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Giant Fluctuations

Diffusion in Liquids

There is a common belief that diffusion in all sorts of materials,
including gases, liquids and solids, is described by random walks and
Fick’s law for the concentration of labeled (tracer) particles c (r, t),

∂tc = ∇ · [χ (r)∇c] ,

where χ � 0 is a diffusion tensor.
But there is well-known hints that the microscopic origin of Fickian
diffusion is different in liquids from that in gases or solids, and that
thermal velocity fluctuations play a key role [1, 2].
The Stokes-Einstein relation connects mass diffusion to
momentum diffusion (viscosity η),

χ ≈ kBT

6πση
,

where σ is a molecular diameter.
Macroscopic diffusive fluxes in liquids are known to be accompanied
by long-ranged nonequilibrium giant concentration fluctuations [3].
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Giant Fluctuations

Giant Nonequilibrium Fluctuations

Experimental results by A. Vailati et al. from a microgravity environment
[3] showing the enhancement of concentration fluctuations in space (box
scale is 5mm on the side, 1mm thick).
Fluctuations become macrosopically large at macroscopic scales!
They cannot be neglected as a microscopic phenomenon.
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Giant Fluctuations

Fractal Fronts in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface due to the effect of thermal fluctuations.
These giant fluctuations have been studied experimentally [3] and with
hard-disk molecular dynamics [4].
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Diffusion without Hydrodynamics

Uncorrelated Brownian Walkers

Consider diffusion of colloidal particles immersed in a viscous liquid;
assume the particles are uncorrelated Brownian walkers.

The positions of the N particles Q (t) = {q1 (t) , . . . ,qN (t)} follow
the Ito SDEs

dQ = (2χ)
1
2 dB, (1)

where B(t) is a collection of independent Brownian motions.

We are interested in describing a spatially coarse-grained fluctuating
empirical concentration field,

cξ (r, t) =
N∑
i=1

δξ (qi (t)− r) , (2)

where δξ is a smoothing kernel with support ∼ ξ that converges to a
delta function as ξ → 0.
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Diffusion without Hydrodynamics

“Coarse Graining” ala Dean

Consider first the limit ξ → 0, which corresponds to no coarse
graining (no loss of information except particle numbering).

Dean obtained an (ill-defined!) SPDE for c (r, t) =
∑
δ (qi (t)− r),

using straightforward Ito calculus and properties of the Dirac delta
function,

∂tc = χ∇2c + ∇ ·
(√

2χcWc

)
, (3)

where Wc (r, t) denotes a spatio-temporal white-noise vector field.

This is a typical example of a fluctuating hydrodynamics equation,
which is deceptively simply, yet extremely subtle from both a physical
and mathematical perspective.

The term
√

2χcWc can be thought of as a stochastic mass flux, in
addition to the “deterministic” Fickian flux χ∇c.
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Diffusion with Hydrodynamics

Brownian Dynamics

The Ito equations of Brownian Dynamics (BD) for the (correlated)
positions of the N particles Q (t) = {q1 (t) , . . . ,qN (t)} are

dQ = −M (∂QU) dt + (2kBT M)
1
2 dB + kBT (∂Q ·M) dt, (4)

where B(t) is a collection of independent Brownian motions, U (Q) is
a conservative interaction potential.

Here M (Q) � 0 is a symmetric positive semidefinite mobility block
matrix for the collection of particles, and introduces correlations
among the walkers.

The Fokker-Planck equation (FPE) for the probability density P (Q, t)
corresponding to (4) is

∂P

∂t
=

∂

∂Q
·
{

M

[
∂U

∂Q
P + (kBT )

∂P

∂Q

]}
, (5)

and is in detailed-balance (i.e., is time reversible) with respect to the
Gibbs-Boltzmann distribution ∼ exp (−U(Q)/kBT ).
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Diffusion with Hydrodynamics

Hydrodynamic “Interactions”

Let’s start from the (low-density) pairwise approximation

∀ (i , j) : Mij

(
qi ,qj

)
=

R
(
qi ,qj

)
kBT

=
1

kBT

∑
k

φk (qi )φk

(
qj

)
,

Here R (r, r′) is a symmetric positive-definite kernel that is
divergence-free, and can be diagonalized in an (infinite dimensional)
set of divergence-free basis functions φk (r).

For the Rotne-Prager-Yamakawa tensor mobility,
R(r′, r′′) ≡R(r′ − r′′ ≡ r),

R(r) = χ


(

3σ

4r
+
σ3

2r3

)
I +

(
3σ

4r
− 3σ3

2r3

)
r ⊗ r

r2
, r > 2σ(

1− 9r

32σ

)
I +

(
3r

32σ

)
r ⊗ r

r2
, r ≤ 2σ

(6)

where σ is the radius of the colloidal particles and the diffusion
coefficient χ follows the Stokes-Einstein formula χ = kBT/ (6πησ).
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Diffusion with Hydrodynamics

Eulerian Overdamped Dynamics

We can use standard calculus to obtain an equation for the empirical
or instantaneous concentration

c (r, t) =
N∑
i=1

δ (qi (t)− r) . (7)

Following a similar procedure to Dean now, we get the stochastic
advection diffusion equation [5]

∂tc = ∇ · [χ (r)∇c]−w ·∇c, (8)

where the diffusion coefficient χ (r) = R (r, r) and the random
velocity field w (r, t) has covariance

〈w (r, t)⊗w
(
r′, t ′

)
〉 = 2R

(
r, r′
)
δ
(
t − t ′

)
. (9)

This equation is now well-defined mathematically since linear.
One can use the same equation (8) to evolve a probability distribution
for finding a particle at a given location.
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The Physics of Diffusion

Hydrodynamic Correlation Tensor

A rather general formula for the hydrodynamic correlation tensor can
be obtained by following a fluctuating hydrodynamics formalism [2]:

Mij

(
qi ,qj

)
= η−1

∫
σ
(
qi , r

′)G
(
r′, r′′

)
σT
(
qj , r

′′) dr′dr′′,

where the smoothing kernel σ filters out features at scales below a
cutoff scale σ (e.g., colloid size).

The effective diffusion coefficient is

χ (r) = R (r, r) =
kBT

η

∫
σ
(
r, r′
)

G
(
r′, r′′

)
σT
(
r, r′′

)
dr′dr′′, (10)

where G is the Green’s function for steady Stokes flow.

For an appropriate filter σ, this gives Stokes-Einstein formula for
the diffusion coefficient in a finite domain of length L,

χ =
kBT

η

{
(4π)−1 ln L

σ if d = 2

(6πσ)−1
(

1−
√

2
2

σ
L

)
if d = 3.
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The Physics of Diffusion

Importance of Hydrodynamics

∂tc = ∇ · [χ (r)∇c]−w ·∇c

For hydrodynamically uncorrelated walkers, Mij = δij (kBT )−1 χI,
the noise is very different, ∇ ·

(√
2χcWc

)
.

In both cases (correlated and uncorrelated walkers) the mean obeys
Fick’s law but the fluctuations are completely different.

For uncorrelated walkers, out of equilibrium the fluctuations develop
very weak long-ranged correlations.

For hydrodynamically correlated walkers, out of equilibrium the
fluctuations exhibit very strong “giant” fluctuations with a power-law
spectrum truncated only by gravity or finite-size effects. These giant
fluctuations have been confirmed experimentally and in MD
simulations.
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The Physics of Diffusion

Is Diffusion Dissipative?
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Figure: The decay of a single-mode initial condition, as obtained from a
Lagrangian simulation with 20482 tracers.
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The Physics of Diffusion

Conclusions

Fluctuations are not just a microscopic phenomenon: giant
fluctuations can reach macroscopic dimensions or certainly dimensions
much larger than molecular.

Fluctuating hydrodynamics and Brownian dynamics can both
describe these effects and give the same equations in the end.

Diffusion in liquids is strongly affected and in fact dominated by
advection by velocity fluctuations.

This kind of “eddy” diffusion is very different from Fickian diffusion: it
is conservative rather than dissipative!

At macroscopic scales, however, one expects to recover Fick’s
deterministic law, in three, but not in two dimensions (?).
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Complex Fluid Mixtures

Chemically-Reactive Mixtures

The species density equations for a mixture of NS species are given by

∂

∂t
(ρs) +∇ · (ρsv + F) = msΩs , (s = 1, . . .NS) (11)

where F are diffusive fluxes and Ωs are chemical production rates.

The mass fluxes take the form, excluding barodiffusion and
thermodiffusion and with no hydrodynamic correlations,

F = ρDiag {ρs/ρ}

[
χΓ∇x +

√
2

n
χ

1
2WF (r, t)

]
,

where n is the number density, and xs is the mole fraction of
species s.

Γ is a matrix of thermodynamic factors, and χ is an SPD
diffusion tensor that can be related to the Maxwell-Stefan
diffusion coefficients and Green-Kubo type formulas.
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Complex Fluid Mixtures

Chemistry

Consider a system with NR elementary reactions with reaction r

Rr :

NS∑
s=1

ν+
srMs �

NS∑
s=1

ν−srMs

The stoichiometric coefficients are νsr = ν−sr − ν+
sr and mass

conservation requires that
∑

s νsrmr = 0.

Define the dimensionless chemical affinity

Ar =
∑
s

ν+
sr µ̂s −

∑
s

ν−sr µ̂s ,

where µ̂s = msµs/kBT is the dimensionless chemical potential per
particle.

Also define the thermodynamic driving force

Âr = exp

(∑
s

ν+
sr µ̂s

)
− exp

(∑
s

ν−sr µ̂s

)
=
∏
s

eν
+
sr µ̂s −

∏
s

eν
−
sr µ̂s
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Complex Fluid Mixtures

Chemistry

The mass production due to chemistry can take one of two forms [6]:

Ωs =
∑
r

νsr

(
P

τrkBT

)
Âr (deterministic LMA) (12)

+
∑
r

νsr


(

2 P
τrkBT

Âr
Ar

) 1
2 �Z (r, t) log-mean eq. (LME)(

P
τrkBT

∏
s e

ν+
sr µ̂s

) 1
2 Z (r, t) chemical Langevin eq. (CLE)

The LME follows the correct structure of Langevin equations
(GENERIC structure of Ottinger/Grmela). Is time-reversible (obeys
detailed balance) at thermodynamic equilibrium wrt to the Einstein
distribution.

The CLE follows from a truncation of the Kramers-Moyal expansion
at second order. No true thermodynamic equilibrium since it assumes
one-way reactions.

Which one is correct? Neither!
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Complex Fluid Mixtures

Poisson Noise

The reason neither LME nor CLE are correct is that there is no
S(P)DE that can correctly describe both the short-time (typical) and
long-time (rare event) behavior of the master equation.

This is related to the fact that the central limit theorem and
large-deviation theory are not consistent with the same nonlinear
S(P)DE.

One must either use the Chemical Master Equation (CME) with
SSA/Gillespie (microscopic rather than macroscopic), or

One can use Poisson noise instead of Gaussian noise using tau
leaping.
This can be thought of as a coarse-graining in time of the original
jump process described by the CME.

Quite generally the appropriateness of assuming Gaussian white noise
for the stochastic fluxes is questionable.
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Complex Fluid Mixtures
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