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Fluctuating Hydrodynamics

Micro- and nano-hydrodynamics

Flows of fluids (gases and liquids) through micro- (µm) and
nano-scale (nm) structures has become technologically important,
e.g., micro-fluidics, microelectromechanical systems (MEMS).

Biologically-relevant flows also occur at micro- and nano- scales.

Essential distinguishing feature from “ordinary” CFD: thermal
fluctuations!

Another important feature of small-scale flows, not discussed here, is
surface/boundary effects (e.g., slip in the contact line problem).
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Fluctuating Hydrodynamics

Stochastic Conservation Laws

Formally, we consider the continuum field of conserved quantities
for a two-fluid mixture,

U(r, t) =


ρ
j
e
ρ1

 =


ρ
ρv

cvρT + ρv 2/2
ρc

 ,
where the primitive variables are density ρ, velocity v, temperature T ,
and concentration c.

Here we consider Langevin-type models, following Landau and
Lifshitz:
Postulate a white-noise stochastic flux term in the usual
Navier-Stokes-Fourier equations with magnitude determined from the
fluctuation-dissipation balance condition.
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Fluctuating Hydrodynamics

The SPDEs of Fluctuating Hydrodynamics

Due to the microscopic conservation of mass, momentum and
energy,

∂tU = −∇ · [F(U)−Z] = −∇ · [FH(U)− FD(∇U)− BW] ,

where the flux is broken into a hyperbolic, diffusive, and a
stochastic flux.

Here W is spatio-temporal white noise, i.e., a Gaussian random field
with covariance〈

W(r, t)W?(r′, t ′)
〉

= I δ(t − t ′)δ(r − r′).

A simple example is the one-dimensional stochastic Burgers
equation

ut = −c [u (1− u)]x + µuxx +
√

2µu (1− u)Wx .
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Fluctuating Hydrodynamics

Compressible Fluctuating Navier-Stokes

Neglecting viscous heating, the equations of compressible fluctuating
hydrodynamics in primitive variables are

Dtρ =− ρ (∇ · v)

ρ (Dtv) =−∇P + ∇ ·
(
η∇v + Σ

)
ρcv (DtT ) =− P (∇ · v) + ∇ · (κ∇T + Ξ)

ρ (Dtc) =∇ · [ρχ (∇c) + Ψ] , (1)

where Dt� = ∂t� + v ·∇ (�) is the advective derivative,

∇v = (∇v + ∇vT )− 2 (∇ · v) I/3,

the heat capacity cv , and the pressure is P = ρ (kBT/m).
The transport coefficients are the viscosity η, ν = η/ρ, thermal
conductivity κ, and the mass diffusion coefficient χ.
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Fluctuating Hydrodynamics

Incompressible Fluctuating Navier-Stokes

Ignoring density and temperature fluctuations, equations of
incompressible isothermal fluctuating hydrodynamics are

∂tv =− v ·∇v −∇π + ν∇2v + ρ−1 (∇ ·Σ) (2)

∇ · v =0

∂tc =− v ·∇c + χ∇2c + ρ−1 (∇ ·Ψ) , (3)

Note that because of incompressibility:

v ·∇c = ∇ · (cv) and v ·∇v = ∇ ·
(
vvT

)
.
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Fluctuating Hydrodynamics

Stochastic Forcing

The fluctuation-dissipation balance principle determines

Σ =
√

2ηkBT W(v)

Ψ =
√

2mχρ c(1− c)W(c),

where the W ’s denote white random tensor/vector fields.

Adding stochastic fluxes to the non-linear NS equations produces
ill-behaved stochastic PDEs (solution is too irregular).

For now, we will simply linearize the equations around a steady state
U0 that is in thermodynamic equilibrium (no dissipative fluxes),

U = 〈U〉+ δU = U0 + δU.
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Continuum Fluctuation-Dissipation Balance

Linear Additive-Noise SPDEs

Consider the stochastic advection-diffusion equation for a scalar
filed, e.g., concentration, at equilibrium:

ct = −v ·∇c +χ∇2c +∇ ·
(√

2χW
)

= ∇ ·
[
−cv + χ∇c +

√
2χW

]
ct = D

[
−cv + χGc +

√
2χW

]
,

where v denotes the mean (reference) background flow field,
∇ · v = 0.

In a more general setting, we want to solve:

∂tU = AU −LU +
√

2L ·W ,

where the advection A and the viscous friction operator L are
constant linear operators.
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Continuum Fluctuation-Dissipation Balance

Structure factor

The solution is a generalized process, whose equilibrium distribution
(long-time limit, invariant measure) is a stationary Gaussian process.

This Gaussian process is fully characterized by the covariance

C(t) =
〈
U(t ′)U?(t ′ + t)

〉
.

Of particular importance is the covariance of a snapshot of the
fluctuating field,

S(r, r′) = C(t = 0) = 〈UU?〉 � 0,

which depends on the basis used to represent U .

In Fourier space the equilibrium distribution is characterized by the
static spectrum or static structure factor,

S(k, k′) =
〈
Û(k)Û

?
(k′)
〉
.
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Continuum Fluctuation-Dissipation Balance

Fluctuation-Dissipation Balance

∂tU = AU −LU +
√

2L ·W

It is important that advection by an incompressible velocity field is
skew-adjoint

A? = −A,

while the viscous dissipation is self-adjoint,

L = −DG = DD? � 0.

Using Ito calculus it is easy to write an equation for dS = 0:

LS + SL? = LS + SL = 2Lδ(r − r′)

leading to the continuum fluctuation-dissipation balance condition

S(r, r′) = Iδ
(
r − r′

)
and S(k, k′) = Iδ

(
k− k′

)
.
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Continuum Fluctuation-Dissipation Balance

Dynamics of Fluctuations

A snapshot of the fluctuating field U looks like white noise in space.

We consider the fluctuation-dissipation balance the most
important property of the continuum equations:
The equations of fluctuating hydrodynamics preserve the
Gibbs-Boltzmann distribution.

The temporal evolution is, however, not white in time.

In the Fourier domain, the dynamic structure factor is

S(k, ω) =
〈
Û(k′, ω′)Û

?
(k, ω)

〉
= δ

(
k− k′

)
δ
(
ω − ω′

)[
2
(
Â− L̂− iω

)−1 (
L̂
)(
−Â− L̂ + iω

)−1
]
,

which follows directly from the space-time (k, ω) Fourier transform of
the SPDE.
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Discrete Fluctuation-Dissipation Balance

Stochastic Advection-Diffusion Equation

Consider the prototype stochastic advection-diffusion equation in
one dimension

ct = −vcx + χcxx +
√

2χWx .

Simple conservative (finite-volume) scheme:

cn+1
j = cn

j − α
(
cn
j+1 − cn

j−1

)
+ β

(
cn
j−1 − 2cn

j + cn
j+1

)
+
√

2β∆x−1/2
(

W n
j+ 1

2
−W n

j− 1
2

)
Dimensionless (CFL) time steps control the stability and the accuracy

α =
v∆t

∆x
and β =

χ∆t

∆x2
=
α

r
.
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Discrete Fluctuation-Dissipation Balance

Finite-Volume Scheme

ct = D
[
−cv + χGc +

√
2χW

]
Generic explicit step of a finite-volume scheme

cn+1 = cn + D
[
(−Vcn + Gcn) ∆t +

√
2∆tWn

]
,

where D is a discrete vector divergence, G is a discrete scalar gradient.

Here Wn is a vector of random normal variates generated
independently at each time step.

The advection operator V ≡ V (v) denotes a discretization of the
advective fluxes.

Note that for implicit schemes the discrete operators will themselves
be functions of ∆t, but not to leading order.
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Discrete Fluctuation-Dissipation Balance

Discrete Fluctuation-Dissipation Balance

The classical PDE concepts of consistency and stability continue to
apply for the mean solution of the SPDE, i.e., the first moment of
the solution.

For these SPDEs, it is natural to define weak convergence based on
the second moments and focus on the equilibrium distribution.

Consider a uniform grid. Grid spacing ∆x is an artificial length scale:
all modes are equally strong at equilibrium.

We want the discrete solution to satisfy disrete
fluctuation-dissipation balance [1]

S(0) = lim
∆t→0

S = lim
∆t→0

〈cc?〉 = I.

”On the Accuracy of Explicit Finite-Volume Schemes for Fluctuating
Hydrodynamics”, by A. Donev, E. Vanden-Eijnden, A. L. Garcia, and J. B. Bell,
CAMCOS, 5(2):149-197, 2010 [arXiv:0906.2425]
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Discrete Fluctuation-Dissipation Balance

Discrete Diffusion

Strict local conservation should be maintained, that is,
D : faces→ cells:

∇·v→ (Dv)i ,j = ∆x−1

(
v

(x)

i+ 1
2
,j
− v

(x)

i− 1
2
,j

)
+∆y−1

(
v

(y)

i ,j+ 1
2

− v
(y)

i ,j− 1
2

)
.

This means that the stochastic fluxes (white noise) W must be
generated on the faces of the grid.

The discrete divergence and gradient operators should be duals,
D? = −G, giving G : cells→ faces:

(∇c)x → (Gc)
(x)

i+ 1
2
,j

= ∆x−1 (ci+1,j − ci ,j) .

This gives the standard discretization for the negative Laplacian
L = −DG, L : cells→ cells:

(Lc)i ,j = −
[
∆x−2 (ci−1,j − 2ci ,j + ci+1,j) + ∆y−2 (ci ,j−1 − 2ci ,j + ci ,j+1)

]
.
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Discrete Fluctuation-Dissipation Balance

Discrete Advection

We assume that the background flow is discretely-divergence free,
Dv = 0. Otherwise it cannot be in equilibrium!

The advection should be constant-preserving,

(DV) 1 = 0.

The mapping V(v) : cells→ faces should be such that advection is
skew-adjoint,

[(DV) c] ·w = −c · [(DV) w] ,

since advection does not dissipate but only transports fluctuations.

Note that artificial viscosity, upwinding, Godunov methods, limiters,
and the like, are all out of consideration!
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Discrete Fluctuation-Dissipation Balance

Skew-Adjoint Advection

The skew-adjointness property has proven useful in turbulence
modeling since skew-symmetric advection conserves kinetic energy
[2].

For uniform grids a very simple construction works:

(cv)x → (Vc)
(x)

i+ 1
2
,j

= v
(x)

i+ 1
2
,j

c̄i+ 1
2
,j .

Simple averaging can be used to interpolate scalars from cells to
faces, for example,

c̄i+ 1
2
,j =

1

2
(ci+1,j + ci ,j) .

If c = 1 is constant, then c̄ = 1 as well, and thus this advection is
constant preserving:

DV1 = Dv = 0
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Discrete Fluctuation-Dissipation Balance

Skew-Adjointness

The advection discretization simplifies because Dv = 0,

(DVc)i ,j =∆x−1

(
v

(x)

i+ 1
2
,j

ci+1,j − v
(x)

i− 1
2
,j

ci−1,j

)
+

∆y−1

(
v

(y)

i ,j+ 1
2

ci ,j+ 1
2
− v

(y)

i ,j− 1
2

ci ,j− 1
2

)
+ ci ,j (Dv)i ,j .

In one dimension, it is easy to show that this form of advection is
skew-adjoint,

(Vc)i = ∆x−1
(

vi+ 1
2
ci+1 − vi− 1

2
ci−1

)
.

All that is needed is to discretize the advection flow field on the
faces of the c grid.

One can use a staggered grid (v lives on faces), or a collocated
(cell-centered) grid (v lives at cell centers).
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Discrete Fluctuation-Dissipation Balance

Compressible Isothermal Equations

ρt =−∇ · (ρv)

(ρc)t = ρct + cρt =∇ ·
[
−c (ρv) + ρχ (∇c) +

√
2χW̃

]
Or the usual ρct =− (ρv)∇c + ∇ ·

[
ρχ (∇c) +

√
2χW̃

]
All scalar fields are discretized in the same manner, let’s just call it
cell-centered.

It is important to use the same advection discretization for all scalars,
since the term cρt ought to cancel −c [∇ · (ρv)].

Notice that the “advection field” is now the background (mean)
momentum field, j = ρv, and it has to be discretely divergence-free

〈∇ · (ρv)〉 = ∇ · 〈ρv〉 = 〈ρ〉t = 0.
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Discrete Fluctuation-Dissipation Balance

Boundary Conditions

Consider Dirichlet or von-Neumann conditions for c at the wall x = 0,

c(x = 0) = 0 or
∂c

∂x
|x=0 = 0.

Advection velocity must be parallel to a wall, so we do not need to
worry about it:

cn+1 = cn + D
[
Gcn∆t +

√
2∆tWn

]
.

We want to keep D the usual conservative difference of facial fluxes.
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Discrete Fluctuation-Dissipation Balance

Staggered Boundary Conditions

The main issue is when the faces of the grid are on the wall, that is,
when W1/2,j is on the boundary itself.

The gradient G is chosen to be consistent with boundary conditions,
for example,

(Gc)1/2,j =

{
0 for von-Neumann

2c1,j/∆x for Dirichlet (c−1,j = −c1,j)

Note that the Laplacian L = −DG is formally only first-order
accurate for Dirichlet, but this is OK.

For Dirichlet conditions D? 6= −G, so the DFDB condition is violated
near the walls, S(0) 6= I.
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Discrete Fluctuation-Dissipation Balance

Boundary Stochastic Stresses

We have to add some correlations between stochastic fluxes on the
faces near the wall.

The generalized discrete fluctuation-dissipation balance condition is

L + L? = 2D〈WW?〉D? = 2DCWD?,

and for periodic systems CW = I worked.

An explicit 1D calculation gives the simple fix for boundaries:

For von Neumann just set W1/2,j = 0 (gives desired conservation!).

For Dirichlet set W1/2,j =
√

2r , where r is a unit normal variate.
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Temporal Integrators

Finite Time Steps

∂tU = −LU +
√

2L ·W

In the linear setting, any temporal discretization is a linear iteration
of the form:

Un+1 = [M (∆t)] Un + [N (∆t)] Wn.

A simple calculation shows that the discrete covariance

S = 〈UU?〉 = S(0) + (∆t) ∆S + O
(
∆t2

)
satisfies the linear system of equations

MSM? − S = −NN?.
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Temporal Integrators

Stochastic Accuracy

The analysis can be done explicitly in Fourier space for periodic
BCs:
One small linear system per wavenumber:

M̂ŜM̂
?
− Ŝ = −N̂N̂

?
.

We want Ŝ(k, ω) to converge to the continuum one for large
wavelengths (k∆x � 1) and small frequencies (ω∆t � 1).

Of course we want to preserve second-order temporal accuracy for the
deterministic case.

But we also want to achieve S(0) = I and ∆S = 0, i.e., second-order
accurate static covariance:

S = I + O
(
∆t2

)
.
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Temporal Integrators

Predictor-Corrector Method

The usual predictor-corrector method works:

U? = Un +
[
(LUn) ∆t +

√
2∆t LW1

]
,

Un+1 =
1

2

{
Un + U? +

[
(LU?) ∆t +

√
2∆t LW2

]}
.

We have a choice whether to take W1 = W2 or use two independent
random numbers per time step.

Formally it is better to take W1 and W2 independent, but in practice
it seems to depend on the equation and method.

In any Runge-Kutta integrator one has choices with the how to
modify the random numbers from stage to stage.

To get stability for small viscosity we need at least three-stage
Runge-Kutta.
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Temporal Integrators

Runge-Kutta (RK3) Method

Adapted a standard TVD three-stage Runge-Kutta temporal
integrator and optimized the stochastic accuracy:

Un+ 1
3 =Un +

[
(LUn) ∆t +

√
2∆t LW1

]
Un+ 2

3 =
3

4
Un +

1

4
Un+ 1

3 +
[(

LUn+ 1
3

)
∆t +

√
2∆t LW2

]
Un+ 2

3 =
1

3
Un +

2

3
Un+ 2

3 +
[(

LUn+ 2
3

)
∆t +

√
2∆t LW3

]
Two random numbers per cell per time step works best for the
stochastic advection-diffusion equation:

W1 =WA −
√

3WB

W2 =WA +
√

3WB

W3 =WB .
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Temporal Integrators

Crank-Nicolson

It turns out that Crank-Nicolson gives perfect covariances for any
time step, S = I:

L1Un+1 = Un +
[
(L2Un) +

√
2∆t LW

]
,

L1 = I− ∆t

2
L and L2 = I +

∆t

2
L.

This is because of the special property:

L2
2 − L2

1 = 2∆t L.

Of course, doing advection semi-implicitly may lead to numerical
difficulties.
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Velocity Equation

Collocated Grid

First consider the simplified velocity equation

vt = −v ·∇v + ν∇2v + ∇ ·
(√

2ηW
)

Observe that each of the velocity components follows the usual
stochastic advection-diffuson equation:

v
(x)
t = D

[
−v (x)v + νGv (x) +

√
2νW(x)

]
,

v
(y)
t = D

[
−v (y)v + νGv (y) +

√
2νW(y)

]
.

In a collocated spatial discretization the velocities (or momenta
densities) are discretized on the same grid as the scalars (density,
concentration), and are advected/diffused in exactly the same way.
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Velocity Equation

Staggered Grid

For a staggered spatial discretization, v (x) lives on its own grid,
shifted from the scalar grid by ∆x/2 along the x axis (work with
Florencio Balboa).

The stresses (fluxes) live on the faces of the shifted grid:

The diagonal components of the stresses live at the cell centers
(i , j).
The off-diagonal components of the stresses live at the nodes of the
grid (i + 1

2 , j + 1
2 ).

This applies to the stochastic stress as well:

Generate two random numbers for each cell center, W
(x)
i ,j and W

(y)
i ,j ,

as well as two random numbers for each node of the grid, W
(x)

i+ 1
2
,j+ 1

2

and W
(y)

i+ 1
2
,j+ 1

2

.
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Velocity Equation

Advection for Staggered Grid

The skew-adjoint advection scheme relies on defining face-centered
advection velocities what are discretely divergence-free.

We can obtain these by faces→ (cells,nodes) interpolation, for
example, to advect v(x) we use averaging:(

v
(x)
x

)
i ,j

=
1

2

(
v

(x)

i− 1
2
,j

+ v
(x)

i+ 1
2
,j

)
(

v
(x)
y

)
i+ 1

2
,j+ 1

2

=
1

2

(
v

(y)

i ,j+ 1
2

+ v
(y)

i+1,j+ 1
2

)
.

It is not hard to verify that this advection field is discretely
divergence-free if v is:(

D(x)v(x)
)
i+ 1

2
,j

=
1

2

[
(Dv)i ,j + (Dv)i+1,j

]
= 0.
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Velocity Equation

Compressible Equations

For compressible flows, the diffusive part of the velocity equation is:

ρvt = ∇ ·
[
η(∇v + ∇vT − 2

3
(∇ · v) I) +

√
2ηkBT W

]
.

The original formulation by Landau-Lifshitz constructed W to be a
traceless symmetric tensor:

〈Wij(r, t)W?
kl(r′, t ′)〉 =

(
δikδjl + δilδjk −

2

3
δijδkl/3

)
δ(t − t ′)δ(r − r′).

This implies that there are correlations between the diagonal
components, and also correlations between the off-diagonal
components.

For a staggered grid, this poses no problem:

The diagonal Wii lives at cell centers, and can be generated to add to
zero (traceless).
The off-diagonal part of W lives at the nodes, and can be generated to
be symmetric.
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Velocity Equation

Collocated Compressible Equations

For a collocated grid, however, there are diagonal and off-diagonal
components on each face of the grid. But we cannot put correlations
between random numbers on different faces!

Instead, we can rewrite the equations as follows:

vt = ν

[
∇2v +

1

3
∇ (∇ · v)

]
+
√

2ν

[
(∇ ·WT ) +

√
1

3
∇WV

]

= ν

(
DTGT +

1

3
GV DV

)
v +
√

2ν

(
DTWT +

√
1

3
GVWV

)
.

We need discrete tensorial divergence and gradient operators
GT = −D?

T , and vectorial divergence and gradient GV = −D?
V .

Use the same MAC discretization as before for GT : cells→ faces,
giving the usual discrete Laplacian.

Use Fortin discretization for DV : cells→corners, as in approximate
projection methods.
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Velocity Equation

Collocated Compressible Code

We have designed a numerical scheme for the LLNS equations that
satisfies discrete fluctuation-dissipation balance and has good
temporal accuracy.

We have developed a parallel three dimensional two species
compressible fluctuating hydrodynamics code (LBL).

Spontaneous Rayleigh-Taylor mixing of two gases
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Incompressible Fluctuating Hydrodynamics

Incompressible Flows

For isothermal incompressible flows, ignoring advection, the
fluctuating velocities follow

∂tv = Pw = P
[
ν∇2v + ∇ ·

(√
2νW

)]
= −P

[
Lv +

√
2LW

]
〈
W(r, t)W?(r′, t ′)

〉
= I δ(t − t ′)δ(r − r′).

Here P is the orthogonal projection onto the space of
divergence-free velocity fields, and it self-adjoint and idempotent,
P2 = P ,

P = P? = I− G (DG)−1 D.
This requires solving a Poisson problem

∇2φ = (DG)φ = ∇ ·w,

with von-Neumann conditions at stick walls, where v = 0,

∇φ · n = w · n.
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Incompressible Fluctuating Hydrodynamics

Continuum Fluctuation-Dissipation Balance

The static covariance at equilibrium is determined from

PLS + SLP? = 2PLP? ⇒ S = P

For periodic BCs, in Fourier space,

Ŝ = P̂ = I− k̂k̂
T

showing that the velocity variance is reduced by one degree of
freedom due to the incompressibility constraint:

Trace Ŝ = Trace P̂ = d − 1.

For non-periodic conditions, one must diagonalize the operators in
a suitable basis set (following E and Liu).
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Incompressible Fluctuating Hydrodynamics

Projection Methods

Consider a stochastic projection scheme,

vn+1 = P
{

[I + L ∆t] vn +
√

2∆t LW
}
.

Here the iteration matrices are

M = P [I + L ∆t] and N = P
√

2∆t L.

Recall that S is the solution to the DFDB condition:

MSM? − S = −NN?,

which can be expanded in powers of ∆t.
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Incompressible Fluctuating Hydrodynamics

Spatial Discretization

The difficulty is the discretization of the projection operator P:

Exact (idempotent): P0 = I− G (DG)−1 D or

Approximate (non-idempotent): P̃ = I− GL−1D

For cell-centered discretizations, there are significant disadvantages
to using exact projection due to subgrid decoupling (multigrid, mesh
refinement, Low Mach).

We define discrete fluctuation-dissipation balance to be

S = P0 + O (∆t) ,

which at least gives the right velocity variance,

Trace P̂0 = Trace P̂ = d − 1

.
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Incompressible Fluctuating Hydrodynamics

Approximate Projection

Observe that P0P̃ = P̃P0 = P0 for the Almgren projection [3].

It turns out that one has to use exact projections at least once:

vn+1 = P̃ [I + L ∆t] vn + P0

(√
2∆t LW

)
.

To see this, plug S = P0 + O (∆t) into DFDB condition:

O
(
∆t0

)
: P̃P0P̃− P0 = P0 − P0 = 0

O
(
∆t1

)
: P0L?P̃ + P̃LP0 = 2P0LP0

For periodic systems, all operators commute, and the O (∆t) terms
work out, but not obvious for non-periodic systems.
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Incompressible Fluctuating Hydrodynamics

Exact Projection on Staggered Grid

For exact projections, there is no problem, and in fact simple
predictor-corrector (with two projections per step) would give the
desired S = P0 + O

(
∆t2

)
.

Exact MAC projection is easy to do on a staggered grid.

We (with Thomas Fai, Boyce Griffith, Charles Peskin) are now
implementing staggered grid schemes for incompressible fluctuating
hydrodynamics.

For non-periodic systems there are well-known problems with
boundary conditions for projection methods in the deterministic
context.

Getting second-order deterministic accuracy with one (exact)
projection per time step, without messing up DFDB, seems harder.
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Incompressible Fluctuating Hydrodynamics

Stokes Solver on Staggered Grid

One can avoid projection entirely and directly do a Stokes solver, as
implemented in IBAMR code.

The method of Boyce Griffith [4], neglecting advection, solves the
semi-implicit problem:[ (

I− ∆t
2 L
)

G∆t
−D∆t 0

] [
vn+1

φ

]
=

[ (
I + ∆t

2 L
)

vn +
√

2∆t LW
φ

]
A standard projection method is used as a preconditioner for this
solver.

To get second order accuracy for (weak) advection, one can use two
iterations ala predictor-corrector, or perhaps Adams-Bashforth.

A. Donev (CIMS) Fluct. Hydro March 2011 41 / 46



Future Work

Low-Mach Number Equations

Eliminate acoustics from the full LLNS system using low Mach
number asymptotics [5], P = P0 + π,

PEOS(ρ, c,T ) = P0 = const.

Formally treating the white noise as a regular forcing gives the low
Mach fluctuating hydrodynamics equations:

Dtρ =− ρ∇ · v
ρ (Dtv) =−∇π + η∇2v + ∇ ·Σ

ρcp (DtT ) =µ∇2T + ∇ · Ξ,
∇ · v =α (ρcp)−1 (µ∇2T + ∇ · Ξ),

where α is the thermal expansion coefficient, and π is the
non-thermodynamic pressure π.

One ought to do derive this more carefully though since there may be
missing terms.
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Future Work

Isothermal Low-Mach Equations

For an isothermal miscible mixture of two fluids, the low Mach
approximation leads to a non-homogeneous constraint on the
velocity divergence,

ρ∇ · v = −β∇ · [ρχ∇c + Ψ] ,

where β = ρ−1 (∂ρ/∂c)P0,T0
is the solutal expansion coefficient.

The incompressible approximation ∇ · v = 0 is only applicable to
isothermal mixtures of nearly identical (β ≈ 0) or immiscible fluids
(χ = 0).

To model some experiments on giant fluctuations we need to handle
this case.

John Bell et al. have developed collocated low Mach
projection-type schemes.

There seem to be few low Mach staggered schemes out there...
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Future Work

Stochastic Accuracy Out of Equilibrium

Consider the simplest non-equilibrium model, where there is an
imposed concentration gradient:

(δc)t + v ·∇c0 = −χ∇2 (δc) +
√

2χkBT (∇ ·Wc)

ρvt = η∇2v −∇π +
√

2ηkBT (∇ ·Wv) and ∇ · v = 0

Solve in Fourier space to obtain the static structure factors between
velocity and concentration fluctuations:

Ŝc,v‖ (k) = 〈(δ̂c)(v̂?
‖ )〉 ∼ −

(
k2
⊥k−4

)
‖∇c0‖ ,

which is a power-law of the wavenumber k.

At equilibrium we wanted the discrete spectra to be white, i.e.,
independent of k, to mimic the continuum. What about non-white
spectra?
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Future Work

Future Directions

Develop staggered schemes for compressible fluctuating
hydrodynamics.

Develop numerical schemes for incompressible and Low-Mach
Number fluctuating hydrodynamics.

AMR: DFDB balance at coarse-fine mesh interfaces for
compressible and incompressible collocated and staggered schemes.

(Discrete) fluctuation-dissipation in systems out of equilibrium.

Direct fluid-structure coupling between fluctuating hydrodynamics
and microstructure (stochastic immersed boundary method [6]).

Ultimately we desire an Adaptive Mesh and Algorithm
Refinement (AMAR) framework that couples a particle model
(micro), with compressible fluctuating Navier-Stokes (meso), and
incompressible or low Mach fluctuating hydro (macro).
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