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We study diffusive mixing in the presence of thermal fluctuations under the
assumption of large Schmidt number. In this regime we obtain a limiting equation
that contains a diffusive stochastic drift term with diffusion coefficient obeying a
Stokes-Einstein relation, in addition to the expected advection by a random velocity.
The overdamped limit correctly reproduces both the enhanced diffusion in the
ensemble-averaged mean and the long-range correlated giant fluctuations in individual
realizations of the mixing process, and is amenable to efficient numerical solution.
Through a combination of Eulerian and Lagrangian numerical methods we demonstrate
that diffusion in liquids is not most fundamentally described by Fick’s irreversible law;
rather, diffusion is better modeled as reversible random advection by thermal velocity
fluctuations. We find that the diffusion coefficient is effectively renormalized to a value
that depends on the scale of observation. Our work reveals somewhat unexpected
connections between flows at small scales, dominated by thermal fluctuations, and
flows at large scales, dominated by turbulent fluctuations.

I. Introduction

Diffusion is one of the most ubiquitous transport processes. It is, arguably, the simplest dissipative
mechanism. Fick’s law of diffusion is “derived” in most elementary textbooks, and relates diffusive fluxes to
the gradient of chemical potentials via a diffusion coefficient that is typically thought of as an independent
material property. There are several well-known hints that diffusion in liquids is, in fact, a rather subtle
process. A first hint is that the Stokes-Einstein (SE) prediction for the diffusion coefficient is in surprisingly
reasonable agreement with measurements even in cases where it should not apply at all, such as molecular
diffusion. The fact that the SE prediction involves the viscosity of the fluid, a seemingly independent
transport property, hints at the connection between momentum transport and diffusion. A second hint is
the fact that nonequilibrium diffusive mixing is known to be accompanied by “giant” long-range correlated
thermal fluctuations [1–3]. The enhancement of large-scale (small wavenumber) concentration fluctuations
during free diffusive mixing has been measured using light scattering and shadowgraphy techniques [2, 4–6].

In either gases, liquids or solids, one can, at least in principle, coarse-grain Hamiltonian dynamics for the
atoms (at the classical level) to obtain a model of diffusive mass transport at hydrodynamic scales. The actual
coarse-graining procedure is, however, greatly simplified by first coarse-graining the microscopic dynamics to
a simpler stochastic description. In the case of gases, mass transport can be modeled effectively using kinetic
theory with cross-sections obtained from the underlying molecular interactions. In solids, atoms remain
trapped around the crystal lattice sites for long periods of time and infrequently hop from site to site, so that
diffusive transport can be modeled effectively at the microscopic level as a Markov Chain with transition rates
that can be obtained from the molecular interactions using transition state theory. In both of these cases the
picture that emerges is that of independent Brownian walkers performing uncorrelated random walks in con-
tinuum (gases) or on a lattice (solids). By contrast, in liquids the physical picture is rather different and must
account for hydrodynamic correlations among the diffusing particles. In a liquid, molecules become trapped
(caged) over long periods of time, as they collide frequently with their neighbors. Therefore, momentum and
energy are exchanged (diffuse) much faster than the molecules themselves can escape their cage. The main
mechanism by which molecules diffuse is the motion of the whole cage when a large-scale velocity fluctuation
(coordinated motion of parcels of fluid) moves a group of molecules and shifts and rearranges the cage.

It is now well-understood that diffusion in liquids is strongly affected by advection by thermal velocity
fluctuations [7–10]. The fact that thermal fluctuations exhibit long-ranged correlations in nonequilibrium
settings has long been appreciated in statistical mechanics and nonequilibrium thermodynamics circles
[1, 3]. The overarching importance of nonequilibrium fluctuations to transport in fluids has not, however,
been widely appreciated. The microgravity experiments described in Ref. [6] show fluctuations of the
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order of a fraction of a percent at millimeter scales. These results are a striking demonstration that thermal
fluctuations are important not just at microscopic and mesoscopic scales, but also at macroscopic scales.
Theoretical studies and computer simulations have verified that the advection by the thermally fluctuating
fluid velocity leads to an enhancement or renormalization of the diffusion coefficient that depends on
the viscosity of the fluid, and, importantly, on the dimensionality and imposed boundary conditions (in
particular, system size) [8–10]. At the mathematical level, the diffusion enhancement is closely-related
to the eddy diffusivity that arises in turbulent flows as mass is advected by the chaotic fluid velocity [11].

When modeling molecular diffusion, most theories are based on some form of mode-mode coupling, which is
essentially a perturbative analysis in the strength of the thermal fluctuations [7, 12], starting from linearized
fluctuating hydrodynamics. When modeling diffusion of particles suspended in a (complex) fluid, it is
typically assumed that the immersed particle is either very large, much more massive, or both, compared to
the fluid molecules [13]. In this work, for the first time, we bypass these types of approximations and develop
a fully nonlinear fluctuating hydrodynamic description of diffusion that applies not only to a dilute suspension
of large particles suspended in a simple liquid but also to molecular (self) diffusion of tagged molecules.

Here we formulate a simple model for diffusion in the presence of thermal velocity fluctuations and use
it to make a precise assessment of the contribution of fluctuations to diffusive transport. In our model the
momentum exchange is modeled using a continuum fluctuating hydrodynamic formalism, and represents the
background fluctuating momentum (velocity) bath with which the diffusing particles (tracers) interact. We
demonstrate that this simple model mimics all of the crucial features of realistic liquids, while also being
tractable analytically and numerically, and showing rich physical behavior. Along the way we will construct
a multiscale numerical method that can efficiently handle the practically-relevant case of very large Schmidt
number. In our model we assume that the diffusing particles follow, on average, the locally-averaged
(thermally fluctuating) velocity of the fluid. We further assume the existence of a large separation of time
scales between the fast dynamics of the velocity (vorticity) fluctuations and the diffusive dynamics, i.e., we
assume that the Schmidt number Sc (ratio of the diffusion coefficients of momentum and mass) is very large.
This is known to be true in most liquids due to the effective caging of molecules in densely-packed liquid
microstructures. In the limit Sc→∞ we can eliminate the fluid velocity using adiabatic mode elimination
[14, 15] and obtain explicit results without resulting to perturbation analysis, as have previous studies.

Through a mix of theoretical and numerical studies, in this paper we demonstrate that over a broad range
of length scales diffusion is better described as a reversible stochastic process, rather than an irreversible
deterministic process as in Fick’s law. This has the consequence that the diffusion coefficient (effective
dissipation rate) is not a material constant, but rather depends on the scale of observation. Our work
uncovers crucial distinctions between the Fickian diffusion of uncorrelated Brownian walkers and the
non-Fickian collective diffusion of hydrodynamically-correlated tracers. We consider non-interacting particles,
and make an important first step toward consistently including the effects of hydrodynamic correlations
in fluctuating Dynamic Density Functional Theory (DDFT) [16–20] for suspensions of interacting colloids.
Importantly, our work demonstrates that Fick’s law for the average concentration is not affected by the
presence of hydrodynamic interactions, and the non-local diffusion terms proposed in prior works [21, 22] do
not actually appear. Some of our predictions could be used as a guide to design new Fluorescence Recovery
After Photo-bleaching (FRAP) experiments to study the collective dynamics of tracer particles in liquids.

We begin by outlining our starting fluctuating hydrodynamics model for diffusion in the presence of
thermal velocity fluctuations. These equations show extreme numerical stiffness at large Schmidt numbers
and in Section II and Appendix A we obtain the limit of these equations as the Schmidt numbers becomes
infinite. In Appendix II D we design Eulerian and Lagrangian numerical algorithms to solve the resulting
advection-diffusion equation. In Section III we numerically and analytically study the difference between
(dissipative and irreversible) classical Fickian diffusion and (conservative and reversible) diffusion by
thermal velocity fluctuations, with particular focus on the appearance of giant fluctuations in the latter.
In Section IV we discuss spatial coarse-graining of the limiting advection-diffusion equation, and summarize
the emerging paradigm for how to accurately model diffusion in liquids over a broad range of scales. Finally,
we offer some conclusions and a discussion of open challenges in Section V.

A. Advection-Diffusion Model

We consider the diffusion of passive tracer particles as they are advected by thermal velocity fluctuations.
Examples include the diffusion of fluorescently-labeled macromolecules in solution, nano-colloidal particles
in a nanofluid, and the self-diffusion of the molecules comprising a simple fluid. The hydrodynamic
fluctuations of the fluid velocity v (r, t) will be modeled via the linearized incompressible fluctuating
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Navier-Stokes equation in d dimensions, ∇ · v = 0, and

ρ∂tv + ∇π = η∇2v +
√

2ηkBT ∇ ·W , (1)
where ρ is the fluid density, η the viscosity, and T the temperature, all assumed to be constant throughout the
domain, and π (r, t) is the mechanical pressure. Here the stochastic momentum flux is modeled via a a white-
noise symmetric tensor field W (r, t) with covariance chosen to obey a fluctuation-dissipation principle [3, 23],

〈Wij(r, t)Wkl(r
′, t′)〉 = (δikδjl + δilδjk) δ(t− t′)δ(r − r′).

Note that because the noise is additive in (1) there is no difference between an Ito and a Stratonovich
interpretation of the stochastic term.

The details of the coupling between the fluid and the passive tracer are complicated at the microscopic
level [24] and some approximations are required to model the motion of the tracer. The principal effect
of advection by the thermal velocity fluctuations can be captured by assuming that the position of a tracer
q (t) follows a spatially smooth fluctuating velocity field u (r, t),

dq/dt = u (q, t) +
√

2χ0 Wq (t) , (2)
where Wq denotes a collection of d independent white-noise processes. Here χ0 is a bare diffusion coefficient
that can be thought of as representing a “random slip” relative to the local fluid velocity coming from
the under-resolved microscopic dynamics, uncorrelated among distinct tracers. In what follows it will
be crucial that u be divergence free, ∇ · u = 0. In this work we assume that the velocity felt by the tracer,

u (r, t) =

∫
σ (r, r′)v (r′, t) dr′ ≡ σ ? v, (3)

is obtained by convolving 1 the fluid velocity with a smoothing kernel σ that filters out features at scales
below a cutoff scale σ, the typical size of a tracer. For example, in the α-Navier-Stokes equations [25]
the smoothing is chosen to be an inverse Helmholtz operator, v = u− σ2∇2u, with boundary conditions
chosen such that u is divergence free within the domain of interest [26]. With periodic boundary conditions,

in Fourier space, the inverse Helmholtz operator filter is σ̂k = (1 + σ2k2)
−1
I.

It is important to point out that the smoothing or regularization of the fluctuating velocity field (3)
is necessary. Otherwise, the diffusion coefficient of the tracer particle will diverge leading to an “ultraviolet
catastrophe” familiar in renormalization theories. In the literature a phenomenological cutoff at large
wavenumbers is imposed [7, 8, 12]. We implement this regularization here by applying a smooth filter
to v to generate a velocity u with which we can advect tracers. Alternatively, one can filter the white-noise
forcing in the velocity equation and replace W by σ ?W in (1). In the end, as far as the passive tracers
are concerned, the only thing that matters is the spatio-temporal spectrum of the advective velocity u (r, t).

Let us assume that there are N tracers and define the concentration or density of tracers
c (r, t) =

∑N
i=1 δ (qi (t)− r). The Lagrangian description (2) of the dynamics of the individual tracers

formally corresponds to an Eulerian description for the evolution of the concentration or number density
of tracers c (r, t) via a fluctuating advection-diffusion Ito equation [19, 27],

∂tc = −u ·∇c+ χ0∇2c+ ∇ ·
(√

2χ0cWc

)
, (4)

where Wc (r, t) denotes a white-noise vector field. It is important to point out that this equation is simply
a formal rewriting of the equations of motion (2) for the N tracers and as such contains no new physical
content. However, it can be argued that (4) also describes the dynamics of a spatially coarse-grained
smooth concentration field when the density of tracers varies on a length scale much larger than the typical
tracer distance [18, 28]. While a precise mathematical derivation of (4) from (2) is unavailable at present
(but see [27] for a formal derivation) except in the case of no bare diffusion, χ0 = 0, we believe it is a very
plausible fluctuating hydrodynamic model of self-diffusion or diffusion of dilute passive tracers in liquids.

As an illustration of the importance of thermal fluctuations in diffusive transport we use recently-developed

1 In translationally-invariant systems (e.g., infinite or periodic systems) one can use standard convolution σ (r, r′) ≡ σ (r − r′)
and would typically take an isotropic kernel σ (r − r′) = Kσ (‖r − r′‖), where Kσ (r) is a symmetric “bell-shaped” function

with support of length 2σ. When nontrivial boundary conditions are present (i.e., for confined systems), it is important

to consider a more general filtering operation (mollification) that takes into account the boundary conditions. For certain

types of boundary conditions the construction of σ (r, r′) is nontrivial and ought be done on a case-by-case basis [25].
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Figure 1: Snapshots of concentration showing the development of a rough diffusive interface between two miscible
fluids, starting from concentration being unity in a horizontal (red) stripe occupying one third of the periodic domain,
and zero elsewhere. We show four snapshots in time (evolving from top to bottom). The effective Schmidt number
is Sc ≈ 1.5 · 103 and the bare diffusion is such that χ/χ0 ≈ 5. (Left panel) A single instance of the resolved dynamics
(1,4). (Right panel) An independent instance of the limiting dynamics (5), or, equivalently, (9), obtained at a very
small fraction (10−3 ∼ Sc−1, see Section B 1) of the computational cost of the simulation shown in the left panel.

finite-volume numerical methods [29, 30] for solving (1,4) to model the diffusive mixing between two initially
phase-separated fluids in two dimensions with periodic boundary conditions. In the left panel of Fig. 1 we
show snapshots of the concentration field at several points in time. As seen in the figure, the interface between
the fluids develops large-scale roughness (giant fluctuations) instead of remaining flat as in simple diffusion
[6]. This roughening is accompanied by a slow spreading of the initially-sharp interface, similarly to what
would be observed in deterministic diffusion. Molecular dynamics simulations have confirmed that fluctuating
hydrodynamics accurately models the diffusive mixing process down to essentially molecular scales [31].

II. The Limit of Large Schmidt Number

In liquids, diffusion of mass is much slower than diffusion of momentum, i.e., the Schmidt number is very
large. More precisely, there is a large separation of time scales between the fast dynamics of the velocity
fluctuations and the slow evolution of the concentration. This separation of time scales, to be verified
a posteriori, can be used to perform a formal adiabatic mode-elimination procedure of the fast velocity
degrees of freedom [15, 32–34] in (1,4). The mode-elimination procedure, which is detailed in Appendix A,
gives a limiting stochastic advection-diffusion equation for the overdamped dynamics of the concentration,

∂tc = −w �∇c+ χ0∇2c+ ∇ ·
(√

2χ0cWc

)
, (5)

where � denotes a Stratonovich dot product, and the advection velocity w (r, t) is white in time, with
covariance proportional to a Green-Kubo integral of the velocity auto-correlation function,

〈w (r, t)⊗w (r′, t′)〉 = R (r, r′) δ (t− t′) , (6)

R (r, r′) = 2

∫ ∞
0

〈u (r, t)⊗ u (r′, t+ t′)〉dt′. (7)

The term w �∇c is reminiscent of the random advection in the Kraichnan model of turbulent transport
of a passive tracer [35, 36] (see section 4.1 in [11]).

To be more precise, let us perform a spectral decomposition of the covariance R in some (infinite
dimensional) set of (non-normalized) eigenfunctions φk,

R (r, r′) =
∑
k

φk (r)⊗ φk (r′) . (8)
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The notation w �∇c is short-hand for
∑

k (φk ·∇c) ◦ dBk/dt, where Bk (t) are independent Brownian
motions (Wiener processes). In our numerical simulations, we use the Stratonovich form of the equations
and apply an Euler-Heun (midpoint predictor-corrector) temporal integrator to (5).

For calculating ensemble averages, the Ito form of the equation is more useful. In the Ito interpretation,
as derived in Appendix A, an unusual “thermal” or “Ito” drift appears in the limiting equation and takes
the form of an enhanced diffusion,

∂tc = −w ·∇c+ ∇ · [χ (r)∇c] + χ0∇2c+ ∇ ·
(√

2χ0cWc

)
(9)

where the enhancement of the diffusion coefficient is given by the integral of the velocity autocorrelation
function,

χ (r) = 1
2
R (r, r) =

∫ ∞
0

〈u (r, t)⊗ u (r, t+ t′)〉dt′. (10)

Here we have made use of the fact that ∇ ·w = 0, and w ·∇c is shorthand notation for
∑

k (φk ·∇c) dBk/dt.
The Ito equation (9) is the key result of the mode elimination procedure. The last two terms in this
equation are deterministic diffusive terms, while the advective term −w ·∇c is a (multiplicative) stochastic
noise term that vanishes in the mean as a consequence of the Ito interpretation. That is, the ensemble
average of the concentration obeys Fick’s law,

∂t〈c〉 = ∇ · (χeff∇〈c〉) = ∇ · [(χ0 + χ)∇〈c〉] , (11)
which is a well-known result (c.f. (255) in Ref. [37]) that can be justified rigorously using stochastic
homogenization theory [37]. In the absence of bare diffusion, χ0 = 0, the same equation (11) holds for
all moments of c.

We note that (9) looks like an expected result but this is deceptive. While indeed the Green-Kubo
expression for the diffusion coefficient of a tracer particle is well-known to be (10), what (9) is describing is the
collective and not the individual diffusion of a tagged particle. The subtle difference between the two stems
from the importance of the hydrodynamic correlations among the trajectories of the tracers. The “dissipative”
term ∇ · [χ (r)∇c] and the “fluctuating” term −w ·∇c are signatures of the same physical process, advection
by thermal velocity fluctuations. This is most clearly seen in the Stratonovich form (5) where there is
only a single stochastic term −w �∇c present. The stochastic advection term in (9) need to be retained
to obtain the giant fluctuations seen in a particular instance (realization) of the diffusive mixing process.
Including the dissipative term ∇ · [χ (r)∇c] but omitting the random advection term −w ·∇c violates
fluctuation-dissipation balance and cannot be justified by simply arguing that the fluctuating term has mean
zero. Just like the stochastic noise term ∇ ·

(√
2χ0cWc

)
corresponds to (i.e., is in fluctuation-dissipation

balance with) the dissipative term χ0∇2c for a collection of uncorrelated random walkers, the stochastic
noise term −w ·∇c corresponds to the Fickian term ∇ · [χ (r)∇c] for a collection of hydrodynamically
correlated tracers. While the dissipation in both cases looks like simple diffusion, the important distinction
between the two types of microscopic dynamics is made clear in the stochastic forcing term.

A. The Stokes-Einstein Relation

In the overdamped limit, the details of the evolution of the fluid velocity do not matter, so long as there
exists a unique time-reversible equilibrium dynamics over which the average in (7) is taken. If one assumes
the linearized fluctuating Navier-Stokes equation (1) holds, then it is not hard to show that∫ ∞

0

〈v (r, t)⊗ v (r′, t+ t′)〉dt′ = kBT

η
G (r, r′) , (12)

where G is the Green’s function (Oseen tensor) for the steady Stokes equation 2 with unit viscosity,
v = G ? f if ∇π = ∇2v + f subject to ∇ · v = 0 and appropriate boundary conditions. A sample of
the Brownian increment

∑
k φkdBk can be obtained by solving a steady Stokes problem with a suitable

random forcing (fluctuating stress), and then convolving the velocity with the filter σ.
The diffusion enhancement (10) can be obtained explicitly from (12) as

χ (r) =
kBT

η

∫
σ (r, r′)G (r′, r′′)σT (r, r′′) dr′dr′′. (13)

2 For unbounded three-dimensional systems the Oseen tensor is G (r′, r′′) = (8πr)
−1 (

I + r−2r ⊗ r
)
, where r = r′ − r′′.
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The relation (13) is nothing more than the Stokes-Einstein (SE) relation χ (q) = kBT µ (q), where µ is the
deterministic mobility of one of the tracers, defined via the relation u = µF , where F is a constant force
applied on a tracer at position q and u is the resulting velocity of the tracer [38]. Namely, the applied force
can easily be included in our model as an additional force density f (r) = σT (q, r)F in the steady Stokes
equation [38, 39], which directly leads to the SE relation (13). This shows that the diffusion enhancement
χ (r) is consistent with the SE relation, as expected, validating the model.

To get an intuitive understanding and an estimate of the diffusion enhancement χ we consider an
infinite isotropic system and introduce a cutoff for the fluctuations in the advective velocity w at both
large and small scales. The large-scale cutoff corresponds to a finite extent of the system L, and the
small-scale cutoff corresponds to the filtering at the molecular scale σ. According to (12), at intermediate
scales the Fourier spectrum of w should match the Green’s function for Stokes flow with unit density

and viscosity, Ĝk = k−2 (I − k−2k ⊗ k) for wavevector k. As an example, we choose an isotropic filtering
kernel σ (r, r′) = ς (‖r − r′‖) I giving R (r, r′) = R (‖r − r′‖), such that the Fourier transform of (13),

R̂k = 2 (kBT/η) |ς̂k|2 Ĝk, has the form

R̂k =
2kBT

η

k2L4

(1 + k4L4) (1 + k2σ2)

(
I − k ⊗ k

k2

)
. (14)

This particular form is chosen for convenience and not because of any particular physical importance; the
important thing is that at intermediate L−1 � k � σ−1 we have ς̂k ≈ 1, that |ς̂k| � 1 for k � L−1 and

vanishes 3 at k = 0, and that R̂k decays faster than k−d for k � σ−1. Converting (14) to real space gives

an isotropic enhancement to the diffusion tensor χ = R(0)/2 = (2π)−d
∫ (

R̂k/2
)
dk = χI . Note that this

Fourier integral is exactly the one that appears in the linearized steady-state (static) approximate renormal-
ization theory [7, 12] when ν � χ0 (c.f. Eq. (12) in [9]). This is expected since in the end all approaches
lead to the familiar SE formula for the diffusion coefficient of an individual tracer (but recall the important
distinction between the individual and collective diffusion). Our derivation shows that the SE relation can be
seen as a formula for the eddy-diffusivity due to advection by a thermally-fluctuating random velocity field.

Performing the integral of (14) in spherical coordinates gives an asymptotic expansion in σ/L,

χ =
kBT

η

{
(4π)−1 ln L

σ
if d = 2

(6πσ)−1
(

1−
√

2
2
σ
L

)
if d = 3.

(15)

Note that in three dimensions the coefficients
√

2/2 and the 6π in the denominator in (15) depend on the exact
form of the spectrum χ̂k, but the coefficient of 4π in two dimensions does not depend on the details of the
spectrum at small and large k. For an isotropic Gaussian filter σ with standard deviation σ, as employed in
our Lagrangian numerical algorithm, for a periodic domain of length L the diffusion enhancement has a form
similar to (15), χ = kBT (4πη)−1 ln [L/ (ασ)] in two dimensions, where we numerically estimate the coefficient
α ≈ 5.5. When L� σ, in three dimensions (15) gives the Stokes-Einstein prediction χ ≈ χSE = kBT/ (6πησ)
for the diffusion coefficient of a slowly-diffusing no-slip rigid sphere of radius σ. In two dimensions, the
effective diffusion coefficient grows logarithmically with system size, in agreement with the Einstein relation
and the Stokes paradox for the mobility of a disk of radius σ. This system-size dependence of the effective
diffusion coefficient was quantitatively verified using steady-state particle simulations in Refs. [9, 40].

It is important to note that (13) continues to hold in bounded domains also, and can be used to obtain
expressions for the position-dependent tensor diffusion coefficient χ (r) of a tracer particle in confined
domains such as nano-channels [10, 41]. Similarly, (9) can describe the collective diffusion of many tracers
through a nano-channel. In confined geometry, the Green’s function G can be expressed as an infinite
series G (r, r′) =

∑
k λ
−1
k ϕk (r)⊗ϕk (r′), where ϕk are a set of orthonormal eigenfunctions of the Stokes

problem (with the appropriate boundary conditions), and λk are the associated eigenvalues. Note that
the eigenfunctions used to factorize the covariance of w in (8) can be written as φk =

√
λk σ ? ϕk for

the case when v follows the fluctuating Stokes equation.
Having obtained and analyzed the limiting dynamics, we are in a position to ascertain the validity of

3 An alternative approach is to make the lower bound for integrals in Fourier space be k = 2π/L, mimicking a Fourier

series for a cubic box of length L.
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the initial assumption of large separation of time scales between concentration and momentum diffusion.
Specifically, the limiting equations (5,9) [similarly, (16,17)] are good approximations to (4) [correspondingly,
(2)] if the effective Schmidt number Sc = ν/χeff = ν/ (χ0 + χ)� 1, where ν = η/ρ is the kinematic viscosity
(momentum diffusion coefficient). This is indeed the case in practice for both simple liquids and especially
for macromolecular solutions.

B. Relation to Brownian Dynamics

In the Lagrangian description, the overdamped limit of (2) in the Stratonovich interpretation can be
shown to be

dq =
∑
k

φk (q) ◦ dBk +
√

2χ0 dBq. (16)

This derivation is not presented here but is rather standard and follows the procedure outlined in Appendix
A, albeit greatly simplified by the finite-dimensional character of the limiting equation. The second
stochastic term on the right hand side of (16) uses an independent Brownian motion Bq(t) for each
Brownian walker (tracer). The first stochastic forcing term uses a single realization of the random field∑

k φk ◦ dBk for all of the walkers, and therefore induces correlations between the trajectories of the tracers.
In the Ito interpretation the Lagrangian overdamped dynamics takes the form

dq =
∑
k

φk (q) dBk + [∂q · χ (q)] dt+
√

2χ0 dBq. (17)

For translationally-invariant systems the thermal or stochasic drift term vanishes because χ is independent
of the position of tracer, ∂q · χ = 0. In the more general case, it can be shown from (6) that
∂q · χ (q) =

∑
k φk (q) ·∇φk (q).

Our overdamped Lagrangian equations (17) are equivalent in form to the standard equations of Brownian
Dynamics (BD), which are commonly used to model dynamics of colloidal particles or polymer chains
in flow [42, 43]. In the absence of external forces, BD is typically presented as solving the Ito equations
of motion for the (correlated) positions of the N tracers (Brownian walkers) Q = {q1, . . . , qN},

dQ = (2kBTM )
1
2 dB + kBT (∂Q ·M ) dt+

√
2χ0 dBQ, (18)

where M (Q) is the mobility block matrix for the collection of particles [39]. Equation (18) is equivalent
to (17) with the identification of the mobility tensor for a pair of particles i and j,

M ij

(
qi, qj

)
=

1

2kBT

∑
k

φk (qi)φk
(
qj
)

=
R
(
qi, qj

)
2kBT

.

If we write this explicitly for Stokes flow using (12) we get (see, for example, Eq. (3.25) in Ref. [44]),

M ij

(
qi, qj

)
= η−1

∫
σ (qi, r

′)G (r′, r′′)σT
(
qj, r

′′) dr′dr′′. (19)

When the particles are far apart,
∥∥qi − qj∥∥� σ, the mobility is well-approximated by the Oseen tensor,

M ij

(
qi, qj

)
≈ η−1G

(
qi, qj

)
. At short distances the divergence of the Oseen tensor is mollified by the

filter, and (19) gives a pairwise mobility very similar to the Rotne-Prager-Yamakawa (RPY) mobility
used in BD simulations [45]. In future work [27] we will show that one can start from the overdamped
Lagrangian equations (17), or equivalently, (18), and follow an argument similar to the one of Dean [19],
which omits hydrodynamic correlations, to construct an overdamped Eulerian equation for the empirical
concentration c (r, t) =

∑N
i=1 δ (qi (t)− r). Such a calculation leads to the same equation (9) as we

obtained here by rather different means, and demonstrates that hydrodynamic interactions do not modify
Fick’s law (11) for the mean concentration. It has been suggested that non-local diffusion terms appear
when hydrodynamics is accounted for [21, 46]; however, this prior work fails to notice that for the RPY
mobility these terms actually disappear as a direct consequence of the incompressibility of the fluid flow.

In principle, traditional BD can be used to study the Lagrangian tracer dynamics numerically. This has
in fact been done by some authors in turbulence to study multi-particle correlations of a few passive tracers
[47]. A key difference is that in traditional BD the stochastic terms are generated by applying some form of
square root of the mobility M (Q), which can be expensive for many tracers unless specialized fast multipole
techniques are employed [42, 48]. By contrast, in the equivalent formulation (17) the stochastic forcing
is generated by evaluating a random velocity field at the positions of the tracers. This formulation leads
to a simple Lagrangian algorithm that is linear in the number of tracers N , as we discuss in Section II D.
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C. Relation to mode-mode coupling and renormalization theories

The fact that thermal velocity fluctuations enhance diffusion is well known and there are several mode-
mode coupling calculations that eventually lead to a similar result to our Stokes-Einstein formula (13). A
key difference between our approach and other derivations is the fact that our calculation replaced typical
uncontrolled approximations by a precise set of initial assumptions, and leads to a rigorous closed-form fluc-
tuating advection-diffusion equation (17) for the concentration. In traditional perturbative renormalization
approaches [7–9, 12, 13], one starts from equations that already have diffusion (dissipation) in them, and
then considers what perturbation the fluctuations make. In this sense, Fick’s linear law is the zeroth order
approximation, and the first order perturbation is linearized fluctuating hydrodynamics. At the next order
the fluctuations are found to give rise to Fick’s law with a renormalized diffusion obeying a Stokes-Einstein
relation [8]. This leads to a circular argument in which the physical phenomenon included in the lowest order
approximation is the result of higher-order approximations, and an infinite sequence of renormalization steps
is required to make the model self-consistent. Our work shows that the problem is quite simply and straight-
forwardly solved by starting with a non-linear model that then self-consistently gives rise to “renormalized”
diffusion, instead of starting with a model that has diffusion put in as input and then linearizing.

While the physical difference between two and three dimensional fluctuations has been long appreciated
in the literature, we believe our approach is not only simpler, but also more effective and more illuminating
than mode-mode coupling analysis. There has been some confusion in the literature about the applicability
of hydrodynamics to two dimensional systems, and statements to the effect that Stokes-Einstein does
not apply in two dimensions have been made [49]. We showed that for finite systems nonlinear fluctuating
hydrodynamics does lead to Stokes-Einstein relation for the diffusion coefficient in Fick’s law (11) for
the ensemble mean. One of the reasons we are able to easily obtain results is our use of the separation
of time scales. We note, however, that the assumption of infinite Schmidt number, crucial to our approach,
has to fail in very large two dimensional systems. Namely, large-scale (slow) velocity modes make a crucial
contribution to diffusion, which itself occurs at faster time scales as the system grows due to the increasing
diffusion coefficient. At finite Schmidt numbers the situation is much more complex and even mode-mode
coupling theories run into problems [50]. The asymptotic behavior of the system of equations (1,4) in
two dimensions in the infinite system size (thermodynamic) limit remains an interesting open question [38].

D. Multiscale Numerical Algorithms

Details of our multiscale numerical algorithms for solving the limiting Eulerian (5) and Lagrangian (16)
equations are given in Appendix B; here we briefly summarize the key features.

We have developed finite-volume numerical methods to simulate the limiting dynamics (5), detailed
in Section B 1. The spatial discretization of the advective term w �∇c is identical to the one described
in Ref. [29], and is constructed to ensure that advection is discretely non-dissipative. A pseudo-spectral
steady-Stokes solver is used to generate a random advection velocity w. The temporal integrator uses
the implicit midpoint rule for the term χ0∇2c [29], and the Euler-Heun method 4 for the term w �∇c.
This approach is chosen because it ensures fluctuation-dissipation balance between the enhanced diffusion
and the random advection. Note that in this numerical method the small-scale cutoff σ is related to the
grid spacing employed in the finite-volume grid. The results of our numerical algorithm are compared
to the results for the resolved dynamics (1,4) in Fig. 1. Visually the two figure panels are indistinguishable,
and more detailed analysis has not found any statistically significant differences. It is, however, important
to point out that the multiscale method employing the limiting dynamics can reach the same time scales
in much less computational effort than the direct numerical simulation because it avoids the need to
resolve the fast velocity fluctuations. Because it plays little role far from equilibrium and does not affect
the giant fluctuations that are the focus of our study, we do not include the multiplicative noise term
∇ ·
(√

2χ0cWc

)
from the concentration equation in all of the Eulerian numerical simulations reported here.

We cannot study the case of no bare diffusion, χ0 = 0, using an Eulerian grid-based algorithm. Because
advection creates finer and finer scales in the solution, truncation on a regular grid leads to a Gibbs
phenomenon and ultimately numerical instability. We are, in fact, not aware of any Eulerian numerical
method that could be used to reliably study the limiting case χ0 = 0 without introducing artificial

4 The Euler-Heun method is a predictor-corrector algorithm that can be can be thought of as the Stratonovich equivalent

of the Euler-Maruyama method for Ito stochastic differential equations.
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dissipation. We have therefore developed a Lagrangian tracer algorithm to solve (16), detailed in Section B 2.
In the Lagrangian algorithm, a realization of the advection velocity field w (r, t) is sampled using a spectral
steady Stokes solver, a convolution with a Gaussian function of standard deviation σ is used to filter the
small scales, and a non-uniform FFT algorithm [51] is used to evaluate w(q, t). This approach leads to a
scheme in which the only truncation (discretization) error comes from the Euler-Heun temporal integrator.

The Lagrangian approach is particularly useful when the tracers model actual physical particles that
can be tracked individually, for example, fluorescently-labeled molecules in a FRAP experiment. The
Lagrangian tracing algorithm can also be used to solve (5,9) in the abscence of bare diffusion by employing
the identity c (q(t), t) = c (q(0), 0). Because the Lagrangian trajectories are time-reversible, one can obtain
the concentration at a given position r by starting a tracer from q(0) = r, following its trajectory for a time
t, and then evaluating the initial condition at the new position of the tracer, c (q(0), t) = c (q(t), 0). The
Lagrangian approach leads to a spatial discretization of (5) that is free of artificial dispersion or dissipation,
with the main source of numerical error coming from the fact that a finite number of tracers is employed.

III. Is Diffusion in Liquids Irreversible?

The well-known fact that the measured diffusion coefficients in molecular liquids and macromolecular
solutions closely match the Stokes-Einstein prediction hints that in realistic fluids diffusive transport is
dominated by advection by the velocity fluctuations, χ� χ0. This suggests that it is relevant to consider
the case of no bare diffusion. If χ0 = 0, the evolution of the mean is dissipative since χeff = χ > 0. However,
each realization follows a strictly reversible dynamics. It is not difficult to appreciate that an instance of
a random process can behave very differently from the ensemble mean. For example, the average over many
randomly dephasing oscillators will produce a decaying amplitude, even though each instance is non-decaying.
It is therefore important to understand the difference in the behavior of the ensemble mean of the diffusive
mixing process, described by (11), and the behavior of an individual realization, described by (5).

Figure 2: The concentration obtained after a substantial decay of a single-mode initial condition
c(r, 0) = sin (2πx/L) sin (2πy/L). Contour lines are also shown, and the same final time t ∼ τ and
color legend is used in all three panels. (Left panel) The ensemble averaged mean, which follows (11). (Middle)
Solution of the stochastic advection-diffusion equation (5) on a grid of size 1024×1024 cells for the case χeff/χ0 ≈ 50.
(Right panel) An instance of the solution of (5) for a grid of size 256× 256 cells, for χeff/χ0 ≈ 5, with the same
χeff = χ0 + χ as the other two panels.

To this end, let us consider the temporal decay of a smooth single-mode initial perturbation
c(r, 0) = sin (2πx/L) sin (2πy/L) in two dimensions, using our numerical method for simulating the
overdamped dynamics (5,9). In the left panel of Fig. 2, we show the ensemble mean of the concentration
at a later time, as obtained by solving the deterministic equation (11) with an effective diffusion coefficient
χeff = χ0 + χ, where the value of χ was obtained via the discrete equivalent of (13). In the middle panel
of the figure, we show an instance of the concentration at the same time obtained by solving (5,9) using
the smallest value of χ0 that stabilized the numerical scheme. The same giant fluctuations seen in Fig.
1 are revealed, with the contour lines of the concentration becoming rough even at the scale of the grid
spacing. We note in passing that we have performed hard-disk molecular dynamics simulation of this
mixing process and have observed the same qualitative behavior seen in the middle panel of Fig. 2.
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A. Power Transfer

The conserved quantity5
∫

(c2/2) dr injected via the initial perturbation away from equilibrium is
effectively dissipated through a mechanism similar to the energy cascade observed in turbulent flows.
Advection transfers power from the large length scales to the small length scales, effectively dissipating
the power injected into the large scales via the initial condition. To make this more quantitative, let us
set χ0 = 0 and write (5) in the Fourier domain,

dĉk
dt

= ŵk ~ (ikĉk) ,

where ~ is a combination of Stratonovich dot product and convolution. This equation strictly conserves
the total power

∑
k |ĉk (t)|2 /2 since the advective term simply redistributes the power between the modes.

Let us denote the ensemble average power in mode k with pk (t) = 〈|ĉk (t)|2〉/2. Using straightforward
stochastic calculus we can obtain a simple system of ODEs for the transfer of power between the modes,

dpk
dt

= −
∑
k′ 6=k

(
k · χ̂k−k′ · k

)
pk +

∑
k′ 6=k

(
k′ · χ̂k−k′ · k′

)
pk′ . (20)

The first term on the right hand side of this equation expresses the power lost from mode k to other
modes, while the second term gives the power transferred from other modes to mode k. The total power∑

k pk is conserved because the flow in (16) is unique, ensuring that there is no anomalous dissipation [52].
Consider starting from an initial configuration in which the only mode with nonzero power is wavenumber

k0, ĉk (0) = δk,k0 . The average rate at which power will be transferred from mode k0 to mode k 6= k0

via the advective term −w �∇c is proportional to the spectrum of w at wavenumber k − k0 and is given
by k0 · χ̂k−k0

· k0. The total relative rate at which power is lost (“dissipated”) from mode k0 is given by

k0 · χ · k0, where χ =
∑

k χ̂k for a finite system case, or χ = (2π)−d
∫
χ̂kdk in the infinite system limit.

This is exactly the same rate of dissipation as one would get for ordinary diffusion with diffusion tensor χ. In
simple diffusion, the power of mode k0 would also decay exponentially as exp (−t/τ), where τ = (2χeffk

2
0)
−1

is a decay time. However, all other modes would remain unexcited, as in the left panel of Fig. 2.
The above calculation shows that after a short time t� τ , mode k 6= k0 will have, on average, power

proportional to
(
k0 · χ̂k−k0

· k0

)
t. For large-scale initial pertubations, k0 ≈ 0, the spectrum of c at short

times will therefore be proportional to one of the diagonal elements of χ̂k, which can be read from (14)
to be ∼ k−2 sin2 θ for intermediate wavenumbers, where θ is the angle between k and k0. The spectrum at
early times is therefore |ĉk (t)|2 ∼ k−2t, as confirmed by our numerical simulations and illustrated in Fig. 3.

If there were only random advection, with no bare diffusion, the transfer of energy from the coarse to the fine
scales would continue indefinitely. It is not hard to see that even a very small finite bare diffusion can affect
the results at small scales dramatically, making the limit χ0 → 0+ non-trivial [53]. Namely, the diffusive term
χ0∇2c becomes stronger and stronger at smaller scales (χ0k

2 in Fourier space), and will eventually become
important and dissipate the small scale features created by the random advection. In particular, at late times
of the diffusive decay, t ∼ τ , shown in Fig. 2, one expects that a steadily decaying state will be reached in
which the shape of the spectrum of c does not change as it decays exponentially in time as exp (−t/τ). This
is indeed what we observe, and the shape of the steadily decaying spectrum is shown in Fig. 3. Numerically
we observe that the majority of the bare dissipation occurs at the largest wavenumbers, dissipating the power
injected into small scales from the large and intermediate scales. This is seen in Fig. 3 as a deviation from the
power-law behavior for the largest wavenumbers. It is important to note that the shape of the spectrum at the
large wavenumbers is strongly affected by discretization artifacts for the finite volume scheme employed here.

We also study the spectrum of concentration fluctuations with the Lagrangian tracer algorithm described
in Section II D, which allows us to eliminate bare diffusion and numerical grid artifacts. Note however that
the Lagrangian approach to obtaining power spectra also fails at sufficiently large wavenumbers at sufficiently
large times, as we explain shortly. In the Lagrangian algorithm, we make use of the time-reversibility of the
flow, c (q(0), t) = c (q(t), 0). We place Nt = 20482 on a regular grid at the initial time and then follow their
trajectories over a time interval t using the algorithm described in Section B 2. We then evaluate the initial
condition c (r, 0) at the final position of each tracer in order to obtain the concentration c (r, t) on a regular

5 Advection preserves not just the second but all moments of the concentration.
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Figure 3: Power spectrum of an individual realization of the concentration c(r, t) corresponding to the simulation
illustrated in the middle panel in Fig. 2. The power of individual modes k with nearby k is averaged and the result
is shown with a colored solid line, while dashed/dotted lines show power laws k−2, k−3 and k−4 for comparison.

At early times t� τ =
(
2χeffk

2
0

)−1
(red line) power is being transferred from mode k0 ≈ 2π/L ≈ 10−3, initially

excited to have spectral power pk0 ≈ 7 · 108 (off scale), to the rest of the modes, leading to a spectrum ∼ k−2.
At late times t & τ (magenta and blue lines), a steadily-decaying shape of the spectrum is reached where power
transferred from the larger scales is dissipated at the small scales via bare diffusion. Linearized fluctuating
hydrodynamics predicts a spectrum ∼ k−4 (green line). (Inset) Difference in the spectrum between random
advection and simple diffusion, as obtained using a Lagrangian simulation of the diffusive decay. The parameters
used are different from the main panel and are summarized in Section IV.

grid of points, and use the FFT algorithm to obtain the spectrum ĉk (t). This would be a very accurate
numerical algorithm if the concentration were smooth on the scale of the grid of tracers. In reality, as the
power-law tail in the spectrum gets filled by the advection the concentration becomes less and less smooth and
the spectrum at the larger wavenumbers becomes dominated by truncation errors (using a discrete sum instead
of a Fourier integral) and statistical errors (using a finite number of sampling points to obtain the spectrum).

In order to eliminate these artifacts and further emphasize the difference between simple diffusion
and advection by a random field, we consider repeating the Lagrangian calculation with tracers that
perform independent Brownian motions with diffusion coefficient χeff. For simple diffusion, the numerical
spectrum is not zero for k 6= k0 as it should be; rather, due to the finite number of tracers we get pk (t) ∼
N−1 [1− exp (−t/τ)]. We subtract this background noise from the numerical spectrum obtained using the
Lagrangian tracing algorithm. We find that the difference in the spectrum for random advection and simple
diffusion follows a power-law behavior, as illustrated in the inset of Fig. 3. The power law is in agreement
with that seen in the Eulerian simulations, and persists over the whole range of accessible wavenumbers.

B. Linearized Fluctuating Hydrodynamics

In the literature, linearized fluctuating hydrodynamics is frequently used to obtain the steady-state
spectrum of fluctuations [3]. In the limit of large Schmidt numbers, the standard heuristic approach leads
to the additive-noise equation,

∂tc̃ = −w ·∇〈c〉+ ∇ · [χeff∇c̃] , (21)
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where 〈c〉 is the ensemble mean, which follows (11). Note that in order to obtain the correct spectrum
for the equilibrium concentration fluctuations, one ought to include an additional random forcing term

∇ ·
(√

2χeff〈c〉Wc

)
in (21); our focus here is on the nonequilibrium fluctuations and we will not include such

a term to more accurately measure the power-law spectrum. Equation (21) can easily be solved analytically
in the Fourier domain when ∇〈c〉 = h is a weak externally applied constant gradient (c.f., for example,
Eq. (9) in Ref. [9]), to obtain a spectrum (h · χ̂k · h) / (χeffk

2) ∼ k−4 for intermediate wavenumbers.
Linearized fluctuating hydrodynamics can be used to justify the omission of the term ∇·

(√
2χ0cWc

)
from

(4) in our numerical calculations. This term leads to “equilibrium” concentration fluctuations that are negligi-
ble compared to the“non-equilibrium”concentration fluctuations due to advection by the thermal velocity fluc-
tuations in the presence of large concentration gradients. A rough estimate of the magnitude of the equilibrium
versus the nonequilibrium fluctuations can be obtained by considering the case when the tracer particles are la-
beled molecules of a simple three-dimensional liquid with molecular mass m, molecular diameter σ and molec-
ular number density n = ρ/m ∼ σ−3. The spectrum of the equilibrium fluctuations is 〈|ĉk|2〉eq ≈ 〈c〉 ∼ φσ−3,
where φ is the volume (packing) fraction of the labeled particles. In the presence of a constant applied concen-
tration gradient of magnitude h, an additional nonequilibrium contribution 〈|ĉk|2〉neq ≈ h2n2kBT/ (ηχeffk

4) is
obtained (see Appendix A in Ref. [31], but note that in that work c denotes mass fraction, rather than number
concentration as it does in this paper). To estimate the ratio of these two contributions we can use the Stokes-
Einstein relation χeff ∼ kBT/ (ησ) and h ∼ L−1, where L� σ is the scale of the applied gradient, to obtain

〈|ĉk|2〉eq/〈|ĉk|2〉neq ∼ φL2σ2k4.

At length scales k ∼ L−1, the above ratio is ∼ (σ/L)2 � 1, and in practical situations the nonequilibrium
fluctuations are “giant” compared to the equilibrium ones.

For finite gradients and more realistic boundary conditions, we can solve (21) numerically with the same
algorithm used to solve the full nonlinear equation (5). Namely, we set χ0 = χeff and reduce the magnitude of
the fluctuations by a factor ε� 1 by setting the“temperature” to εkBT , and then simply rescale the spectrum
of the fluctuations by a factor ε−1 to obtain the spectrum of c̃. This approach was used by some of us to simu-
late giant concentration fluctuations in microgravity [6] in Ref. [29]. The result of this numerically-linearized
calculation for the single-mode initial condition is shown in Fig. 3 and compared to the nonlinear calculations.
The spectrum is indeed seen to follow a power-law k−4 for the linearized equations, in agreement with
theory. Note however that the spectrum obtained from (21) is not in a very good match with the spectrum
obtained by solving (5), which appears closer to k−3 in the two-dimensional setting we study here. Tools
developed in the turbulence literature [35, 36] could potentially be used to study the spectrum of uniformly
decaying steady states without resorting to linearization. Alternatively, the system of differential equations
(20) can be solved numerically to study the average dynamics of the transfer of power between the modes.

By integrating the ∼ k−4 spectrum of concentration fluctuations predicted by (21) it can easily be seen
that in two dimensions the fluctuations of the concentration around the Fickian mean are on the order
of the applied concentration gradient. Therefore, they cannot be considered “microscopic” or “small”, and
linearized fluctuating hydrodynamics does not apply in two dimensions. For example, the solution of
(21) does not necessarily stay positive due to the large fluctuations, as we have observed numerically for
parameters representative of moderately-dense hard-disk systems. This is an inherent pitfall of linearizing
the nonlinear advective term when fluctuations become truly “giant” (as they do in two dimensions). By
contrast, the nonlinear equations preserve the bounds on concentration even when the fluctuations become
strong, since advecting by a spatially smooth (even if white in time) velocity obeys a monotonicity principle.

IV. Spatial Coarse-Graining

If there were only random advection, with no bare diffusion, the transfer of energy from the coarse to the
fine scales would continue indefinitely, since the dynamics is reversible and there is nothing to dissipate the
power. However, any features in c at length scales below molecular scales have no clear physical meaning.
In fact, continuum models are inapplicable at those scales. It is expected that not resolving (coarse-graining)
the microscopic scales will lead to true dissipation and irreversibility in the coarse-grained dynamics. Such
coarse-graining can take form of ensemble averaging, or elimination of slow degrees of freedom. In either
case, the loss of knowledge about the small scales will lead to positive entropy production.

Can one replace the molecular scale details, or even all details of the dynamics at scales below some
mesoscopic observation scale δ, by some simple approximation, for example, a bare diffusion term with
suitably chosen χ0? We propose here a way to carry out such spatial coarse-graining of the overdamped
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dynamics (5,9) by splitting the velocity w into a large-scale component wδ and a small-scale component w̃,
w = δ ?w + w̃ = wδ + w̃,

where δ is a filter that smooths scales below some mesoscopic length δ > σ. More precisely, the equality w =

wδ+w̃ is in law and corresponds to splitting the covariance matrix R = δ?R?δT +R̃ into a small-scale and
large-scale component, and generating the two parts of w independently. Because of the technical difficulty in
dealing with the multiplicative noise term ∇ ·

(√
2χ0cWc

)
in (9), we do not include this term in this analysis.

In Eq. (11), we performed an ensemble average over all realizations of w. We can also, however, only
average over realizations of the unresolved w̃, that is, we can define c̄δ = 〈c〉w̃ as the conditional ensemble
average keeping wδ fixed. We can directly take such a conditional average of the Ito equation (9), to
obtain, without any approximations, a closed equation for c̄δ of exactly the same form as (9),

∂tc̄δ = −wδ ·∇c̄δ + χ0∇2c̄δ + ∇ · [χ (r)∇c̄δ] , (22)
with exactly the same initial condition, and, importantly, with an identical effective diffusion coefficient
χeff = χ0 + χ. However, if we write (22) in the Stratonovich form used by our numerical methods, we see
that the bare diffusion coefficient needs to be renormalized to take into account the coarse-grained scales,

∂tc̄δ = −wδ �∇c̄δ + ∇ · [(χ0 + ∆χδ)∇c̄δ] , (23)
where the diffusion renormalization ∆χδ is

∆χδ (r) =
1

2
R̃ (r, r) =

1

2
R (r, r)− 1

2

∫
δ (r, r′)R (r′, r′′) δT (r, r′′) dr′dr′′ (24)

Note that the renormalized bare diffusion coefficient χ0 (δ) = χ0 + ∆χδ in (23) is nonzero even if χ0 = 0.
This true dissipation is a remnant of the unresolved (eliminated) small scales. This renormalized bare
diffusion coefficient is not, however, a material constant, but rather, depends on the mesoscopic lengthscale δ.

A. Coarse-Grained Stochastic Advection-Diffusion Model

In reality, we are not interested in the behavior of the conditional average c̄δ because this is not a
measurable quantity. Rather, we are interested in the behavior of individual realizations of the spatially
coarse-grained concentration cδ = δ ? c, which can be measured by observing c at scales larger than some
experimental resolution δ. A physically reasonable coarse-grained model can be obtained by assuming
that cδ follows the same equation as the conditional mean c̄δ,

∂tcδ ≈ −wδ �∇cδ + ∇ · [(χ0 + ∆χδ)∇cδ] , (25)
so long as the initial condition is smooth 6 at the scale δ. It is important to note that, in order to obtain
correct equilibrium fluctuations, there should also be an additional stochastic forcing term in (25). This
term would balance the enhanced bare dissipation and restore fluctuation-dissipation balance in the
coarse-grained system [23]. A suitable form of this term is not obvious and we do not include this term
here just as we did not include the stochastic forcing term ∇ ·

(√
2χ0cWc

)
.

It is not possible to numerically solve (5) due to the presence of nontrivial dynamics at essentially all length
scales, especially in the absence of bare diffusion. Our arguments suggest that we can instead solve the coarse-
grained equation (25), which has exactly the same form as (5), but in which small scales are not resolved, and
there is increased bare dissipation. This is very easy to do in finite-volume numerical methods for solving (5) by
simply increasing the cell volume and increasing the bare diffusion coefficient accordingly. In the right panel of
Fig. 2, we show the result of an Eulerian simulation performed with a four times coarser grid than the middle
panel. This is roughly equivalent to choosing δ = 4σ and solving (25). The value of χ0 is increased according
to a discrete equivalent of (24) to account for the unresolved scales. This ensures that the effective diffusion
coefficient χeff is the same for all panels of Fig. 2, in agreement with (22). Except at scales not resolved by
the four-times coarser grid, the right panel and the middle panel look similar visually, as confirmed by an
examination of the corresponding Fourier spectra. This suggests that (25) is indeed a good approximation
to the true dynamics of the spatially coarse-grained concentration. A more quantitative comparison between
the spatially smoothed cδ and the conditional average c̄δ will be performed in future studies.

We emphasize that the inclusion of the fluctuating term −wδ�∇cδ in (25) is necessary to obtain the correct
physical behavior, especially in two dimensions. In large three dimensional systems, when the spatial coarse-

6 One can also use initial condition cδ(0) = δ ? c(0) since the enhanced bare diffusion quickly damps fine-scale features

in the initial condition.
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graining is performed at macroscopic scales δ � σ, it has often been assumed [3] that one can approximate
(25) with the deterministic Fick’s law (11) and linearize the fluctuations around the deterministic dynamics,
as in (21). To our knowledge there have been no precise mathematical arguments to support this picture
suggested by renormalization arguments [7]. In two dimensions, linearization is certainly not appropriate due
to the logarithmic growth of the effective diffusion coefficient (15) with system size. Thin films may exhibit
an intermediate behavior depending on the scale of observation relative to the thickness of the thin film [54].

B. Irreversibility of Coarse-Graining

In the coarse-grained dynamics (25), there is irreversible dissipation, ∆χδ > 0, even in the absence of dissipa-
tion in the original dynamics. It is easy to appreciate that elimination of degrees of freedom (coarse-graining)
is necessary in order to obtain dissipative (irreversible) dynamics starting from a non-dissipative (reversible,
even Hamiltonian) dynamics [23]. Consider the specific example of diffusive mixing illustrated in Fig. 1 in the
absence of bare diffusion, χ0 = 0. Since u and w are spatially-smooth velocity fields, advection by u or w, in
the absence of bare diffusion, leads to behavior qualitatively different from diffusion. Specifically, if the initial
concentration c (r, 0) has a sharp interface, this interface will remain sharp at all times, even if it becomes
very rough. This implies that if χ0 = 0, in Fig. 1 one should see only the red and blue colors present in the
initial snapshot, at all times, in every realization, instead of the spectrum of colors actually seen in the figure.

Figure 4: (Top panel) A snapshot of the concentration c for the diffusive mixing process first shown in Fig. 1, here
in the absence of bare diffusion, χ0 = 0. The top and bottom interface are represented with about half a million
Lagrangian tracers each, and (16) is solved for each tracer numerically. A Gaussian filter with standard deviation σ
is used to filter the velocity field, and the periodic domain has unit cell of shape 512σ×128σ. The space between the
two interfaces is colored black using image-processing tools. (Two color panels on left) The spatially-coarse grained
concentration cδ obtained by blurring the top panel using a Gaussian filter with standard deviation δ, for δ = 1.5σ
(top left) and δ = 3σ (bottom left). (Two color panels on right) An independent snapshot of the conditional average
c̄δ at the same point in time as the panels on the left, obtained by solving (23) with an Eulerian method using a grid of
2048×512 finite-volume cells. A Gaussian filter of width δ is used to filter the discrete velocity and the bare diffusion
χ0 is chosen such that χeff is the same as in the Lagrangian simulations. In the top panel, δ = 1.5σ (six grid cells) and
χeff/χ0 ≈ 9.6, and in the bottom panel δ = 3σ and χeff/χ0 ≈ 3.5. The same settings and random number sequence
was used to generate the random velocities for both panels on the right in order to facilitate a direct comparison.

We turn to our Lagrangian tracer algorithm for solving (16) as a means to track the interface in Fig. 1 with-
out dissipation. For the particular example of diffusive mixing starting from a sharp interface, in the absence of
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bare diffusion, tracking the interface is sufficient to reconstruct the solution everywhere. Specifically, c = 0 on
one side of the interface (topologically a closed curve on the torus for a periodic system), and c = 1 on the other
side. Therefore, we put a large number of Lagrangian tracers on the flat interface at t = 0, keeping the distance
between neighboring tracers much smaller than the tracer/molecular cutoff scale σ. We then simulate a real-
ization of the particles’ trajectories to a later time, connecting neighboring points with straight line segments
to obtain an approximation of the interface. In the top panel of Fig. 4 we show the results of a Lagrangian sim-
ulation of the mixing process first illustrated in Fig. 1. The top and bottom interface are tracked using tracers,
and the concentration in the space between the two interfaces is set to c = 1 (black), c = 0 elsewhere (white).

Figure 5: A snapshot of a portion of an initially straight line of Lagrangian tracers after some time. The individual
tracers and the straight line segments connecting them are both shown. The length of the shown portion of the
domain is about 20σ.

As illustrated in Fig. 5, an initially straight line of tracers becomes quite contorted at later times, even
though topologically it remains a non-crossing curve at all times. Asymptotically as t → ∞ we expect
that the line will densely cover the plane (i.e., become a space-filling curve), in the same way that simple
diffusion would lead to uniform concentration throughout the domain. Simulating the mixing process
using a Lagrangian algorithm would therefore require an unbounded increase in the number of Lagrangian
tracers with time in order to track the ever-increasing level of fine-scale detail in the interface. Spatial
coarse-graining introduces effective bare diffusion and eliminates the fine-scale details in the mixing front.
In the two color panels on the left in Fig. 4 we show the concentration field cδ = δ ? c smoothed with a
Gaussian filter of width δ = 1.5σ and δ = 3σ, now showing a spectrum of colors due to the spatial averaging.

In the two color panels on the right in Fig. 4 we show statistically-independent samples of the conditional av-
erage c̄δ = 〈c〉w̃ obtained by solving (23) using a finite-volume Eulerian algorithm. A slight modification of the
algorithm used to prepare Figs. 1, 2 and 3 was implemented, in which the discrete random advection velocity
w was filtered in Fourier space with a Gaussian filter of width δ to obtain the wδ, as discussed in more detail
in Section B 1. The grid spacing was set to be smaller than δ/6, which ensures that discretization artifacts are
quite small and the Eulerian code can be directly compared to the very accurate Lagrangian code. The value
of the coarse-graining length was set to be δ > σ, and the bare diffusion coefficient ∆χδ > 0 was set so that
the effective diffusion coefficient χeff remained the same as in the Lagrangian simulation. One can choose the
balance between bare diffusion and enhanced diffusion essentially arbitrarily by choosing the length scale δ at
which to truncate (filter) the velocity spectrum, and for the top right color panel of the figure we used the small-
est value of δ = 1.5σ that stabilized the numerical method. The coarse-graining length δ = 3σ is twice larger
in the bottom right color panel than in the top right color panel, and therefore there is enhanced bare diffusion
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(smoothing). Visually the two color panels on the left and on the right in Fig. 4 look quite similar. This indi-
cates that (25) gives a good approximation to the nonequilibrium fluctuations in the coarse-grained field cδ.

C. A Paradigm for Diffusion

Let us now summarize our discussion of spatial coarse-graining. We start from the overdamped equation
(5) as the most accurate representation of diffusion, although itself an approximation of the true molecular
transport processes. The reference molecular scale σ and bare diffusion coefficient χ0 may in principle be
extracted from comparisons to a more fundamental model such as molecular dynamics, or from experimental
observations. In the end, the precise details of the dynamics at the molecular scale do not matter, since at
the larger scales they only enter through a renormalized bare diffusion coefficient. In fact, the microscopic
equation (5) should never be solved directly. Doing so numerically would require using a grid resolution
smaller than the molecular scale, and, in the case of no bare diffusion, would require an infinite resolution due
to the creation of every finer-scale details in the solution even when the initial condition is smooth. Instead,
what one should really calculate is the spatially-coarse grained cδ = δ?c, where δ � σ is a scale of observation.

In order to derive an approximation for the dynamics of cδ, we started by splitting the spectrum of the
velocity fluctuations into a microscopic component w̃ containing the fluctuations at scales below a mesoscopic
length δ, and the rest of the spectrum extending all the way to the macroscopic scale. A rigorous closed-form
equation for the conditional average c̄δ = 〈c〉w̃ is given by (23). A key result of our numerical experiments
illustrated in Fig. 4 is that cδ ≈ c̄δ, more precisely, that (23) can be used to approximate the uknown
dynamics of cδ. We can express the relations between the different quantities by the following diagram

cδ = δ ? c
↗

c m
↘

c̄δ = 〈c〉w̃
In the coarse-grained approximation (25), the bare diffusion coefficient is renormalized to take into account
the contribution of advection by the unrepresented (eliminated) velocity scales. This makes solving this
equation numerically a much simpler task, since the enhanced bare diffusion dissipates small scale features
in the solution.

The correspondence cδ ⇔ c̄δ is an approximation inspired by (23). Stochastic homogenization theory [11]
can potentially be used to justify (25) for δ � σ. It is unlikely that there can be a rigorous justification for
this identification in the case when there is no separation of scales between the mesoscopic and microscopic
scales, i.e., when δ ∼ σ, even though Fig. 4 shows a very good visual agreement. In future work we will
perform more detailed quantitative comparisons in order to quantify the length and time scales at which
(25) is a good approximation.

V. Conclusions

We presented a model of diffusion in liquids that captures in a simple yet precise way the contribution
that thermal velocity fluctuations make to the transport of a passive tracer. The standard equations of
fluctuating hydrodynamics used to describe the effect of thermal fluctuations on diffusion [3] need to be
regularized below a cutoff molecular scale. We introduced this regularization by filtering the fluctuating
velocity field v at a molecular scale σ in order to obtain a smooth (in both space and time) velocity u with
which we advect the passive tracer. Under the assumption of large separation of scales between the fast
momentum diffusion (collisional transport of momentum) and the slow mass diffusion, i.e., large Schmidt
number, we obtained an overdamped limiting equation for the concentration. This equation is amenable
to numerical simulations, allowing us to simulate diffusive mixing even in the presence of infinite separation
of time scales between mass and momentum diffusion.

In the Stratonovich form the overdamped equation for the concentration of passive tracers is a stochastic
advection-diffusion equation in which the thermal velocity fluctuations enter as a white-in-time random advec-
tion field w with spectrum given by a Green-Kubo formula. For the case of Stokes flow the spectrum of w is
proportional to a regularized Oseen tensor. In the Ito form of the overdamped equation, there is an additional
diffusive term with diffusion coefficient closely related to the Stokes-Einstein prediction for the diffusion coef-
ficient of a sphere of radius σ immersed in the fluid. This enhancement of the diffusion over the bare diffusion
is mathematically similar to the well-known eddy diffusivity in turbulent transport. However, its origin is very
different physically since the random flow here describes very low Reynolds number thermal fluctuations in the
velocity. Unlike previous derivations of the Stokes-Einstein law for diffusion in liquids, our model makes no
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assumptions beyond that of a large Schmidt number and gives a stochastic dynamical description of diffusion.
The sum of the bare and enhanced diffusion coefficients determines the effective diffusion coefficient, which

gives the rate of dissipation in the ensemble mean. In each individual realization of the diffusion process,
however, bare diffusion and the random advection giving rise to the enhanced diffusion behave rather
differently because the random advection is strictly non-dissipative. We showed that, from the perspective
of an initially excited mode (wavenumber), the advection by the random velocity field effects apparent
dissipation in the form of transfer of power into other modes. The average rate of power dissipation is
found to be exactly the same as for simple diffusion with an equal effective diffusion coefficient. However,
the physical behavior of each realization is very different from that predicted by Fick’s deterministic law
of diffusion. Instead of each mode being independent of all other modes as in simple (linear) diffusion,
the random advection couples all the modes and produces large-scale giant fluctuations in the concentration.
These are manifested in a power-law behavior of the spectrum of concentrations, as predicted by linearized
fluctuating hydrodynamics and observed in recent experiments [4–6].

Here we studied coarse-graining based on a continuum rather than a discrete microscopic model of
diffusion. An alternative approach to coarse-graining of diffusion is to consider purely discrete models
in which the coarse-grained variables are not smothed fields, as we have done here, but rather, a collection
of discrete variables associated with coarse-graining volumes (cells) of length δ � σ [28, 55]. The accuracy
of such finite-dimensional truncations can, in principle, be evaluated by comparing them to particle
simulations. As an alternative, one can start from the more tractable continuum model (5) and think
of finite-dimensional truncations as discretizations of (25). In the end, our numerical observations suggest
that at scales much larger than the molecular the behavior of all models is similar, and can be described
by a combination of bare diffusion and advection by a thermally fluctuating velocity field. Understanding
this equivalence mathematically is a challenge common to all dynamical coarse-graining endeavors.

In typical experiments, such as FRAP measurements of diffusion coefficients, one observes the concentration
spatially-coarse grained at scales much larger than the molecular scale. We discussed how to perform such spa-
tial coarse-graining for the conditional ensemble average over only the unresolved velocity fluctuations. This
conditional mean shows true dissipation in the form of a renormalized diffusion coefficient, a remnant of the
eliminated degrees of freedom. We observed numerically that the equation for the conditional ensemble aver-
age is a good approximation (closure) to the dynamics of individual realizations of the spatially coarse-grained
concentration. This means that, even in the absence of bare diffusion, the coarse-grained concentration shows
dissipative behavior, as we confirmed using Lagrangian numerical simulations. The renormalized diffusion
coefficient in the coarse-grained equation is nonzero even in the absence of bare diffusion, and, in fact, one can
set χ0 = 0 without affecting the behavior of the concentration field at mesoscopic scales. The renormalized
diffusion coefficient is then controlled by the molecular scale σ only, in agreement with Stokes-Einstein’s for-
mula. Contrary to the standard renormalization theory [7, 12] which accounts for the contribution of thermal
fluctuations as a perturbation (correction) to the bare (molecular) diffusion coefficient, in our model diffusion
arises entirely due to the velocity fluctuations and it is not necessary to include an ad hoc bare diffusion term.

In the limit of infinite coarse-graining length scale, at least in three dimensions, one expects to obtain the
usual Fick’s law of diffusion. That is, we expect that at macroscopic scales one recovers the deterministic diffu-
sion equation (11) not just for the ensemble mean but also (as a law of large numbers) for each instance (realiza-
tion) of the mixing process. Understanding the precise relationship between the macroscopic and microscopic
dynamics is a challenge even for much simpler models of diffusion such as the case of non-interacting Brown-
ian walkers [56, 57]; it therefore remains an important future challenge to understand the precise relationship
between Fick’s law, (9) (equivalently, (5)) and (21), in three dimensions. In two dimensions, however, there
is no macroscopic limit because the renormalized diffusion coefficient grows logarithmically with system size.

More importantly, in both two and three dimensions the behavior of a diffusive mixing process cannot
be described by Fick’s law at mesoscopic scales. One must include random advection by the mesoscopic
scales of the velocity fluctuations in order to reproduce not just the behavior of the mean but also the giant
fluctuations observed in individual realizations (instances). The diffusion renormalization depends sensitively
on the spectrum of the velocity fluctuations, which is affected by boundary conditions (confinement)
[9, 10, 54]. The traditional Fick’s diffusion constant is only meaningful under special conditions which
may not in fact be satisfied in many experiments aimed to measure “the” diffusion coefficient. A length
scale of observation (coarse-graining) must be attached to the diffusion coefficient value in order to make
it a true “material constant” that can be used in a predictive model of diffusive transport [9].

Dismissing the effect of thermal fluctuations as “weak” is easy with hand-waving estimates, but not
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easily justified upon an in-depth analysis as we have performed here. We hope that our work will spur
interest in designing experiments that carefully examine diffusion at a broad range of length scales. Existing
experiments have been able to measure concentration fluctuations across a wide range of lenghtscales
transverse to the gradient, but fluctuations are averaged longitudinally over essentially macroscopic scales
(thickness of the sample) [4–6]. FRAP experiments routinely look at diffusion at micrometer scales, however,
we are not aware of any work that has even attempted to account for the important effect of thermal
fluctuations. It is perhaps not surprising that diffusion coefficients in liquids are typically only known
to at most a couple of decimal places. The renormalization of the diffusion coefficient by the velocity
fluctuations depends on the geometry of the sample and the initial excitation, and on factors such as
gravity and surface tension. Giant fluctuations are expected to be more easily observed and measured
in thin liquid films due to the quasi-two dimensional geometry [54, 58].

Recently, nonequilibrium fluctuations have been used as a way to measure mass and thermophoretic
diffusion coefficients more accurately [59]. Our work is directly relevant to such efforts, especially when
combined with numerical methods to solve the resulting stochastic advection-diffusion equations [29, 31].
The simple model we considered here is only applicable to self-diffusion or diffusion of tracers in the dilute
regime. Generalizing the model and in particular the mode-elimination procedure to more realistic binary
fluid mixtures is an important future research direction. To our knowledge, there have been no studies
of the renormalization of diffusion by thermal velocity fluctuations in ternary mixtures. In the future
we will consider extensions of our approach to multispecies liquid mixtures. Such extensions are expected
to lead to a better understanding of the physics of diffusion in fluid mixtures, including a generalized
Stokes-Einstein relation for inter-diffusion coefficients in dilute multispecies solutions.
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Appendix

A. Mode Elimination Procedure

In this appendix we consider the system of equations (1,3,4) in the limit of infinite Schmidt number. For
completeness, and because gravity is known to strongly affect giant fluctuations [5, 6, 60, 61] in actual exper-
iments, we include here a buoyancy term in the velocity (momentum) equation. This introduces a coupling
of concentration back into the velocity equation. It is convenient to eliminate the incompressibility constraint
by using a projection operator formalism to remove the pressure from the fluctuating Navier-Stokes equation,

ρ∂tv =P
[
η∇2v + ∇ ·

(√
2ηkBT W

)
− βρc g

]
(A1)

∂tc =− u ·∇c+ χ0∇2c+ ∇ ·
(√

2χ0cWc

)
. (A2)

Here u = σ ?v is the mollified version of v defined in (3), β is the solutal expansion coefficient (assumed con-
stant), and g is the graviational acceleration; P is the orthogonal projection onto the space of divergence-free
velocity fields, P = I−G (DG)−1 D in real space, where D ≡∇· denotes the divergence operator and G ≡
∇ the gradient operator, with the appropriate boundary conditions taken into account. With periodic bound-

aries we can express all operators in Fourier space and P̂ = I−k−2(kkT ), where k is the wave number. Note
that our inclusion of the problematic multiplicative-noise term ∇ ·

(√
2χ0cWc

)
is purely formal, as a precise

interpretation of this term is missing. For the purposes of this calculation we simply carry that term through.
In this Appendix, we formally show that there exists a limiting dynamics for c as the bare Schmidt

number Sc0 = η/ (ρχ0)→∞ and χ0 → 0 in such a way that

χ2
0Sc0 ∼ χ0η = const,

which is consistent with the scaling of the diffusion coefficient with viscosity predicted by the Stokes-Einstein
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relation (15). To this end, consider a family of equations in which the coefficients are rescaled as

η 7→ ε−1η, χ0 7→ εχ0. (A3)
This rescaling preserves the product χ0η but implies that Sc0 7→ ε−2Sc0, so that the rescaled Sc0 → ∞
as ε→ 0. For ε = 1 we get the original dynamics (A1,A2), and as ε→ 0 we get the dynamics in the limit
of infinite Schmidt number. If the separation of time scales in the original dynamics is sufficiently strong
the limiting dynamics ε→ 0 is a good proxy for the real dynamics ε = 1. This assumption of separation
of time scales has to be verified a posteriori, after the limiting dynamics is obtained; specifically, the actual
dimensionless number of interest is not the bare Sc0 but rather the effective Sc = η/ (ρχeff)→∞.

Writing (A1) in terms of the rescaled coefficients (A3) and rescaling time as t 7→ ε−1t, we arrive at the
rescaled system

∂tv̆ =P
[
ε−2ηρ−1∇2v̆ + ∇ ·

(√
2ε−2ηρ−2 kBT W(t)

)
− ε−1βc̆ g

]
(A4)

∂tc̆ =− ε−1ŭ ·∇c̆+ χ0∇2c̆+ ∇ ·
(√

2χ0c̆Wc(t)
)
. (A5)

These equations define a Markov process with generator L = L0 + ε−1L1 + ε−2L2, where

L0F = χ0

∫
dr ∇2c(r)

δF

δc(r)
+ χ0

∫
dr c(r)∇2 δ2F

δc(r)2

L1F = −
∫
dr u(r) ·∇c(r)

δF

δc(r)
+ β

∫
dr P(c(r)g) · δF

δv(r)

L2F = ηρ−1

∫
dr P∇2v · δF

δv(r)
+ ηρ−2kBT

∫
drP∇∇ :

δ2F

δv(r)2
,

(A6)

and δF/δc(r) denotes the functional derivative of the functional F ≡ F [c,v] with respect to the field
c(r) and similarly for δF/δv(r). Note that the operator L2 is the generator of the so-called virtual fast
process, which is nothing more than the equation for the fast (i.e., the fluctuating) velocity component
written in its natural time scale τ = t/ε2,

∂τ ṽ = P
[
ηρ−1∇2ṽ + ∇ ·

(√
2ηρ−2 kBT W(τ)

)]
. (A7)

This process describes the dynamics of equilibrium fluctuations of velocity in the Stokes regime. The
dynamics is time-reversible with respect to a Gaussian Gibbs-Boltzmann equilibrium distribution which,
for a periodic system, can be formally written as [30]

Peq (ṽ) = Z−1 exp

[
−
∫
dr ρṽ2

2kBT

]
δ

(∫
dr ρṽ

)
δ (∇ · ṽ) . (A8)

The mathematical asymptotic expansion techniques we employ follow the procedure introduced in
[15, 32, 33] (for a review see also the book [34]). Denote by (c̆(r, t), v̆(r, t)) the solution to (A4,A5) for
the initial conditions (c̆(r, 0), v̆(r, 0)) = (c(r), v(r)) and consider

〈F [c̆(·, t)]〉 ≡ G[c(·),v(·), t], (A9)
where the expectation 〈·〉 is taken over the realizations of the noise terms W(t) and Wc(t). This
expectation defines a time-dependent functional G of the initial conditions which satisfies the (functional)
backward Kolmogorov equation

∂tG = L0G+ ε−1L1G+ ε−2L2G, G|t=0 = F. (A10)
We wish to take the limit as ε→ 0 of this equation. To this end, formally expand G as

G = G0 + εG1 + ε2G2 + · · · (A11)
and insert this expression in (A10), and collect terms of increasing power in ε. This gives the hierarchy

L2G0 = 0,

L2G1 = −L1G0,

L2G2 = ∂tG0 −L0G0 −L1G1,
...

(A12)

The first equation in (A12) indicates that G0 is a functional of c(r) alone, rather than c(r) and v(r), i.e.
G0 ≡ G0[c]. (A13)
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The second equation in (A12) requires a solvability condition, namely that its right hand side be in the
range of the operator L2. Equivalently, the expectation of any term involving v(r) in this right hand
side with respect to the invariant measure of the virtual fast process ṽ(r, t) given by (A8) must be zero.
Denoting this expectation by 〈f〉v =

∫
f (ṽ) Peq (ṽ) Dṽ, where the integral is a formal functional integral,

the solvability condition can be written as

0 = 〈L1G0〉v ≡ −
∫
dr〈u(r)〉v ·∇c(r)

δG0

δc(r)
(A14)

where we used the fact that G0 is a functional of c alone from (A13). This solvability condition is automatically
satisfied since 〈v(r)〉v = 0. As a result, the second equation in (A12) can be solved in G1 to obtain

G1 = −L−1
2 L1G0 (A15)

where L−1
2 denotes the pseudo-inverse of L2. The third equation in (A12) also requires a solvability

condition, which reads
∂tG0 = 〈L0G0〉v + 〈L1G1〉v

= L0G0 −
〈
L1L

−1
2 L1G0

〉
v

(A16)

where we used 〈L0G0〉v = L0G0 as well as (A15) to get the second equality.
To write the second term on the right hand side of (A16) explicitly notice that

L1G0 = −
∫
dr u(r) ·∇c(r)

δG0

δc(r)
(A17)

Since this operator is linear in u(r) = σ ? v(r), to compute the action of L−1
2 on it, we can use

L−1
2 u(r) = L−1

2 σ ? v(r) = σ ?L−1
2 v(r)

= −σ ?
∫ ∞

0

dτ eτL2v(r) = −σ ?
∫ ∞

0

dτ 〈ṽ(r, τ)〉,
(A18)

where ṽ(r, τ) denotes the solution to (A7) for the initial condition ṽ(r, 0) = v(r) and the expectation
is the same as in (A9). From (A7), this solution can be formally expressed as

ṽ(r, τ) = exp
(
−τηρ−1L

)
v(r)

+

∫ τ

0

dτ ′ exp
(
−(τ − τ ′)ηρ−1L

)
∇ ·

(√
2ηρ−2 kBT W(τ ′)

)
,

(A19)

where L = −P∇2 is the Stokes operator. The second term is linear in W and therefore has zero average
and does not contribute to the expectation in (A18) (i.e., it is a martingale). As a result, combining (A18)
and (A19) we conclude that

L−1
2 u(r) = −ρη−1 (Gσ ? v) (r) ≡ −ρη−1

∫
dr′Gσ(r, r′)v(r′) (A20)

where Gσ = σ ?G and G(r, r′) is the Green’s function for Stokes flow. More explicitly, Gσ ?v ≡ σ ?L−1v
is a shorthand notation for the smoothed solution of the Stokes equation with unit viscosity: wσ = Gσ ? v
if wσ = σ ?w and w solves

∇π = ∇2w + v, ∇ ·w = 0. (A21)
Using (A20) and the obvious identity

δc(r′)

δc(r)
= δ(r − r′), (A22)
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we see that the second term on the right hand side of (A16) can be written as

−
〈
L1L

−1
2 L1G0

〉
v

= ρη−1

∫
drdr′ ∇c(r) · δ

δc(r)

(
〈(σ ? v(r))⊗ (Gσ ? v(r′))〉v ·∇

′c(r′)
δG0

δc(r′)

)
− βρη−1

∫
drdr′ P(c(r)g) ·

〈
δ

δv(r)
(Gσ ? v(r′))

〉
v

·∇′c(r′) δG0

δc(r′)

= ρη−1

∫
drdr′ ∇c(r) · 〈(σ ? v(r))⊗ (Gσ ? v(r′))〉v ·

(
∇′c(r′) δ2G0

δc(r)δc(r′)
−∇′δ(r′ − r)

δG0

δc(r′)

)
− βρη−1

∫
drdr′ P(c(r)g) ·

〈
δ

δv(r)
(Gσ ? v(r′))

〉
v

·∇′c(r′) δG0

δc(r′)
,

(A23)
where ∇′ denotes the gradient operator with respect to r′. The first equality will be useful to write the
limiting equation for c in Stratonovich’s form, and the second one in Ito’s form.

To proceed further we need to explicitly perform the averages over the equilibrium distribution of the
fast virtual process,

ρη−1 〈(σ ? v(r))⊗ (Gσ ? v(r′))〉v = 1
2
R(r, r′), (A24)

where R(r, r′) is the tensor defined in (7), and (using δv(r′)/δv(r) = δ(r − r′))∫
dr P(c(r)g) ·

〈
δ

δv(r)
(Gσ ? v(r′))

〉
v

=

∫
drdr′′ P(c(r)g) ·

〈
δ

δv(r)
(Gσ(r′, r′′)v(r′′))

〉
v

=

∫
drdr′′ P(c(r)g) (Gσ(r′, r′′)δ(r − r′′))

=

∫
dr′′ Gσ(r′, r′′)P(c(r′′)g)

= (Gσ ?Pc)(r′) g.

(A25)

Inserting (A24) and (A25) in (A23), performing an integration by part and using the property
that ∇ · R(r, r′) = 0 (which follows from ∇ · u = 0) and Gσ ? P = Gσ (which follows from
PL−1 = L−1P = L−1) we finally obtain

−
〈
L1L

−1
2 L1G0

〉
v

= 1
2

∫
drdr′ ∇c(r) · δ

δc(r)

(
R(r, r′) ·∇′c(r′) δG0

δc(r′)

)
+ βρη−1

∫
dr (Gσ ? c)(r)g ·∇c(r)

δG0

δc(r)

= 1
2

∫
drdr′ ∇c(r) ·R(r, r′) ·∇′c(r′) δ2G0

δc(r)δc(r′)

+

∫
dr ∇ · (χ(r)∇c(r))

δG0

δc(r)

+ βρη−1

∫
dr (Gσ ? c)(r)g ·∇c(r)

δG0

δc(r)
,

(A26)

where we recall χ(r) = 1
2
R(r, r).

Inserting (A26) in (A16) gives the explicit form of the limiting equation for G0 = limε→0G. This
equation is a backward Kolmogorov equation from which the limiting stochastic differential equation for
c as ε→ 0 can be read. The second-order functional derivative (with respect to c(r)) written as in the
first form of the right hand side of (A26) gives this equation in Stratonovich’s interpretation, while the
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second form of the right hand side of (A26) gives it in Ito’s interpretation:

dc = −
∑
k

φk ·∇c ◦ dBk

+ χ0∇2c dt+ ∇ ·
(√

2χ0c dBc

)
+ βρη−1 (Gσ ? c) g ·∇c dt

= −
∑
k

φk ·∇c dBk + ∇ · (χ∇c) dt

+ χ0∇2c dt+ ∇ ·
(√

2χ0c dBc

)
+ βρη−1 (Gσ ? c) g ·∇c dt

(A27)

where Bc (r, t) is the Brownian sheet process such that we formally have dBc/dt = Wc. Note that the
derivation above, while formal, leaves no ambiguity in terms of the interpretation of the first term at
the right hand sides of (A27).

If we set g = 0 in this equation, (A27) reduces to (5) and (9). Also note that the gravity does not affect
the effective diffusion coefficient in the limit of infinite Schmidt number, as it may for finite Schmidt numbers
[8]. However, the spectrum of the fluctuations in concentration at small wavenumbers is strongly affected by
buoyancy effects, and (A27) is the nonlinear generalization of the existing linearized fluctuating hydrodynamic
theory for this effect [3, 5, 6, 60, 61]. Note that because (A27) is nonlinear, it is no longer possible to take
expectation values and write a closed equation for ensemble averages, as it was in the purely linear case.

B. Multiscale Integrators

In this Appendix we describe the multiscale algorithms [62, 63] used to numerically solve the limiting Eule-
rian (5) and Lagrangian (16) equations. These methods rely on being able to solve the steady Stokes equations
with random forcing, more precisely, to generate a random velocity field w (r) with spatial covariance

〈w (r1)⊗w (r2)〉 =
2kBT

η

∫
σ (r1, r

′)G (r′, r′′)σT (r2, r
′′) dr′dr′′.

For the simulations described here we rely on periodic boundary conditions, which means that the Fourier
basis diagonalizes the Stokes operator and therefore one can use the Fast Fourier Transform (FFT) to
efficiently solve the steady Stokes equations. This has helped us to implement both the Eulerian and
the Lagrangian algorithm on Graphics Processing Units (GPUs), which has enabled simulations with
as many as 16 million degrees of freedom. While both algorithms and our codes work in either two or
three dimensions, in order to be able to study power law behavior over many decades we focus in this
work on two dimensional systems (for d = 2 we use up to 20482 grid cells or wave-indices, but for d = 3
we are presently limited to at most 2563 grids due to memory requirements).

In principle one can use either the Ito or Stratonovich forms of the limiting dynamics. The only difference
is in the temporal integrator, namely, Ito equations can be integrated with the Euler-Maruyama (one-step)
scheme, while Stratonovich equations require the Euler-Heun (predictor-corrector) scheme [64]. Here we use
the Stratonovich form of the equations because this ensures discrete fluctuation-dissipation balance between
the random advection (fluctuation) and the effective diffusion (dissipation). For periodic boundaries, the
Ito drift term [∂q · χ (q)] dt in the Lagrangian equation (16) vanishes, and there is no difference between
the different stochastic interpretations.

1. Eulerian Algorithm

For completeness, we include a gravitational buoyancy term in the velocity equation and present an
algorithm for solving the limiting equation (A27), which includes the effect of gravity. Additional background
on the types of spatio-temporal integrators used can be found in previous works by some of us [29–31, 65];
here we only sketch the basic features. We do not include the term ∇·

(√
2χ0cWc

)
since properly discretizing

this multiplicative noise is nontrivial, and largely irrelevant when studying nonequilibrium fluctuations.
The overdamped Eulerian dynamics can be efficiently simulated using the following Euler-Heun

predictor-corrector temporal algorithm with time step size ∆t, which updates the concentration from
time step n to time step n+ 1 (denoted here by superscript):
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1. Generate a random advection velocity by solving the steady Stokes equation with random forcing,

∇πn = η
(
∇2vn

)
+ ∇ ·

(√
2η kBT

∆t∆V
W n

)
− ρβcng

∇ · vn = 0,
and compute un = σ ? vn by filtering. Here W n are a collection of Gaussian random variates generated
independently at each time step, and ∆V is the volume of each grid cell.

2. Do a predictor step for (5) by solving for c̃n+1,

c̃n+1 − cn

∆t
= −un ·∇cn + χ0∇2

(
cn + c̃n+1

2

)
.

3. If gravity is zero, set un+ 1
2 = un, otherwise, solve the steady Stokes equation

∇πn+ 1
2 = η

(
∇2vn+ 1

2

)
+ ∇ ·

(√
2η kBT

∆t∆V
W n

)
− ρβ

(
cn + c̃n+1

2

)
g

∇ · vn+ 1
2 = 0,

and compute un+ 1
2 = σ ? vn+ 1

2 . Note that the same random stress is used here as in the predictor.
4. Take a corrector step for concentration to compute cn+1,

cn+1 − cn

∆t
= −un+ 1

2 ·∇
(
cn + c̃n+1

2

)
+ χ0∇2

(
cn + cn+1

2

)
.

This scheme can be shown to be a weakly first-order accurate temporal integrator for (5); it is a weakly
second-order method for the linearized equations (21) with gravity included [30]. Note that advection
is treated explicitly. The key to obtaining the correct diffusion enhancement is the fact that the average
of cn and c̃n+1 is used to evaluate the advective fluxes in the corrector step. The bare diffusive fluxes
can be obtained via any consistent temporal discretization; here we use the Crank-Nicolson or implicit
midpoint rule, but an explicit midpoint rule (as used for the advective fluxes) can also be used since the
main stability limitation on the time step comes from the advective Courant number.

We discretize the continuum equations in space using a staggered finite-volume fluctuating hydrodynamics
solver [29] and use an iterative Krylov linear solver [65, 66] to solve the steady Stokes equations. In this Eule-
rian algorithm the difficulty is in discretizing advection, as is well-known from turbulence modeling. Because
of the transfer of power from the coarse to the fine scales, advection creates fine-scale features in the solution
that cannot be represented on the fixed Eulerian grid. This leads to well-known Gibbs instability, and requires
introducing some form of dissipation at the larger wavenumbers. If there is sufficient bare diffusion present
to smooth the solution at the scale of the grid, then one can use a strictly non-dissipative discrete advection
operator [29]. This strictly non-dissipative centered advection maintain discrete fluctuation-dissipation
balance [30], and for this reason we have used it for the simulations reported here. If there is insufficient bare
diffusion (in particular, if χ0 = 0) this approach to handling advection fails and one must introduce some form
of artificial dissipation in the discrete advection procedure. In the future we will explore more sophisticated
minimally-dissipative semi-Lagrangian advection schemes [67, 68] to handle the case of no bare diffusion.

The filtering of the discrete random velocity field vn required to generate un can be done in one of several
ways. The first approach, which we have employed in several prior works on fluctuating hydrodynamics
[9, 29, 31, 69], is to not perform any filtering. This approach was used when preparing Figs. 1 and 2
and 3. In this case the filtering comes from the truncation of the fluctuating fields on the scale of the
grid, that is, σ ≈ ∆x, where ∆x is the grid spacing. In this case, it is possible to explicitly compute the
diffusion enhancement for the spatially-discretized equations by a discrete analog of (13). This tedious
technical calculation will not be presented here for brevity, and we only quote the result in two dimensions.
We obtain that the effective diffusion coefficient for the average concentration in the discrete setting is

χ2D
eff ≈ χ0 +

kBT

4πη
ln

L

α∆x
, (B1)

where L� ∆x is the length of the square periodic cell (note that for non-square unit cells the diffusion
enhancement is not isotropic). Here the coefficient α = 1.2 was estimated by computing the inverse of the
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discrete Stokes operator numerically. The formula (B1) is the discrete equivalent of (15). In three dimensions,

χ3D
eff ≈ χ0 +

kBT

ηα∆x
, (B2)

where the coefficient α can be obtained numerically.
An alternative approach to filtering of the velocity was used when preparing Fig. 4. Namely, in order to

directly compare to the Lagrangian algorithm described next, we convolved the discrete advection velocity
with an isotropic Gaussian filter using a multiplication in Fourier space. In this case the width (standard
deviation) of the Gaussian filter σ needs to be substantially larger than the grid spacing ∆x, for example,
σ & 6∆x, in order to obtain a discrete velocity field that is smooth on the scale of the grid. In such
over-resolved simulations one is essentially solving the continuum equations to a very good approximation.
Note, however, that the resulting algorithm is not efficient because of the large grid sizes required to resolve
the continuum fields with the grid. In practice, if additional filtering of the discrete velocity field is desired,
it is much more efficient to perform local partial filtering of the random velocity field using local averaging
over two or three neighboring grid cells, as described in the Appendix of Ref. [31]. Such filtering would
change the coefficient α in (B1,B2) but not affect the form of the discrete Stokes-Einstein relation.

In order to provide a rough estimate of the relative efficiency of simulating the overdamped dynamics (5) ver-
sus simulating the original dynamics (1,4), let us compare the typical time step size for the Eulerian algorithm
developed above with the method developed in Ref. [29]. Both methods use an FFT-based implicit fluid solver,
which dominates the computational cost, so the cost per time step is similar in the two algorithms. Resolving
the inertial fluid dynamics requires a time step on the order of ∆tν ∼ ∆x2/ν, the time it takes for momentum
to diffuse across one grid cell. The algorithm summarized above is limited in time step size primarily by the
advective Courant number v∆t/∆x < 1, where v is a typical magnitude of the advective velocity obtained by
solving the steady Stokes equations with random forcing. We can estimate v by noting that it is the fictitious
or effective velocity of a particle diffusing with coefficient χ, v ∼

√
χ∆t/∆t ∼

√
χ/∆t. This gives a time

step limit ∆t ∼ (∆x2/χ) = Sc ∆tν , which is nothing more than the time it takes a tracer to diffuse across a
grid cell. This shows that simulating the limiting dynamics is O (Sc) times faster than the original dynamics.

2. Lagrangian Algorithm

In the absence of bare dissipation, a faithful discretization of the overdamped equations must resort
to a Lagrangian discretization of advection. Here we present an algorithm that solves the limiting
Lagrangian equation (16) with all truncation errors strictly controlled to be within numerical roundoff
(more precisely, to twelve decimal places when using double-precision arithmetic) and without artificial
dissipation. Such high numerical accuracy is possible by using a spectral representation of the random
flow and the non-uniform fast Fourier transform [51]. Note however that the Lagrangian algorithm is
limited in efficiency by the number of tracers required to represent the finest scales, which grows with
time, as shown in Fig. 5. For finite collection of tracers, e.g., a finite number of colloids in a periodic
box, the Lagrangian algorithm below can be seen as an alternative to more standard Brownian/Stokesian
Dynamics that naturally accounts for the effects of confinement [70]. Notably, the algorithm below scales
perfectly linearly in the number of particles. This has enabled us to do simulations with several million
particles. Note that we do not include the effect of gravity (buoyancy) in the Lagrangian algorithm.

The random velocity is smoothed by convolution with an isotropic Gaussian filter σ, which can be
performed as multiplication in Fourier space. The tracer Lagrangian dynamics (16) can be efficiently
simulated using the following Lagrangian algorithm with time step size ∆t, which updates the tracer
positions from time step n to time step n+ 1 (denoted here by superscript):

1. Generate a random advection velocity by solving the steady Stokes equations with random forcing
in the Fourier domain

ikπ̂
n+ 1

2
k = −ηk2v̂nk +

√
2η kBT

∆t
ik · Ŵ

n

k

k · v̂nk = 0,

using a grid of Nd wave-indices k consistent with the periodicity. Note that different wave-indices
decouple in the Fourier basis and the above procedure requires only solving a linear system of d
equations for every wavenumber.

2. Filter the velocity with a Gaussian filter (in Fourier space),
ŵn

k = σ̂kv̂
n
k.
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Note the Fourier transform σ̂ of a Gaussian filter σ with standard deviation σ is also a Gaussian with
standard deviation σ−1.

3. Use the non-uniform FFT [51] to evaluate the velocity at the locations of the tracers, un = wn (qn).
4. Move the tracers using a forward Euler-Maruyama step,

q̃n+1 = qn + un∆t+
√

2χ0∆tW n
q ,

whereW n
q are i.i.d. standard Gaussian variates generated independently for each particle at each time step.

5. For periodic domains there is no difference between different stochastic interpretations of the Lagrangian
equations, and one can set qn+1 = q̃n+1. For non-periodic domains, one has to perform a corrector step,

qn+1 = qn +
(
un + ũn+1

) ∆t

2
+
√

2χ0∆tW n
q ,

where ũn+1 = wn
(
q̃n+1

)
.

The key to obtaining near roundoff accuracy is the choice of the number of Fourier modes used to represent
the fluctuating velocity field. Assume that the Gaussian filter σ̂ decays to roundoff tolerance above a
wavenumber k0 ≈ 3σ. This means that the Stokes equations only need to be solved for wavenumbers smaller
than k0. In order to also be able to perform the non-uniform FFT with twelve digits of accuracy using a
uniform FFT as in the algorithm we use [51], it is necessary to include redundant modes and set the cutoff
wavenumber to 2k0. This determines the size of the grid used to perform the forward and inverse FFT
transforms to N > 2k0L/π, which can be a large number but the algorithm is easily parallelized on GPUs.

For a sufficiently small time step ∆t � σ2/χeff, the Lagrangian algorithm described here solves the
continuum equations to high accuracy, and the diffusion enhancement can be determined from the
continuum formula (13) in Fourier space. For a Gaussian filter of standard deviation σ in two dimensions
the relation (B1) with ∆x = σ holds, where we numerically estimate the coefficient α ≈ 5.5.
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