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Abstract 

Recent simulations indicate that ellipsoids can randomly pack more densely than spheres and, 

remarkably, for axes ratios near 1.25:1:0.8 can approach the densest crystal packing (FCC) of spheres, 

with packing fraction 74%. We demonstrate that such dense packings are realizable.  We introduce a 

novel way of determining packing density for a finite sample that minimizes surface effects. We have 

fabricated ellipsoids and show that in a sphere, the radial packing fraction, φ(r), can be obtained from 

V(h), the volume of added fluid to fill the sphere to height h. We also obtain φ(r) from an MRI scan. 

The measurements of the overall density φavr, φ(r), and the core density φ0=0.74± 0.005 agree with 

simulations.  

PACS: 45.70.-n,  61.43.-j,  05.65.+b,  83.80 
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The structure of liquids and glasses [1], the thermodynamics and kinetics of the crystal-liquid 

transition [2,3], crystal nucleation and growth [4,5,6], the structure and flow of granular materials [7,8], 

the jamming transition [9], the quality of ceramics and a host of other problems in science, 

mathematics and technology depend on the packing properties of hard particles [10,11,12]. In 

particular, the freezing transition of simple liquids is directly related to the fact that a jammed random 

packing of spheres at volume fraction 0.64 [13] is less dense than the FCC crystal packing at 0.74 

[2,3,14]. Thermodynamically, at high density, free volume considerations dominate the entropy and 

favor the configuration with the highest density.  Until recently most studies of hard particle packings 

dealt with spheres. Within the past year, both experiments and simulations suggest the richness of the 

packing problem when the shape is modified even by the affine deformation of a sphere to an ellipsoid 

[15,16].  While the papers were inspired by random packing experiments on M&M® candies [17], 

most of the results were based on simulations. The simulations [18] show that the density of jammed 

random packings of ellipsoids can approach that of the crystal packing, raising the possibility of an 

elusive thermodynamically stable glass. 

The present study was undertaken to test whether such a dense random packing could be 

realized experimentally. Simulations use frictionless particles with periodic boundary conditions. Can 

experiments with a finite number of particles with friction yield information on the bulk packings? We 

show that  injected fluid volume vs height in a packed spherical container provides a good measure of 

φbulk for rather small systems. This technique should prove useful for many granular material and 

packing studies. We confirm these measurements with magnetic resonance imaging (MRI) studies 

which provide the most direct method in the case of non-metallic particles. 

In previous work, some of us have used a modified Lubachevsky-Stillinger algorithm to 

estimate the packing fraction of randomly jammed ellipsoids. The algorithm is an event-driven 



 3 

molecular dynamics simulation with controlled particle growth [18] .The packing fraction, as a 

function of α, for ellipsoids with aspect ratios α:1:1 and α1/2
:1:α−1/2

 is shown in Fig. 1a. Surprisingly 

the packing fraction has a cusp-like minimum at α=1 (spheres, φ≈0.64) and increases sharply with 

|α−1| [13]. What was striking in these early simulations is that for ellipsoids with aspect ratios 

1.25:1:0.8 the packing fraction approaches that of the densest sphere packing, which corresponds to 

the FCC lattice and its stacking variants at φ=0.7405. Later simulations with a small periodic unit cell 

(32 particles/cell) and very slow growth obtained an apparently disordered packing with φ≈0.7427, Fig. 

1 insert b.  Moreover, using this procedure, we found crystal ellipsoid packings that are denser than 

the FCC packing of spheres [16].  Confidence in the simulations was enhanced by the close agreement 

with the measured value of the density for M&M candies (α~1/2), φ≈0.71 from simulation, φ=0.69 

±0.01 from experiment [15].  

The 1.25:1:0.8 ellipsoids used for these experiments were fabricated using a stereolithography 

machine 3D Systems Model SLA 250. The machine uses a UV laser with an absorption length of ~ 

100 µm in monomer CIBATOLL ® SL 5170. The computer controlled laser scans the surface leaving 

a solid polymerized layer 100 µm deep. This patterned layer is then lowered and the next layer written 

by polymerizing the covering liquid. The beam width, which determines the xy resolution, is 

comparably scaled at 150 µm allowing feature size of 150 µm in each direction. The size of our 

ellipsoids was 2.344:1.875:1.5 cm for <1% resolution. A picture of a few ellipsoids used in this study 

is shown in Figure 1 insert c.  

The simplest way to measure packing fraction is to pack a container with the particles and 

determine the volume of fluid which fills the voids [19]. In such measurements the average packing 

density φavr is significantly smaller than its bulk value, φ0, even for large containers. This is due to the 

lower density in the few layers of particles near the wall (at the wall the density is zero). To minimize 



 4 

the surface to volume ratio a spherical container is preferred. We expect that for a spherical container 

the local density is radially symmetric. Assume that the radial density profile has the form: 

( ) ( )
a

rRr −∆−= φφφ 0 ,                                                                     (1) 

where a is the mean particle radius, a=(a1a2a3)
1/3

 for ellipsoids with principal axes 2a1, 2a2, 2a3, and 

∆φ(x)  is an approximately universal function, independent of R, but dependent on particle shape. The 

correction ∆φ(x) decays rapidly to zero for x>>1. If we use (1) in ( )∫=
R

avr Rdrrr
0

32 /3 φφ , we obtain 

the expansion of φavr  in powers of  δ=a/R:  
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φφφ . Thus, for large spherical containers the main correction 

to the measured total density varies as a/R, and a linear extrapolation of φavr vs a/R to a/R→0 should 

give a good estimate of the bulk density φ0 [19,20].  In Fig.2, we present the results of experiments 

with spherical glass marbles of diameter 1.1 cm, mini M&M® candies (ellipsoids of revolution or 

spheroids) and our fabricated ellipsoids with semi-axes 1.25a:a:0.8a, a=0.9375 cm, in spherical flasks 

of several sizes. The ellipsoids or spheres were poured into glass flasks which were then shaken by 

hand. More particles were added until further shaking failed to produce space for the addition of 

another particle. In order to overcome friction, we added a small amount of isopropanol as a lubricant 

for the marbles and ellipsoids. Also shown are computer generated jammed configurations of 

frictionless spheres and ellipsoids in geometrically similar spherical containers [18]. From this data, it 

is clear that the density is the largest for the fabricated ellipsoids and smallest for the spheres. 

Extrapolating the simulation results to a/R→0, we find φ0(spheres)=0.642±0.002, 

φ0(M&M’s)=0.700±0.002 and φ0(ellipsoids)=0.741±0.002. Our experimental data for glass marbles 

and M&M candies agree well with simulated results of frictionless particles. However, for the 
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fabricated ellipsoids, the measured packing densities are noticeably lower than the simulated result for 

a/R>0.1. Clearly a meaningful extrapolation for the 0.8:1:1.25 ellipsoids to a/R →0 is difficult for the 

number of particles we have studied (up to ~ 1000 particles). We need to further minimize surface 

effects.  

The average density of a spherical core φ0 excluding several particle layers near the container 

wall should provide a very good approximation to the bulk density φbulk. We therefore devised a 

different experiment to allow a measurement of the radial density profile φ(r). A spherical container of 

radius 10 cm was prepared with two holes in the bottom. Tubes were attached to the holes with epoxy. 

The sphere was filled with particles and shaken until no further particles could be added. The sphere 

was then set on a digital scale and one tube was attached to a water reservoir. The other tube was 

attached to a pressure transducer with a sensitivity of 10
-5

 bar (equivalent to a water height of about 

0.1mm). The experiment proceeded by allowing the water to slowly enter the container from the 

bottom while recording the weight (i.e., volume) of fluid added and the pressure (i.e. fluid level).  

As we fill the sphere with a fluid from the bottom the total volume of injected liquid, V, as a 

function of the height of the liquid level h (measured from the center of the flask, -R ≤ h ≤ R), is given 

by the integral: 

         ( )[ ]drr
r
hrhV

h

R
φπ −





 −= ∫ 112)( 2

.                                                               (3) 

Fig. 3 shows V(h) for an empty spherical container, a marbles- filled container and an ellipsoid-filled 

container. Equation 3 is trivially inverted to obtain φ(r) by differentiating V(h) twice: 
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Using Eq. (4) to obtain φ(r) from an experimental V(h) is difficult. Second-order differentiation is a 

numerically unstable procedure. Nonetheless, averaging over intervals of ~0.2R we obtain φ(0) 

~0.64±0.05 for marbles and 0.73±0.05  for our ellipsoids.  

It is instructive to consider the case when φ(r)=φ0 is constant, which gives V(h) as a simple 

cubic function of h,  

      ( ) ( ) 



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++−−=
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3
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0
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An important observation is that the coefficient of h
3 

does not depend on R and is thus independent of 

system size. Moreover, if φ(r)=φ0, for r<R1<R, V(h)  is a cubic function with the coefficient of the h
3
 

term remaining (π/3)(1-φ0) for a fit in the range -R1<h< R1. Therefore, a quick and rather accurate way 

of obtaining an estimate for the core (bulk) density φ0 in a packing is to fit a cubic polynomial to V(h) 

[21]. In Fig. 3, V(h) as measured is shown  together with the corresponding cubic fits. For our 

fabricated ellipsoids we find a core density φ0=0.739 ±0.005, which is in excellent agreement with the 

computational result φ0=0.735 ± 0.01. For spheres we measure φ0=0.635 ± 0.005, vs. the known bulk 

density φ0=0.64 ± 0.005. 

We also performed MRI scans of the ellipsoids in the same spherical container to assure that 

the packing did not show signs of crystal or orientational order. The space between ellipsoids was 

filled with water. MRI scans were collected on a Siemens 3T Allegra scanner. The images were 

acquired at 1 mm
3
 isotropic resolution per voxel using a conventional 3D FLASH sequence 

(acquisition matrix=256x256x256, FA=10 degree, TE=2.65 ms, TR=5.5 ms, BW=260Hz/pixel) in a 

standard birdcage head coil. The manufacturer's 3D large field of view geometric distortion correction 

algorithm was applied to the images. Fig. 4 insert shows a gray scale slice from the MRI data and no 

apparent ordering is present. We can also use the MRI data for an independent measurement of 
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φ(r). Simple thresholding converts the gray scale images into binary ones. Using the binary data, it is 

straightforward to calculate φ(r), which is shown in Fig. 4 with a solid line, while the average packing 

density inside a spherical core of radius r, ''2)'(
4

3
)(

0

2

3 ∫=
r

avr drrr
r

r πφ
π

φ , is shown as the line with 

circles. The oscillations come from the finite particle size and the effects of the walls. Their periodicity 

is approximately the mean particle diameter, 2a, a=(a1a2a3)
1/3

. The dashed line and triangles are 

results from a simulated packing with the same geometry.  The average density inside the core r<0.6R 

is 0.735, and the error due to finite pixel size, error in threshold and geometry distortions in the MRI 

scan is in total ±0.01.  

To summarize, we find that it is relatively straightforward to experimentally realize random 

ellipsoid packings whose packing density matches simulations of hard frictionless particles. We have 

also demonstrated a new way to measure the bulk density of an infinite random system, using a limited 

number of particles, which should be useful for packing measurements for other particle shapes. While 

we will pursue further MRI experiments which can provide more detailed information about inter-

particle correlations, the new technique can be used for all types of granular material whether 

amenable to MRI investigation or not, and is experimentally simple. 

While the random packing of our 1.25:1:0.8 ellipsoids at 0.74±0.005 is denser than random 

sphere packing, as dense or denser than any sphere packing, random, lattice or crystal, or any lattice 

packing of ellipsoids, it is not denser than the densest crystal packing of the same ellipsoids. From 

reference 16, we find that the densest crystal packing of these ellipsoids is at least φ=0.756.  

The present paper addresses just one aspect of the broad and challenging subject concerning 

statistical geometry of hard-object packings. One still-unresolved question of interest involves shape 

dependence of the packing-fraction ratio for amorphous vs. crystalline arrangements of identical hard 
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particles.  For spheres this ratio is 86.07405.0/64.0/ =≈crysamor φφ , while the corresponding value for 

the ellipsoid shape examined herein is substantially larger: 98.0756.0/74.0/ =≈crysamor φφ .  It will be 

enlightening eventually to establish: (a) what particle shapes yield the attainable lower and upper 

limits for this ratio, (b) whether the upper limit can equal or exceed unity, and (c) whether there are 

useful correlations between this ratio and features of the equilibrium phase diagrams for various 

particle shapes. 

We gratefully acknowledge experimental assistance from Vincent Pelletier and support from NSF DMR 0213706, 

0243001, 0312067.and NASA NAG3-1762.  
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Figure Captions 

 

Fig. 1 (a) The simulated packing fraction for ellipsoids of ratios α:1:1 and α-1/2
:1:α1/2

 as a 

function of α. It has a cusp-like minimum at α=1 (spheres, φ=0.64) and increases linearly with |α−1|. 
(b) A simulated jammed configuration for 32 particles/periodic unit cell of ellipsoids with aspect ratio 

1:25:1:0.8, which has a disordered packing density of 0.7427. (c) A photograph of several ellipsoids 

fabricated for this study. 

 

 

Fig. 2 Packing fraction as a function of inverse spherical container size. Empty symbols and 

lines are data and extrapolation for simulated packing. The extrapolated values are: for spheres φ0 

=0.642±0.002, mini M&M’s® φ0=0.700±0.002, 1.25:1:0.8 ellipsoids φ0=0.741±0.002. Solid symbols 

are the corresponding experimental results.  
 

Fig. 3 Volume to fill a spherical container to height h from center, V(h),  circle– empty, triangle 

- marble packed, star – 1.25:1:0.8 ellipsoid packed. Lines are representative of ~35,000 data points. 

Symbol for empty sphere is from calculation. Symbols for marbles and ellipsoids are cubic fits. 

Packing fractions obtained from coefficient of cubic term is equal to π(φ0-1)/3. 

 

Fig. 4 (a) Radial density profile φ(r). Solid line – φ(r) measured from MRI. Circles – φavr(r) 

measured data averaged from center out to radius r. Dashed line – φ(r) measured from simulations. 

Triangles – φavr(r) from simulations. Both measured and simulated average density in a core r<0.6R is 

0.735±.005. (b) A gray scale slice from an MRI scan of the 1.25:1:0.8 ellipsoids in water in a spherical 

container. 
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