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Motivation

Colloidal Gelation

Figure : Colloidal gelation simulated using Brownian Dynamics with
Hydrodynamic Interactions (from work of James Swan, MIT Chemical
Engineering).A. Donev (CIMS) FBEM 5/2017 2 / 40



Motivation

Non-Spherical Colloids

Figure : (Left) Cross-linked spheres from Kraft et al. (Right) Lithographed
boomerangs in a microchannel from Chakrabarty et al.
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Motivation

Motivation

Part 1 on Brownian Dynamics with Hydrodynamic Interactions:
How to efficiently capture the effect of long-ranged
hydrodynamic correlations (interactions) in the Brownian
motion of 106 spherical colloids?

Because we want to simulate huge numbers of particles we have to
sacrifice accuracy and use a very low-resolution (far-field)
approximation for the hydrodynamics: “long-ranged hydrodynamic
interactions are sufficient for establishing the gel boundary, structure
and coarsening kinetics observed in experiments...”

Note: The problem of generating Gaussian variates with a covariance
specified by a long-ranged kernel has many other applications as
well, e.g., in data science, not discussed here.

Part 2 on a Fluctuating Boundary Element Method (FBEM):
How to accurately (yet efficiently) model the Brownian motion
of complex-shaped colloids including near-field hydrodynamics?
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Brownian Dynamics

Brownian Dynamics with Hydrodynamic Interactions
(BD-HI)

The Ito equations of Brownian Dynamics (BD) for the (correlated)
positions of the N particles Q (t) = {q1 (t) , . . . ,qN (t)} are

dQ = M · F (Q) dt + (2kBT M)
1
2 dB + kBT (∂Q ·M) dt, (1)

where B(t) is a vector of Brownian motions, and F (Q) are forces.
Here M (Q) � 0 is a symmetric positive semidefinite (SPD) mobility
matrix, assumed to have a far-field pairwise approximation

Mij (Q) ≡Mij

(
qi ,qj

)
= R

(
qi − qj

)
.

Here we use the Rotne-Prager-Yamakawa (RPY) kernel:

R (r) =
kBT

6πηa


(

3a

4r
+

a3

2r3

)
I +

(
3a

4r
− 3a3

2r3

)
r ⊗ r

r2
, r > 2a(

1− 9r

32a

)
I +

(
3r

32a

)
r ⊗ r

r2
, r ≤ 2a

where a is the radius of the colloidal particles.
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Brownian Dynamics

Hydrodynamic Correlations

Observe that in the far-field, r � a, the RPY tensor becomes the
long-ranged Oseen tensor

R (r � a)→ 1

8πr

(
I +

r ⊗ r

r2

)
. (2)

To solve the equations of BD numerically (not the subject of this
talk), one needs two fast routines:

A fast matrix-vector product to compute MF.
This can be done using Fast Multipole Methods (FMM) [1]
(Greengard) in an unbounded domain or using the Spectral Ewald
(SE) Method [2] (Tornberg) for periodic domains.

A fast method to compute M
1
2 W, where W is a vector of Gaussian

random variables. More precisely, we want to sample Gaussian random
variables with mean zero and covariance M.
First part of this talk: How to compute M

1
2 W using a fast method.
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Brownian Dynamics

Existing Approaches

The product M
1
2 W is usually computed iteratively by repeated

multiplication of a vector by M.

Traditionally chemical engineers have used an approach by Fixman
based on a Chebyshev polynomial approximation to the square root.

Recently, Chow and Saad have developed Krylov subspace Lanczos
methods [3] for multiplying a vector with the principal square root of
M = UΛUT ,

M
1
2 W ≡ UΛ

1
2 UT W ≈ ‖W‖2 VmH

1/2
m e1,

where Vm is an orthonormal basis for the Krylov subspace of order m,
and Hm = VT

mMVm is a tridiagonal matrix, both computed in the
course of a Lanczos iteration through m matrix-vector multiplies.

The Krylov method is vastly superior, but, because of the long-ranged
nature of the Oseen kernel the number of iterations is found to grow
with the number of particles, leading to an overall complexity of at
least O

(
N4/3

)
.
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Spectral Ewald approach to Brownian Dynamics

Near-Far field decomposition

Work done by Andrew Fiore and James Swan (MIT Chemical
Engineering), with help from Florencio Balboa (Courant).
We don’t really need to multiply any particular matrix “square root”
by W, rather, we want to generate a Gaussian random vector δU with
specified covariance, 〈(δU) (δU)T 〉 = M.
First key idea: Use (Spectral) Ewald approach to decompose
M = M(w) + M(r) into a far-field wave-space part M(w) and a
near-field real space part M(r), then in law,

M
1
2 W

d
=
(

M(w)
) 1

2
W(w) +

(
M(r)

) 1
2

W(r),

if both M(w) and M(r) are SPD and 〈W(w)W(r)〉 = 0.
For the real-space part, use the Krylov Lanczos method to compute(
M(r)

) 1
2 W(r) since M(r) is sparse and well-conditioned.

Second key idea: Compute M(w)F and
(
M(w)

) 1
2 W(w) in Fourier

space (using FFTs) as in fluctuating hydrodynamics.
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Spectral Ewald approach to Brownian Dynamics

Spectral RPY

We need to find an Ewald-like decomposition where both the real
space and wave space kernels decay exponentially and are SPD.

The most physically-relevant and simplest definition of RPY is the
integral representation:

R (r1, r2) = R (r1 − r2) =

∫
δa

(
r1 − r′

)
G
(
r′, r′′

)
δa

(
r2 − r′′

)
dr′dr′′,

where δa denotes a surface delta function on a sphere of radius a.

In other O(N) methods for BD other regularized delta functions have
been used (Peskin’s in fluctuating immersed boundary methods and
Gaussians in the fluctuating force coupling method).

Here the Green’s function for periodic Stokes flow is given by

G (x, y) =
1

µV

∑
k6=0

e ik·(x−y) 1

k2

(
I− k̂k̂

)
.

The surface delta functions in Fourier space give us a sinc factor.
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Spectral Ewald approach to Brownian Dynamics

Positively Split Ewald RPY

This gives us a previously-unappreciated simple spectral
representation of the periodic RPY tensor:

R (r) =
1

µV

∑
k6=0

e ik·r 1

k2
sinc2 (ka)

(
I− k̂k̂

)
. (3)

We can now directly apply Hasimoto’s Ewald-like decomposition [2]
to RPY to get the desired Positively Split Ewald (PSE) RPY

tensor, R = R(w)
ξ + R(r)

ξ ,

R(w)
ξ (r) =

1

µV

∑
k6=0

e ik·r sinc2 (ka)

k2
H(k, ξ)

(
I− k̂k̂

)
, (4)

where the Hasimoto splitting function is determined by the splitting
parameter ξ,

H(k, ξ) =

(
1 +

k2

4ξ2

)
e−k2/4ξ2

. (5)
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Spectral Ewald approach to Brownian Dynamics

Real-space part

Converting back to real space we get

R(r)
ξ (r) = F (r , ξ) (I− r̂r̂) + G (r , ξ) r̂r̂, (6)

where and F (r , ξ) and G (r , ξ) are scalar functions that both decay
exponentially in r2ξ2.
Analytical formulas are complicated but these can easily be tabulated
for fast evaluation.

Diagonal part is well-defined,

M
(r)
ii = R(r) (0) =

1

24π3/2µξa2

(
1− e−4a2ξ2

+ 4π1/2aξ erfc (2aξ)
)

I.

If we choose 0 ≤ H(k, ξ) ≤ 1 (satisfied by Hasimoto but not
Beenakker) we obtain SPD real and wave space parts.
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Spectral Ewald approach to Brownian Dynamics

Conditioning

ξa
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R
)
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N = 5000

Figure : Condition number of M(r) for varying number of particles N.
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Spectral Ewald approach to Brownian Dynamics

Fourier-space part

The wave space component of the mobility can be applied efficiently
using FFTs as

M(w) = D−1BD =
(

D†B1/2
)(

D†B1/2
)†
, (7)

where D is the non-uniform FFT (NUFFT) of Greengard/Lee [2] and

B1/2 = Diag

(
1

µV

sinc2 (ka)

k2
H(k, ξ)

)1/2

.

This shows that the wave space Brownian displacement can be
calculated with a single call to the NUFFT,(

M(w)
) 1

2
W(w) ≡ D†B1/2W(w). (8)

This is basically equivalent to fluctuating hydrodynamics (putting
stochastic forcing on fluid rather than on particles) as in existing
methods, but now corrected in the near field.
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Spectral Ewald approach to Brownian Dynamics

Efficiency

ξa

10 -1 10 0

P
T

P
S
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10 6 ξ3

ξ−3

N =   8000
N =  64000
N = 512000

Figure : Particle timesteps per second (PTPS) for a random suspension of hard
spheres (φ = 0.1) implemented as a plugin to the HOOMD GPU framework.

Red=MF, blue=M
1
2 W using PSE, black=M

1
2 W without PSE.
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Boundary Integral Formulation

Brownian Motion via Fluctuating Hydrodynamics

We consider a rigid body Ω immersed in a fluctuating fluid. In the fluid
domain, we have the fluctuating Stokes equation

ρ∂tv = −∇ · σ = ∇π − η∇2v − (2kBTη)
1
2 ∇ ·Z

∇ · v = 0,

with periodic BCs, and the fluid stress tensor

σ = −πI + η
(
∇v + ∇T v

)
+ (2kBTη)

1
2 Z (9)

consists of the usual viscous stress as well as a stochastic stress
modeled by a symmetric white-noise tensor Z (r, t), i.e., a Gaussian
random field with mean zero and covariance

〈Zij (r, t)Zkl (r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).
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Boundary Integral Formulation

Fluid-Body Coupling

At the fluid-body interface the no-slip boundary condition is assumed to
apply,

v (q) = u + ω × q for all q ∈ ∂Ω, (10)

with the force and torque balance∫
∂Ω
λ (q) dq = F and

∫
∂Ω

[q× λ (q)] dq = τ , (11)

where λ (q) is the normal component of the stress on the outside of the
surface of the body, i.e., the traction

λ (q) = σ · n (q) .

To model activity we can add active slip ŭ due to active boundary layers,
without any difficulties (not done here).
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Boundary Integral Formulation

Resolved Brownian Dynamics

Consider a suspension of Nb rigid bodies with configuration
Q = {q, θ} consisting of positions and orientations (described
using quaternions) immersed in a Stokes fluid.

By eliminating the fluid from the equations in the overdamped limit
(infinite Schmidt number) we get the equations of Brownian
Dynamics

dQ(t)

dt
= U = NF + (2kBT N )

1
2 W (t) + (kBT ) ∂Q ·N ,

where N (Q) is the body mobility matrix,
U = {u, ω} collects the linear and angular velocities
F (Q) = {f, τ} collects the applied forces and torques.

How to compute (the action of) N and N
1
2 and simulate the

Brownian motion of the bodies?
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Boundary Integral Formulation

First Kind Boundary Integral Formulation

Let us first ignore the Brownian motion and compute NF.

We can write down an equivalent first-kind boundary integral
equation for the surface traction λ (q ∈ ∂Ω),

v (q) = u + ω × q =

∫
∂Ω

G
(
q,q′

)
λ
(
q′
)
dq′ for all q ∈ ∂Ω, (12)

along with the force and torque balance condition (11).
Here G is the periodic Stokeslet (Oseen tensor).

Note that one can also use a completed second-kind or a mixed
first-second kind formulation for improved conditioning.
We only know how to generate Brownian terms efficiently in the
first-kind formulation!

In 2D only the second-kind layer is non-singular and can be discretized
spectrally using a simple trapezoidal rule (but nearby bodies interact
with a singular 1/r kernel, worse than the log r for first kind).
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Boundary Integral Formulation

Suspensions of Rigid Bodies

Assume that the surface of the body is discretized in some manner
and the single-layer operator is computed using some quadrature,∫

∂Ω
G
(
q,q′

)
λ
(
q′
)
dq′ ≡Mλ→Mλ,

where M is an SPD operator given by a kernel that decays like r−1,
discretized as an SPD mobility matrix M.
In matrix/operator notation the mobility problem is a saddle-point
linear system for the tractions λ and rigid-body motion U,[

M −K
−KT 0

] [
λ
U

]
=

[
0
−F

]
, (13)

where K is a simple geometric matrix.
Solve formally using Schur complements to get

U = NF =
(
KTM−1K

)−1
F.

How do we generate a Gaussian random vector with covariance N ?
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Boundary Integral Formulation

Brownian motion

Assume that we knew how to generate a Gaussian random vector with
covariance M, i.e., to generate a random “slip” velocity ŭ with
covariance given by the (periodic) Stokeslet, 〈ŭŭT 〉 = M.

Key idea: Solve the mobility problem with random slip ŭ,[
M −K
−KT 0

] [
λ
U

]
= −

[
ŭ = (2kBT )1/2 M

1
2 W

F

]
, (14)

U = NF + (2kBT )
1
2 NKTM−1M

1
2 W = NF + (2kBT )

1
2 N

1
2 W.

which defines a N
1
2 with the correct covariance:

N
1
2

(
N

1
2

)†
= NKTM−1M

1
2

(
M

1
2

)†
M−1KN

= N
(
KTM−1K

)
N = NN−1N = N . (15)

This works for a number of different discretizations including our
rigid multiblob or immersed boundary methods [4].
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Boundary Integral Formulation

Block-Diagonal Preconditioner

We have had great success with the indefinite block-diagonal
preconditioner [4]

P =

[
M̃ −K
−KT 0

]
(16)

where we neglect all hydrodynamic interactions between distinct
bodies in the preconditioner,

M̃
(pq)

= δpqM(pp). (17)

This takes care of the inherent ill-conditioning of first-kind integral
methods so we don’t really need second-kind formulations, except for
unreasonably tight error tolerances (highly-resolved problems).

For the mobility problem, we find a constant number of GMRES
iterations independent of the number of particles, growing only
weakly with density.
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Fluctuating Boundary Integral method

Fluctuating Boundary Integral method

The FBEM method is the core of Bill Bao’s Ph.D. thesis (May
2017), with help from Manas Rachh, Leslie Greengard, and Eric
Keaveny.

This proof-of-concept algorithm/implementation is in 2D only, but
the basic ideas can be carried over to 3D in principle (but with many
technical difficulties that need to be overcome!).

First, we follow the Spectral Ewald method of Lindbo and Tornberg
[2] and apply the same Hasimoto splitting of the Stokeslet into
far-field and near-field pieces,

G = G(w)
ξ + G(r)

ξ ,

with the same formulas as for RPY but now without the (regularizing)
sinc factors,

G(w)
ξ (x, y) =

1

µV

∑
k6=0

e ik·(x−y)H(k, ξ)

k2

(
I− k̂k̂

)
.
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Fluctuating Boundary Integral method

Boundary element discretization

Recall that (Mλ)(q) ≡
∫
∂Ω G (q,q′)λ (q′) dq′.

This splitting of G induces a corresponding splitting of the mobility
operator where both pieces are SPD

M = M(w)
ξ + M(r)

ξ .

Observe that the wave-space kernel G(w) is smooth and regular, so
that in 2D we can discretize M(w) with a trapezoidal rule with
spectral accuracy,

M
(w)
ij = G(w)

ξ (ri , rj ) .

Both M(w) and
(

M(w)
) 1

2
can be applied efficiently in Fourier space

using the FFT, just as for the RPY kernel in the first part of the talk.
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Fluctuating Boundary Integral method

Singular quadrature

Because of the lack of the RPY regularization, here G(r)
ξ is not

smooth and it is singular just like the Stokeslet (Oseen tensor), i.e.,
as log r in 2D and r−1 in 3D.

A higher-order discretization of the singular integrals against G(r)
ξ in

2D can be obtained by using Alpert quadrature,

M(r) = M
(r)
trap + M

(r)
Alpert,

where
(

M
(r)
trap

)
ij

= G(r)
ξ (ri , rj ) for i 6= j is a trapezoidal rule for

off-diagonal entries, and M
(r)
Alpert is a block-diagonal banded

correction to obtain singular corrections to the trapezoidal rule.

The question now is whether M(r) is SPD and whether we can

compute
(

M(r)
) 1

2
W(r) efficiently.
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Fluctuating Boundary Integral method

Near-field part of random slip

In general M
(r)
Alpert is neither symmetric nor positive semidefinite and

so M(r) is not SPD strictly speaking.

Nevertheless, we find that symmetrizing M
(r)
Alpert preserves the order of

accuracy of Alpert quadrature, and that the Krylov method for

computing
(

M(r)
) 1

2
W(r) is rather insensitive to any small negative

eigenvalues of M(r).

The Lanczos method converges in a modest number of iterations if
a block-diagonal preconditioner [3] neglecting hydrodynamic
interactions among bodies is used.

Note that for rigid bodies the preconditioner can be obtained by
pre-computing the eigenvalue decomposition of M(r) for each
body (modest-size matrices).
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Fluctuating Boundary Integral method

Numerical Tests
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Figure : Random configurations of 100 disks with packing ratio φ = 0.25 (low
density) and φ = 0.5 (moderately high density).
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Fluctuating Boundary Integral method

Accuracy

32 64 128
Num. pts. per body

10 -14

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

R
el
a
ti
v
e
er
ro
r
in

U
=

N
F

Area fraction φ = 0.25

1st-kind, 4th-order
1st-kind, 8th-order
2nd-kind

32 64 128
Num. pts. per body

10 -11

10 -9

10 -7

10 -5

10 -3

R
el
a
ti
v
e
er
ro
r
in

U
=

N
F

Area fraction φ = 0.5

1st-kind, 4th-order
1st-kind, 8th-order
2nd-kind

Figure : Accuracy of 1st- and 2nd-kind (spectral in 2D!) mobility solvers for dilute
and dense hard-disk suspensions. While the 2nd kind gives spectral accuracy and
converges faster with number of DOFs, the first-kind is more accurate for low
resolutions especially at higher densities (but what about 3D?).
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Fluctuating Boundary Integral method

Convergence and robustness (2D specific!)
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Figure : We expect much better scaling in 3D due to faster decay of Oseen tensor!
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Fluctuating Boundary Integral method

Efficiency and Scaling
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Figure : Optimal splitting parameters and linear scaling.
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Temporal Integration

Brownian Dynamics using FBEM

dQ(t)

dt
= U = NF + (2kBT N )

1
2 W (t) + (kBT ) ∂Q ·N

We can use a stochastic Adams-Bashforth method [5],

Qn+1 = Qn + ∆t

(
3

2
NnFn − 1

2
Nn−1Fn−1

)
+
√

2kBT∆t(Nn)
1
2 Wn

+ ∆t
kBT

δ

[
N

(
Qn +

δ

2
W̃

n
)

W̃
n
−N

(
Qn − δ

2
W̃

n
)

W̃
n
]
.

The red terms can be computed using the FBEM method.

The magenta terms (here δ → 0 is a numerical parameter) are a
random finite difference (RFD) technique that we have developed
over the past few years [5].

This method is expensive because it requires 4 GMRES solves per
time step.
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Temporal Integration

Stochastic Drift via RFD
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Figure : Equilibrium distributions of θ of a 4-fold starfish diffusing in a periodic
domain. (Left) EM with RFD (correct!). (Right) EM without RFD (wrong).
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Temporal Integration

Multi-Body Test
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Figure : U(q1, θ1,q2, θ2) = ks

2 (|q1 − q2| − ls)2 + kθ

2 (θ1 − π
4 )2 + kθ

2 (θ2 − π
2 )2
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Temporal Integration

Random Traction Euler-Maruyuama

One can make more efficient temporal integrators (work by Brennan
Sprinkle and Florencio Balboa) that are more accurate and require
less GMRES solves per time step, for example, the following Euler
scheme:

1 Solve a mobility problem with a random force+torque:[
M −K
−KT 0

]n [
λRFD

URFD

]
=

[
0

−W̃

]
. (18)

2 Compute random finite differences:

FRFD =
kBT

δ

(
KT

(
Qn + δW̃

)
− (Kn)T

)
λRFD

ŭRFD =
kBT

δ

(
M
(

Qn + δW̃
)
−Mn

)
λRFD+

− kBT

δ

(
K
(

Qn + δW̃
)
−Kn

)
URFD .
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Temporal Integration

Random Traction EM contd.

1 Compute correlated random slip:

ŭn =

(
2kBT

∆t

)1/2

(Mn)
1
2 Wn

2 Solve the saddle-point system:[
M −K
−KT 0

]n [
λn

Un

]
= −

[
ŭn + ŭRFD

Fn − FRFD

]
. (19)

3 Move the particles (rotate for orientation)

Qn+1 = Qn + ∆t Un

.
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Random Slip Trapezoidal Scheme

One can make more efficient temporal integrators (work by Brennan
Sprinkle and Florencio Balboa) that are more accurate and require
less GMRES solves per time step, for example, the following
trapezoidal scheme:

1 Solve a mobility problem with an uncorrelated random slip:[
M −K
−KT 0

]n [
λRFD

URFD

]
=

[
−W̃ ∈ Range (Mn)

0

]
. (20)

2 Compute random finite differences:

FRFD =
kBT

δ

(
KT

(
Qn + δURFD

)
− (Kn)T

)
W̃

ŭRFD =
kBT

δ

(
M
(
Qn + δURFD

)
−Mn

)
W̃
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Temporal Integration

Random Slip Trapezoidal Scheme contd.

1 Compute correlated random slip:

ŭn =

(
2kBT

∆t

)1/2

(Mn)
1
2 Wn

2 Take a predictor FBEM step:[
M −K
−KT 0

]n [
λp

Up

]
= −

[
ŭn

Fn

]
. (21)

3 Compute predicted Qp = Qn + ∆t Un.

4 Take a trapezoidal corrector FBEM step:[
M −K
−KT 0

]p [
λc

Uc

]
= −

[
ŭn + 2ŭRFD

Fp − 2FRFD

]
. (22)

5 Complete the update, Qn+1 = Qn + ∆t
2 (Up + Uc).

A. Donev (CIMS) FBEM 5/2017 36 / 40



Temporal Integration

Rigid Multiblob Models

Figure : Blob or “raspberry”models of a spherical colloid.

The rigid body is discretized through a number of spherical“beads”or
“blobs” which interact via the Rotne-Prager-Yamakawa tensor.

The mathematics is the same as in FBEM, except that M is now
given by the RPY mobility, which is equivalent to a (smartly!)
regularized first-kind boundary integral formulation [4].
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Example: Confined Boomerang Suspension

Figure : Quasi-periodic suspension of sedimented colloidal boomerangs using slip
trapezoidal scheme and rigid multiblobs (Brennan Sprinkle).
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Conclusions

Ewald (Hasimoto) splitting can be used to accelerate both
deterministic and stochastic colloidal simulations in periodic domains.

Key is to ensure that both the near-field and far-field are
(essentially) SPD so one piece of the noise is generated using FFTs
and the other using an iterative method.

Using these principles we have constructed a linear-scaling
fluctuating boundary element method.

Specialized temporal integrators employing random finite
differences are required to do BD correctly and efficiently.

The far-field can be done in non-periodic but finite domains using
a discrete Stokes solver and fluctuating hydrodynamics.

Can a similar idea be used with grid-free fast multipole
methods?

A. Donev (CIMS) FBEM 5/2017 39 / 40



Temporal Integration

References

Zhi Liang, Zydrunas Gimbutas, Leslie Greengard, Jingfang Huang, and Shidong Jiang.

A fast multipole method for the rotne–prager–yamakawa tensor and its applications.
Journal of Computational Physics, 234:133–139, 2013.

Dag Lindbo and Anna-Karin Tornberg.

Spectrally accurate fast summation for periodic stokes potentials.
Journal of Computational Physics, 229(23):8994–9010, 2010.

Edmond Chow and Yousef Saad.

Preconditioned krylov subspace methods for sampling multivariate gaussian distributions.
SIAM Journal on Scientific Computing, 36(2):A588–A608, 2014.

F. Balboa Usabiaga, B. Kallemov, B. Delmotte, A. P. S. Bhalla, B. E. Griffith, and A. Donev.

Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach.
Communications in Applied Mathematics and Computational Science, 11(2):217–296, 2016.
Software available at https://github.com/stochasticHydroTools/RigidMultiblobsWall.

Florencio Balboa Usabiaga, Blaise Delmotte, and Aleksandar Donev.

Brownian dynamics of confined suspensions of active microrollers.
J. Chem. Phys., 146(13):134104, 2017.
Software available at https://github.com/stochasticHydroTools/RigidMultiblobsWall.

A. Donev (CIMS) FBEM 5/2017 40 / 40

https://github.com/stochasticHydroTools/RigidMultiblobsWall
https://github.com/stochasticHydroTools/RigidMultiblobsWall

	Motivation
	Brownian Dynamics
	Spectral Ewald approach to Brownian Dynamics
	Boundary Integral Formulation
	Fluctuating Boundary Integral method
	Temporal Integration

