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Giant Fluctuations
Diffusion in Liquids

There is a common belief that diffusion in all sorts of materials,
including gases, liquids and solids, is described by random walks and
Fick’s law for the concentration of labeled (tracer) particles c (r, t),

Orc =V - [x(r)Vc],

where x = 0 is a diffusion tensor.

But there is well-known hints that the microscopic origin of Fickian
diffusion is different in liquids from that in gases or solids, and that
thermal velocity fluctuations play a key role [1, 2].

The Stokes-Einstein relation connects mass diffusion to
momentum diffusion (viscosity 7)),

_ keT

= 6mwon’

where o is a molecular diameter.
Macroscopic diffusive fluxes in liquids are known to be accompanied
by long-ranged nonequilibrium giant concentration fluctuations [3].
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Giant Fluctuations

Giant Nonequilibrium Fluctuations

+3%

+2%

Space

+1%

0%

-1%

Earth

-2%

Relative varation of shadowgraph intensity

-3%

Os 500 s 1000s 2000s

Experimental results by A. Vailati et al. from a microgravity environment
[3] showing the enhancement of concentration fluctuations in space (box
scale is bmm on the side, 1Imm thick).

Fluctuations become macrosopically large at macroscopic scales!
They cannot be neglected as a microscopic phenomenon.
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Giant Fluctuations

Fractal Fronts in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface due to the effect of thermal fluctuations.
These giant fluctuations have been studied experimentally [3] and with
hard-disk molecular dynamics [4].
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Diffusion without Hydrodynamics
Uncorrelated Brownian Walkers

@ Consider diffusion of colloidal particles immersed in a viscous liquid;
assume the particles are uncorrelated Brownian walkers.

@ The positions of the N particles Q (t) = {q; (t),...,qy ()} follow
the lto SDEs )
dQ = (2x)? dB, (1)
where B(t) is a collection of independent Brownian motions.
@ We are interested in describing a spatially coarse-grained fluctuating
empirical concentration field,

N

ce(rit) = d¢(a;(t) —r), (2)

i=1

where J¢ is a smoothing kernel with support ~ ¢ that converges to a
delta function as ¢ — 0.
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Diffusion without Hydrodynamics
“Coarse Graining” ala Dean

o Consider first the limit & — 0, which corresponds to no coarse
graining (no loss of information except particle numbering).

@ Dean obtained an (ill-defined!) SPDE for c (r,t) = > d(q; (t) —r),
using straightforward Ito calculus and properties of the Dirac delta
function,

dic = xV2c+ V- (V2xe W), (3)
where W, (r, t) denotes a spatio-temporal white-noise vector field.

@ This is a typical example of a fluctuating hydrodynamics equation,
which is deceptively simply, yet extremely subtle from both a physical
and mathematical perspective.

@ The term \/2xc W, can be thought of as a stochastic mass flux, in
addition to the “deterministic” Fickian flux yVc.
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Diffusion with Hydrodynamics
Brownian Dynamics

@ The Ito equations of Brownian Dynamics (BD) for the (correlated)
positions of the N particles Q (t) = {q; (t),...,qn (t)} are

dQ = —M (9QU) dt + (2ks TM)2 dB + kg T (9q - M) dt,  (4)

where B(t) is a collection of independent Brownian motions, U (Q) is
a conservative interaction potential.

@ Here M(Q) = 0 is a symmetric positive semidefinite mobility block
matrix for the collection of particles, and introduces correlations
among the walkers.

@ The Fokker-Planck equation (FPE) for the probability density P (Q, t)
corresponding to (4) is

and is in detailed-balance (i.e., is time reversible) with respect to the
Gibbs-Boltzmann distribution ~ exp (—U(Q)/kgT).
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Diffusion with Hydrodynamics
Hydrodynamic “Interactions”

@ Let's start from the (low-density) pairwise approximation

R i Yy 1
V(ij): My(a;q) = /((:qu) = kBTZ¢k (a7) ¢« (a))
k

@ Here R (r,r') is a symmetric positive-definite kernel that is
divergence-free, and can be diagonalized in an (infinite dimensional)
set of divergence-free basis functions ¢, (r).

@ For the Rotne-Prager-Yamakawa tensor mobility,

R, ¢V)=R({¥ —r" =),

30’+0'3)| 30 3a3>r®r rs 9

4r 23 4r 2,3) 27 o

R(r) =X ' 9rr 3rr r®rr ' (6)
1- )i () 22r <2

3za> +<320> 2 r=20

where o is the radius of the colloidal particles and the diffusion
coefficient y follows the Stokes-Einstein formula x = kg T/ (67no).
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Diffusion with Hydrodynamics
Eulerian Overdamped Dynamics

@ We can use standard calculus to obtain an equation for the empirical
or instantaneous concentration

N
c(rt)=> d(a;(t)—r). (7)
i—1

@ Following a similar procedure to Dean now, we get the stochastic
advection diffusion equation [5]
Orc =V - [x(r)Vc] —w- Ve, (8)

where the diffusion coefficient x (r) = R (r,r) and the random
velocity field w (r, t) has covariance

(w(r,ty@w(r,t") =2R (r,r)6 (t — ). (9)

@ This equation is now well-defined mathematically since linear.
One can use the same equation (8) to evolve a probability distribution
for finding a particle at a given location.
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The Physics of Diffusion
Hydrodynamic Correlation Tensor

@ A rather general formula for the hydrodynamic correlation tensor can
be obtained by following a fluctuating hydrodynamics formalism [2]:

My (a.9) =" [ (0,¥) G (7.r") o7 () a'ar”

where the smoothing kernel o filters out features at scales below a
cutoff scale o (e.g., colloid size).
@ The effective diffusion coefficient is
ks T
x(N=R(@rrN=""[& (r,V)G (¢, ¥") o™ (r,¢") dr'dr”, (10)
n .
where G is the Green's function for steady Stokes flow.
@ For an appropriate filter o, this gives Stokes-Einstein formula for
the diffusion coefficient in a finite domain of length L,

kpT [(4m)tint if d =2
T \6ro) (1 29) ifd=3.
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The Physics of Diffusion
Importance of Hydrodynamics

Oic =V - [x(r)Vc]—w-Vc

e For hydrodynamically uncorrelated walkers, M;; = §;; (kg T)*1 xl,
the noise is very different, V - (v/2xc W.).

@ In both cases (correlated and uncorrelated walkers) the mean obeys
Fick's law but the fluctuations are completely different.

@ For uncorrelated walkers, out of equilibrium the fluctuations develop
very weak long-ranged correlations.

@ For hydrodynamically correlated walkers, out of equilibrium the
fluctuations exhibit very strong “giant” fluctuations with a power-law
spectrum truncated only by gravity or finite-size effects. These giant
fluctuations have been confirmed experimentally and in MD
simulations.
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The Physics of Diffusion

Is Diffusion Dissipative?
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Figure: The decay of a single-mode initial condition, as obtained from a
Lagrangian simulation with 20482 tracers.
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The Physics of Diffusion
Conclusions

@ Fluctuations are not just a microscopic phenomenon: giant
fluctuations can reach macroscopic dimensions or certainly dimensions
much larger than molecular.

@ Fluctuating hydrodynamics and Brownian dynamics can both
describe these effects and give the same equations in the end.

o Diffusion in liquids is strongly affected and in fact dominated by
advection by velocity fluctuations.

@ This kind of “eddy” diffusion is very different from Fickian diffusion: it
is conservative rather than dissipative!

@ At macroscopic scales, however, one expects to recover Fick’s
deterministic law, in three, but not in two dimensions (7).
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Complex Fluid Mixtures
Chemically-Reactive Mixtures

@ The species density equations for a mixture of Ng species are given by

0
a(ﬁ’s)‘*‘v (pSV+F) = mSQSv (S: 17NS) (11)

where F are diffusive fluxes and €25 are chemical production rates.

@ The mass fluxes take the form, excluding barodiffusion and
thermodiffusion and with no hydrodynamic correlations,

2
xIVx + \/;XéWF (r, t)] ,

where n is the number density, and xs is the mole fraction of
species s.

F = pDiag {ps/p}

o I is a matrix of thermodynamic factors, and x is an SPD
diffusion tensor that can be related to the Maxwell-Stefan
diffusion coefficients and Green-Kubo type formulas.
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Complex Fluid Mixtures
Chemistry

o Consider a system with Ny elementary reactions with reaction r
N Ns
R, Z vim, = Z v Ms
s=1 s=1

The stoichiometric coefficients are vs, = v; — v} and mass
conservation requires that Zs vsem, = 0.
@ Define the dimensionless chemical affinity

— E +n -0
Ar - Vsrls — Z Vsr s,
s s

where fis = msus/kg T is the dimensionless chemical potential per
particle.
@ Also define the thermodynamic driving force

A N . +0 i
A, = exp E 1/:;#5 — exp g Vg fls | = H eVsrts _ H gVsr s
s s s s
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Complex Fluid Mixtures
Chemistry

@ The mass production due to chemistry can take one of two forms [6]:

P .
Q. = zr: Ve (TrkBT> A, (deterministic LMA) (12)

PN
<2Trlf‘3T%:> ’ OZ(I" t) |0g—mean eq. (LME)

+ZVsr
.

@ The LME follows the correct structure of Langevin equations
(GENERIC structure of Ottinger/Grmela). Is time-reversible (obeys
detailed balance) at thermodynamic equilibrium wrt to the Einstein
distribution.

@ The CLE follows from a truncation of the Kramers-Moyal expansion
at second order. No true thermodynamic equilibrium since it assumes
one-way reactions.

@ Which one is correct? Neither!
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Complex Fluid Mixtures
Poisson Noise

@ The reason neither LME nor CLE are correct is that there is no
S(P)DE that can correctly describe both the short-time (typical) and
long-time (rare event) behavior of the master equation.

@ This is related to the fact that the central limit theorem and
large-deviation theory are not consistent with the same nonlinear
S(P)DE.

@ One must either use the Chemical Master Equation (CME) with
SSA/Gillespie (microscopic rather than macroscopic), or

@ One can use Poisson noise instead of Gaussian noise using tau
leaping.

This can be thought of as a coarse-graining in time of the original
jump process described by the CME.

@ Quite generally the appropriateness of assuming Gaussian white noise
for the stochastic fluxes is questionable.
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Complex Fluid Mixtures
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