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Fluid-Particle Coupling

Bent Active Nanorods

Figure: From the Courant Applied Math Lab of Zhang and Shelley [1]
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Thermal Fluctuation Flips

QuickTime
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Blob/Bead Models

Figure: Blob or “raspberry”models of: a spherical colloid, and a lysozyme [2].
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Immersed Rigid Bodies

In the immersed boundary method we extend the fluid velocity
everywhere in the domain,

ρ∂tv + ∇π = η∇2v −
∫

Ω
λ (q) δ (r − q) dq + ∇ ·

(√
2ηkBT W

)
∇ · v = 0 everywhere

me u̇ = F +

∫
Ω
λ (q) dq

Ieω̇ = τ +

∫
Ω

[q× λ (q)] dq

v (q, t) = u + q× ω

=

∫
v (r, t) δ (r − q) dr for all q ∈ Ω,

where the induced fluid-body force [3] λ (q) is a Lagrange
multiplier enforcing the final no-slip condition (rigidity).
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Fluid-Particle Coupling

Body Mobility Matrix

Ignoring fluctuations, for viscous-dominated flow we can switch to
the steady Stokes equation.

For a suspension of rigid bodies define the body mobility matrix N ,

[U , Ω]T = N [F , T ]T ,

where the left-hand side collects the linear and angular velocities,
and the right hand side collects the applied forces and torques.

The Brownian dynamics of the rigid bodies is given by the
overdamped Langevin equation[

U
Ω

]
= N

[
F
T

]
+ (2kBTN )

1
2 ∇ �W .

Problem: How to compute N and N
1
2 and simulate the

Brownian motion of the bodies?
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Fluid-Particle Coupling

Immersed-Boundary Method

Figure: Flow past a rigid cylinder computed using our rigid-body
immersed-boundary method at Re = 20. The cylinder is discretized using 121
markers/blobs.
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Fluid-Particle Coupling

Blob Model

The rigid body is discretized through a number of “markers” or
“blobs” [4] with positions Q = {q1, . . . ,qN}.
Take an Immersed Boundary Method (IBM) approach and describe
the fluid-blob interaction using a localized smooth kernel δa(∆r) with
compact support of size a (regularized delta function).

Our methods:

Work for the steady Stokes regime (Re = 0) as well as finite Reynolds
numbers because there is no time splitting.
Strictly enforce the rigidity constraint.
Ensure fluctuation-dissipation balance even in the presence of
nontrivial boundary conditions.
Involve no Green’s functions, but rather, use a finite-volume
staggered-grid fluid solver to include hydrodynamics.
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Fluid-Particle Coupling

Rigid-Body Immersed-Boundary Method

Rigidly-constrained Stokes linear system

∇π − η∇2v = −
∑

λiδa (qi − r) +
√

2ηkBT ∇ ·W

∇ · v = 0 (Lagrange multiplier is π)∑
i

λi = F (Lagrange multiplier is u) (1)∑
qi × λi = τ (Lagrange multiplier is ω),∫

δa (qi − r) v (r, t) dr = ui + ωi × qi + slip (Multiplier is λi )

where Λ = {λ1, . . . ,λN} are the unknown rigidity forces.

1 Specified kinematics (e.g., swimming object): Unknowns are v, π and
Λ, while F and τ are outputs (easier).

2 Free bodies (e.g., colloidal suspension): Unknowns are v, π and Λ, u
and ω, while F and τ are inputs (harder).
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Suspensions of Rigid Bodies

[U , Ω]T = N [F , T ]T ,

The many-body mobility matrix N takes into account higher-order
hydrodynamic interactions,

N =
(
KM−1K?

)−1
,

where the blob mobility matrix M is defined by

Mij = η−1

∫
δa(qi − r)G(r, r′)δa(qj − r′) drdr′ (2)

where G is the Green’s function for the Stokes problem (Oseen tensor
for infinite domain), and K is a simple geometric matrix, defined via

K? [U,Ω]T = U + Ω×Q.
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Fluid-Particle Coupling

Numerical Method

The difficulty is in the numerical method for solving the
rigidity-constrained Stokes problem: large saddle-point system.

We use an iterative method based on a Schur complement in which
we approximate the blob mobility matrix analytically relying on near
translational-invariance of the Peskin IB method [5].

Fast direct solvers (related to FMMs) are required to approximately
compute the action of M−1.

This works for confined systems, non-spherical particles,
finite-Reynolds numbers and even active particles.
Can also be extended to semi-rigid structures (e.g., bead-link
polymer chains).
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