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In this Letter we report on the densest known packings of congruent ellipsoids. The family of new
packings are crystal arrangements of nearly spherical ellipsoids, with density ϕ always surpassing
that of of the densest Bravais lattice packing ϕ ≈ 0.7405. A remarkable maximum density of
ϕ ≈ 0.7707 is achieved for aspect ratios of

√
3 and 1/

√
3, when each ellipsoid has 14 touching

neighbors. Our results are directly relevant to understanding the equilibrum behavior of systems of
hard ellipsoids, and in particular, the solid and glassy phases.

Particle packing problems have fascinated people since
the dawn of civilization, and continue to intrigue math-
ematicians and scientists. Dense packings of nonover-
lapping particles have been employed to understand the
structure of a variety of many-particle systems, includ-
ing glasses [1], crystals [2], heterogeneous materials [3],
and granular media [4]. The simple hard-sphere system
is one of the most intensively studied models because it
exibits a rich thermodynamic behavior, including a well
understood liquid-solid transition, and a less understood
metastable liquid or glassy phase. An important exten-
sion of the hard-sphere model is to include orientational
degrees of freedom for the particles, and arguably the
simplest such extension is to consider systems of hard
ellipsoids. Results reported in a recent paper [5] raise
the question of whether the inclusion of orientational
degrees of freedom can lead to a thermodynamically- (as
opposed to kinetically-) driven glass transition. Answer-
ing this question necessitates a knowledge of the disor-
dered and ordered phases at very high densities, and
in particular, the densest possible phases. A system in
which the density of a disordered liquid surpasses the
density of the ordered solid would be a candidate for the
elusive thermodynamic glass.

In addition to being important for understanding the
physics of complex materials, finding the densest packing
for a given particle shape is a basic problem in geometry.
The famous Kepler conjecture postulates that the dens-
est packing of spheres in three-dimensional Euclidean
space has a packing fraction (density) ϕ = π/

√
18 ≈

0.7405, as realized by stacking variants of the face-
centered cubic (FCC) lattice packing. It is only recently
that this conjecture has been proved [6, 7]. Very little is
known about the most efficient packings of convex con-
gruent particles that do not tile three-dimensional space
[8, 9]. The only other known optimal three-dimensional
result involves infinitely long circular cylindrical parti-
cles: the maximal packing density φmax = π/

√
12 is

attained by arranging the cylinders in parallel in the
triangular lattice arrangement [10]. Of particular inter-
est are dense packings of congruent ellipsoids (an affine
deformation of a sphere) with semi-axes a, b and c or,
equivalently, with aspect ratios α = b/a and β = c/a.

In two dimensions, it can easily be shown that the
densest packing of congruent ellipses has the same den-
sity as the densest packing of circles, ϕ = π/

√
12 ≈

0.9069 [11, 12]. This maximal density is realized by
an affine (linear) transformation of the triangular lat-
tice of circles. Such a transformation leaves the density
unchanged. In three dimensions attempts at increasing
the packing density yield some interesting structures, at
least for needle-like ellipsoids. By inserting very elon-
gated ellipsoids into cylindrical void channels passing
through the ellipsoidal analogs of the densest ordered
sphere packings (an affinely deformed face centered cu-
bic or hexagonal close packed lattice), congruent ellip-
soid packings have been constructed whose density ex-
ceeds 0.7405 and approaches 0.7585 in the limit of in-
finitely thin prolate spheroids (ellipsoids of revolution),
i.e., when β = 1 and α → ∞ [10, 13].

However, there appears to be a widespread belief that
for nearly spherical ellipsoids the highest packing frac-
tion is realized by an affine transformation (stretch by
α and β along two perpendicular axes) of the densest
sphere packing, preserving the density at 0.7405. Math-
ematicians have often focused on lattice packings, where
a single particle is replicated periodically on a lattice to
obtain a crystal packing. For ellipsoids, a lattice pack-
ing is just an affine transformation of a sphere packing,
and therefore a theorem due to Gauss [8, 9] enables us
to conclude that the densest lattice ellipsoid packing has
ϕ ≈ 0.7405. The next level of generality involves nonlat-
tice periodic packings (lattice packings with a multiparti-
cle basis), where a unit cell consisting of several ellipsoids
with at least two inequivalent orientations is periodically
replicated on a lattice to fill Euclidean space. We will
refer to these as crystal packings.

In this Letter, we report on a family of crystal pack-
ings of ellipsoids that are denser than the densest Bravis
lattice packing for a wide range of aspect ratios in the
vicinity of the sphere point α = β = 1, and for certain
aspect ratios yields the densest known ellipsoid packings
with φ ≈ 0.7707.

We recently developed a molecular dynamics tech-
nique for generating dense random packings of hard el-
lipsoids [14]. The simulation technique generalizes the
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Lubachevsky-Stillinger (LS) sphere-packing algorithm
[15] to the case of ellipsoids. Initially, small ellipsoids
are randomly distributed and randomly oriented in a
box with periodic boundary conditions and without any
overlap. The ellipsoids are given velocities and their mo-
tion followed as they collide elastically and also expand
uniformly, while the unit cell deforms to better accom-
modate the packing. After some time, a jammed state
with a diverging collision rate is reached and the density
reaches a maximal value.
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Figure 1: The packing fraction of the putative maximally ran-
dom jammed (MRJ) state for nonspheroidal ellipsoids with
semiaxes of ratios 1 : α : α−1 [5]. The maximal density
reached is about φ ≈ 0.735, which is remarkably close to the
density of the FCC crystal.

Using this technique, we generated nonequilibrium
random close packings of ellipsoids [5], believed to closely
represent the maximally random jammed (MRJ) state
[16]. The density of the resulting packings for non-
spheroidal ellipsoids with β = α−1 is illustrated in Fig.
1, and it can be seen that for α ≈ 1.25 (β ≈ 0.8) the ran-
dom packings have a density as high as 0.735, surpris-
ingly close to what we believed was the densest ordered
packing (stretched FCC lattice). This unexpected result
brought into question what the maximal density really
was for those aspect ratios. Extensive experience with
spheres has shown that for reasonably large packings,
sufficiently slowing down the growth of the density, so
that the hard-particle system remains close to the equi-
librium solid branch of the equation of state, leads to
packings near the FCC lattice [16, 17]. This however
requires impractically long simulation times for large el-
lipsoid packings. By running the simulation for very
small unit cells, from 4 to 16 particles per unit cell, we
were able to identify crystal packings significantly denser
than the FCC lattice, and subsequent analytical calcu-
lations suggested by the simulation results led us to dis-
cover ellipsoid packings with a remarkably high density
of φ ≈ 0.7707. This result implies a lower bound on the
maximal density of any packing of congruent ellipsoids,

namely, ϕmax ≥ 0.7707.

Figure 2: Part a (top): The face-centered cubic packing of
spheres, viewed as a laminate of face-centered layers (bottom
layer is colored purple and the top layer yellow). Part b
(bottom): A nonlattice layered packing of ellipsoids based
on the FCC packing of spheres, but with a higher packing
fraction.

We now describe the construction of a family of su-
perdense crystal packings of ellipsoids. We start from
the FCC lattice, viewed as a laminate of face-centered
planar layers of spheres, as illustrated in Fig. 2a. We
similarly construct layers from the ellipsoids by orienting
the c semiaxis perpendicular to the layer, while orient-
ing the a and b axes along the axes of the face-centered
square lattice defining the layer, as shown in Fig. 2b. In
this process, we maintain the aspect ratio of the squares
of side L of the face-centered square lattice defining the
layer, i.e., we maintain

L =
4α

√
1 + α2

, (1)

which enables us to rotate the next layer by π/2 and fit
it exactly in the holes formed by the first layer. This
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two-layer lamination is then continued ad infinitum to
fill all space. This can be viewed as a family of crystal
packings with a unit cell containing two ellipsoids.

Figure 3: The density of the laminate crystal packing of el-
lipsoids as a function of the aspect ratio α (β = 1). The
point α = 1 corresponding to the FCC lattice sphere packing
is shown, along with the two sharp maxima in the density
for prolate ellipsoids with α =

√
3 and oblate ellipsoids with

α = 1/
√

3, as illustrated in the insets.

We can calculate the minimal distance h between two
successive layers (that preserves impenetrability) from
the condition that each ellipsoid touches four other el-
lipsoids in each of the layers above and below it. This
gives a simple system of equations (two quadratic equa-
tions and one quartic equation), the solution of which
determines the density to be

φ =
16παβ

3hL2
. (2)

Notice that the axis perpendicular to the layers can be
scaled arbitrarily, without changing the density. We can
therefore just consider spheroids with β = 1. The den-
sity of this crystal packing as a function of the aspect ra-
tio α is shown in Fig. 3, and is higher than the density
of the FCC sphere packing for a wide range of aspect
ratios around the sphere point α = β = 1, symmetri-
cal with respect to the inversion of α between prolate
and oblate ellipsoids (we consider the prolate case in the
equations in this section). Two sharp maxima with den-
sity of about 0.770732 are observed when the ellipsoids
in the face-centered layers touch six rather than four in-
plane neighbors, as shown in Fig. 4, i.e., when L = 2α,
which gives α =

√
3 for the prolate and α = 1/

√
3 for

the oblate case. These two densest-known packings of
ellipsoids are illustrated in the insets in Fig. 3, and in
these special packings each ellipsoid touches exactly 14
neighboring ellipsoids (compare this to 12 for the FCC
lattice). As illustrated for two dimensions in Ref. [5], an
affine deformation of the densest sphere packing gives a

packing which is not strictly jammed [18, 19]. It is an in-
teresting open question whether our laminated crystals
are strictly jammed.

Figure 4: The layers of the densest known packing of ellip-
soids, as illustrated in Fig. 3. The same perpendicular view
applies for both prolate and oblate particles. The layers can
be viewed as either face-centered or triangular.

There is nothing to suggest that the crystal packing
we have presented here is indeed the densest for any as-
pect ratio other than the trivial case of spheres. Many
other possibilities exist for laminated packings with al-
ternating orientations between layers, and one such ex-
ample is shown in Fig. 5. More generally, we believe
it is important to identify the densest periodic packings
of ellipsoids with small numbers of ellipsoids per unit
cell. This may be done using modern global optimization
techniques, as has been done for various sphere and disk
packing problems. However, this is a challenging project
due to the complexity of the nonlinear impenetrability
constraints between ellipsoids. In particular, the case of
slightly aspherical ellipsoids is very interesting, as the
best packing will be a perturbation of the FCC lattice
with a broken symmetry, and should thus be easier to
identify. In Fig. 3 we see that the density of our crystal
packing increases smoothly as asphericity is introduced,
unlike for random packings, where a cusp-like increase
is observed near α = 1 [5]. Is there a crystal packing
which leads to a sharp increase in density for slightly as-
pherical ellipsoids? Our initial attempts to answer this
question using global optimization have not found such a
crystal packing, but have not ruled out the possibility ei-
ther. Further multidisciplinary investigations are needed
to answer this and related questions. The results of such
investigations could be used to formulate a Kepler-like
conjecture for ellipsoids and understand the high-density
phase behavior of the hard-ellipsoid system.
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Figure 5: Another computer-generated layered packing of
prolate ellipsoids (α =

√
3) with a zig-zag-like variation in the

orientations of the ellipsoids in adjacent layers. This packing
is slightly denser than the FCC lattice (ϕ = 0.7411), but we
did not attempt to find the optimal configuration.
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