implies that the packings studied
in Ref. [4] that are very slightly above the “jamming
threshold” ¢. are indeed closely related to collectively
jammed ideal packings of spheres of diameter D = o
(polydispersity is trivial to incorporate). All of these con-
siderations call into question the value of a definition of
jamming that hinges on eigenvalues of dynamical matri-
ces.

Finally, it is important to note that despite the fact

that our definition of collective jamming above calls for
virtual displacing (groups of) particles, one can in fact
rigorously test for our hard-particle jamming categories
using linear programming [3], without what OSLN call
“shifting particles,” even for very large disordered pack-
ings [8]. We have in fact communicated to OSLN the
results [11] of our algorithm applied to several sample
packings provided by them. In short, our algorithm veri-
fied that OSLN’s systems near ¢, were indeed nearly col-
lectively jammed (within a very small tolerance) when
viewed as packings. However, they were not strictly
jammed because OSLN keep the lattice vectors fixed dur-
ing energy minimization.

II. WHAT IS “RANDOM”?

We agree that the maximum of an appropriate “en-
tropic” metric would be a potentially useful way to char-
acterize the randomness of a packing and therefore the
MRJ state [12]. However, as pointed out in Ref. [12], a
substantial hurdle to be overcome is the necessity to gen-
erate all possible jammed states, or at least a representa-
tive sample of such states, in an unbiased fashion using
a “universal” protocol in the large-system limit. Even if
such a protocol could be developed, however, the issue
of what weights to assign the resulting configurations re-
mains. Moreover, there are other fundamental problems
with entropic measures, as we discuss below, including its
significance for two-dimensional monodisperse hard disk
packings.

According to OSLN, maximally random is defined by
“where the entropy of initial states is maximum” and im-
ply that this is a universal measure of disorder. It is not
clear exactly what the authors mean by entropy and how
(or whether) it can be measured for “initial states”. It is
not obvious that one can relate the “randomness” of the
final configurations (which is what OSLN are analyzing)
to that of the initial configurations. It appears OSLN’s
rationale is that their algorithm goes to the “nearest” en-
ergy minimum from a given initial configuration. Does
this process preserve “entropy” or randomness? Clearly
if one used, for example, global energy minimization, one
would obtain very different results. Furthermore, entropy
is a concept inherently related to distributions of configu-
rations. However, one classifies particular final configura-
tions (packings) as random or disordered, and by consid-
ering a given configuration, one can devise a procedure
for quantitatively measuring (using order metrics) how
disordered or ordered it is. This distinction between dis-
tributions of configurations and particular configurations
is an important one that OSLN do not make.

The MRJ state is defined in [1] as the jammed state
which minimizes a given order metric ¥. OSLN suggest
their interpretation of maximally random as superior be-
cause using order metrics “will always be subject to un-
certainty since one never knows if one has calculated the
proper order parameter.” Therefore, OSLN believe that



they have identified the proper, unique, measure of or-
der (related to entropy). We wish to stress the difference
between well-defined and unique, as the two seem to be
blurred in Ref. [4]. The MRJ state is well-defined in
that for a particular choice of jamming category and or-
der metric it can be identified unambiguously. For a finite
system, it will consist of a discrete set (possibly one) of
configurations, becoming more densely populated as the
system becomes larger. At least for collective and strict
jamming in three dimensions, a variety of sensible order
metrics seem to produce an MRJ state near ¢ ~ 0.64
[12], the traditionally accepted density of the RCP state.

However, the density of the MRJ state should not be
confused with the MRJ state itself. It is possible to have
a rather ordered packing at this very same density; for ex-
ample, a jammed but diluted vacancy FCC lattice pack-
ing [12]. This is why the two-parameter description of
packings in terms of the density ¢ and order metric 1, as
in Ref. [1], is not only useful, but actually necessary.

OSLN’s description of order implies a direct relation
between probability densities and randomness, i.e., that
the most probable [13] configurations represent the most
disordered state. In this sense, one expects that the den-
sity of jammed configurations, when viewed as a three-
dimensional plot over the ¢—1 plane will be very strongly
peaked around the MRJ point for very large systems, just
as the probability distribution curves in Fig. 6 in Ref.
[4] are very peaked around ¢ =~ 0.64. As OSLN suggest
themselves, this might explain why several different pack-
ing procedures yield similar hard-particle packings under
appropriate conditions, historically designated as RCP.

However, this is far from being a closed question
[14]. Consider two-dimensional monodisperse circular
disk packings as an example. It is well-known that two-
dimensional analogs of three-dimensional computational
and experimental protocols that lead to putative RCP
states result in disk packings that are highly crystalline,
forming rather large triangular domains (grains) [15]. Be-
cause such highly ordered packings are the most proba-
ble for these protocols, OSLN’s entropic measure would
identify these as the most disordered, a dubious proposi-
tion. An appropriate order metric, on the other hand, is
capable of identifying a particular configuration (not an
ensemble of configurations) of considerably lower density
(e.g., a jammed diluted triangular lattice) that is con-
sistent with our intuitive notions of maximal disorder.
However, typical packing protocols would almost never
generate such disordered disk configurations because of
their inherent bias toward undiluted crystallization. This
brings us to OSLN’s claim that they have devised an
unbiased universal protocol, to which we now turn our
attention.

IIT. UNIVERSAL, HARD AND SOFT
ALGORITHMS

In this section, we focus on the algorithms used by
OSLN and point out why they are neither universal nor
superior to other procedures. We point out the close re-
lations between OSLN’s algorithm for generating config-
urations near the onset of jamming and the Zinchenko
hard-sphere packing algorithm [16]. Furthermore, we
question OSLN’s implication that using one kind of inter-
action potential (with three different exponents) and one
algorithm amounts to exploring the space of all jammed
configurations in an unbiased manner. This puts into
doubt the claimed universality of the point J.

By fixing the interaction potential, initial density
and energy minimization (conjugate gradient) algorithm,
OSLN obtain a well-defined collection of final config-
urations with well-defined (not unique) properties. In
essence, OSLN make their algorithm devoid of tunable
parameters by simply choosing specific and fixed values
for them. Both the Zinchenko and OSLN algorithms are
“dynamics independent”, in the sense that there is no tun-
able parameter for the rate of compression, which would
be an analog of the cooling or quenching rate in molecu-
lar systems. Both also imply that this makes their algo-
rithm universal or superior to other algorithms and that
the (well-defined) results they obtain are somehow spe-
cial. Most sensible algorithms will in fact produce a well-
defined density in the limit of large systems given a choice
of algorithmic parameters. For example, by changing the
expansion rate in the Lubachevsky-Stillinger algorithm,
one can achieve final densities for spheres anywhere in
the range from 0.64 (fast expansion) to 0.74 (very slow
expansion), as clearly illustrated in Fig. 2a in Ref. [1].
Therefore, if we followed the logic of OSLN, we could
claim that any number in that range represents a special
point. In our opinion, a good packing algorithm should
be capable of generating a variety of packings, in both
density and the amount of order. How can one ascer-
tain that the packings one produces are “most random”
if there are no other jammed packings to compare to?

OSLN use two main procedures to generate final con-
figurations. The first procedure is to choose a density
and then use conjugate gradients to find a nearby en-
ergy minimum, starting from a randomly-generated ini-
tial configuration (T' = 00), as described in Section ITA in
Ref. [4]. Using this procedure, OSLN sampled inherent
structures [17] at fixed density to measure the fraction
fj(¢) of states that had nonzero bulk and shear moduli,
and showed that f; has a strong system-size dependence
with its derivative becoming a delta-function in the large
system limit. It is important to note that this procedure
as such has little or nothing to do with hard-sphere pack-
ings, especially for the kind of soft potentials (a > 3/2)
that OSLN study. Many stable energy minima will be
completely unrelated to packings, and especially not to
those designated as MRJ states.

OSLN used a second procedure to study the mechani-



cal and structural properties of systems near the onset of
jamming ¢.. In this procedure, a configuration is com-
pressed (or decompressed) using very small steps in den-
sity until the bulk and shear moduli vanished (or nonzero
moduli develop), as described in Section IIB in Ref. [4].
We now demonstrate that this procedure is closely related
to Zinchenko’s algorithm [16] for generating hard-sphere
packings. Start at low density with a set of nonoverlap-
ping spheres of diameter 0. Both algorithms then slowly
grow the particles (OSLN in small increments, Zinchenko
continuously) while moving the particles to avoid over-
lap [18]. In the Zinchenko algorithm, one strictly main-
tains the contact between particles as soon as they touch,
which requires solving a system of ODE’s containing the
rigidity matrix of the packing [3] to find the necessary
particle displacements. OSLN on the other hand, use
conjugate gradients (CG) to reminimize the potential en-
ergy, which will simply push the particles just enough to
keep them nonoverlapping, i.e., almost in contact. This
procedure continues in both algorithms until no further
densification is possible without inducing overlap.
Accordingly, it is not surprising the packing config-
urations close to ¢. obtained in Ref. [4] closely re-
semble (in packing fraction, amorphous character, co-
ordination, etc.) packings generated via a variety of
bonafide hard-sphere algorithms (and experiments [19]).
In particular, very similar packings are produced with
the Lubachevsky-Stillinger (LS) algorithm [20, 21] (with
sufficiently high expansion rates) and the Zinchenko algo-
rithm [16]. OSLN criticize the LS algorithm for changing
the density in a dynamic fashion. The stated advantage
of the OSLN protocol is that one can “quench the sys-

tem to the final state within a fixed energy landscape”
since “the density is always held constant”. We are very
puzzled by this last claim in light of their admission (in
Section IIB of Ref. [4]) that they slowly change the den-
sity of the packing to find ¢.. In fact, OSLN do not
seem to clearly distinguish between the two rather differ-
ent procedures they employ: the first for finding inherent
structures (at a fixed density) and the second for gener-
ating packings at the jamming threshold (which searches
in density). Fig. 6 of Ref. [4], which supposedly repre-
sents the distributions of jamming thresholds ¢., defined
by the second procedure, is obtained by differentiating
the distribution generated with the first procedure, with
no clear justification.

Most problematic of all is OSLN’s claim that their re-
sults are universal. Despite the statement that “Starting
with randomly generated 1" = oo states guarantees that
we sample all [emphasis added] phase space equally”, all
that their first algorithm manages to explore is the space
of energy minima for the particular chosen interaction po-
tential. By comparing three different exponents v, OSLN
conclude that the exact form of the potential is not im-
portant. However, a much more convincing picture would
have been made if they instead tried qualitatively differ-
ent kinds of interaction potentials, rather then simply
changing the curvature of the potential at the contact
point. Otherwise, why focus on continuous interaction
potentials at all? Since it is geometry (i.e., the nonover-
lap condition on the spherical cores) that is crucial, the
hard-sphere system offers a far “cleaner” system to study
when trying to understand the special point J.
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