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Introduction

Non-Spherical Colloids near Boundaries

Figure: (Left) Cross-linked spheres; Kraft et al. [1]. (Right) Lithographed
boomerangs; Chakrabarty et al. [2].
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Introduction

Bent Active Nanorods

Figure: From the Courant Applied Math Lab of Zhang and Shelley [3]
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Introduction

Thermal Fluctuation Flips

QuickTime
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Introduction

Steady Stokes Flow (Re→ 0)

Consider a suspension of Nb rigid bodies with positions
Q =

{
%1, . . . ,%Nb

}
and orientations Θ = {θ1, . . . ,θNb

}.
We describe orientations using quaternions.

For viscous-dominated flows we can assume steady Stokes flow and
define the body mobility matrix N (Q,Θ),

[U , Ω]T = N [F , T ]T ,

where the left-hand side collects the linear U = {υ1, . . . ,υNb
} and

angular Ω = {ω1, . . . ,ωNb
} velocities,

and the right hand side collects the applied forces
F (Q,Θ) = {F1, . . . ,FNb

} and torques T (Q,Θ) = {τ 1, . . . , τNb
}.
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Introduction

Brownian Motion

The Brownian motion of the rigid bodies is described by the
overdamped Langevin equation, symbolically:[

dQ/dt
dΘ/dt

]
=

[
U
Ω

]
= N

[
F
T

]
+ (2kBTN )

1
2 �W (t) .

How to represent orientations using normalized quaternions and
handle the constraint ‖Θk‖ = 1?

What is the correct thermal drift (i.e., what does � mean)?

How to compute (the action of) N and N
1
2 and simulate the

Brownian motion of the bodies?
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Introduction

Difficulties/Goals

Stochastic drift It is crucial to handle stochastic calculus issues carefully
for overdamped Langevin dynamics. Since diffusion is slow
we also want to be able to take large time step sizes.

Complex shapes We want to stay away from analytical approximations
that only work for spherical particles.

Boundary conditions Whenever observed experimentally there are
microscope slips (glass plates) that modify the
hydrodynamics strongly. It is preferred to use no Green’s
functions but rather work in complex geometry.

Gravity Observe that in all of the examples above there is gravity and
the particles sediment toward the bottom wall, often very
close to the wall (∼ 100nm). This is a general feature of all
active suspensions but this is almost always neglected in
theoretical models.

Many-body Want to be able to scale the algorithms to suspensions of
many particles–nontrivial numerical linear algebra.
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Blob models of complex particles

Blob/Bead Models

Figure: Blob or “raspberry”models of: a spherical colloid, and a lysozyme [4].

The rigid body is discretized through a number of “beads” or “blobs”
with positions Q = {q1, . . . ,qN}.
Describe the fluid-blob interaction using a localized smooth kernel
δa(r) with compact support of size a giving the effective
hydrodynamic radius of the blob (diffuse sphere).

Standard in fluctuating/stochastic immersed boundary methods but
with stiff springs instead of truly rigid agglomerates.
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Blob models of complex particles

Rigidly-Constrained Blobs

∇π − η∇2v =
N∑
i=1

λiδa (qi − r) +
√

2ηkBT ∇ ·W

∇ · v = 0 (Lagrange multiplier is π)

N∑
i=1

λi = F (Lagrange multiplier is υ) (1)

N∑
i=1

(
qi − %0

)
× λi = τ (Lagrange multiplier is ω),

∀i :

∫
δa (qi − r) v (r, t) dr = υ + ω ×

(
qi − %0

)
+ slip (Multiplier is λi )
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Blob models of complex particles

Notation

Composite velocity U = {u1, . . . ,uN} and
rigidity forces Λ = {λ1, . . . ,λN}.
Define the composite local averaging linear operator J (Q) operator,
and the composite spreading linear operator, S (Q) = J ? (Q),

ui = (J v)i =

∫
δa (qi − r) v (r, t) dr

λ (r) = (SΛ) (r) =
N∑
i=1

λiδa (qi − r) .

Denote the (potentially discrete) operators scalar gradient G ≡∇,
vector divergence D = −G? ≡∇·, tensor divergence Dv, and vector
Laplacian L = −DvD?

v ≡∇2.
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Blob models of complex particles

Saddle-Point Problem

Define the geometric matrix K that converts body kinematics to blob
kinematics,

U = KY = K [U ,Ω]T = U + Ω×
(
Q−Q0

)
.

We get the symmetric constrained Stokes saddle-point problem,
−ηL G −S 0
−D 0 0 0
−J 0 0 K

0 0 K? 0




v
π
Λ
Y

 =


∇ ·

(√
2ηkBT W

)
0
0
R

 ,
where Y = [U , Ω]T and R = [F , T ]T , and recall that S = J ?.
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Blob models of complex particles

Mobility Matrix

Eliminate velocity and pressure using the Schur complement[
M −K
−K? 0

] [
Λ
Y

]
=

[
slip

−
(
R + R̃

) ] ,
where R̃ =

√
2ηkBT K?M−1JL−1DvW are the random

(stochastic) forces and torques.

Here the all-important 3N × 3N blob mobility matrix M is

M = JL−1S,

where L−1 = −L−1 + L−1G
(
DL−1G

)−1
DL−1 denotes the Stokes

solution operator.
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Blob models of complex particles

Rigidly-Constrained Blobs

The physical interpretation is simple:

MΛ = KY + slip

K?Λ = R + R̃,

where the unknown Y = [U , Ω]T are the body kinematics,
R = [F , T ]T are the applied forces and torques and R̃ are the
random (stochastic) forces and torques.

Here Λ are the unknown rigidity forces (Lagrange multipliers) acting
on the blobs that needs to be solved for.

The 3N × 3N block mobility matrix M has a simple pairwise
physical interpretation:
The 3× 3 block Mij maps a force on blob j to a velocity of blob i ,

Mij ≈ η−1

∫
δa(qi − r)G(r, r′)δa(qj − r′) drdr′ (2)

where G is the Green’s function (Oseen tensor for unbounded).
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Blob models of complex particles

Suspensions of Rigid Bodies

Taking yet one more Schur complement we get[
U
Ω

]
= N

[
F
T

]
+ (2kBTN )

1
2 W .

The many-body mobility matrix N takes into account rigidity and
higher-order hydrodynamic interactions,

N =
(
K?M−1K

)−1
.

If a fluctuating fluid solver is used it gives an explicit square root of

N
1
2 =

√
2kBT NK?M−1JL−1DvW .

Observe that discrete fluctuation-dissipation balance is
guaranteed,

N
1
2

(
N

1
2

)?
= NK?M−1

(
JL−1LL−1S

)
M−1KN =

NK?M−1MM−1KN = N
(
K?M−1K

)
N = NN−1N = N .
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Blob models of complex particles

How to Approximate the Mobility

If we have a way to approximate the (action of) the mobility matrix
M we can also do this without invoking a fluid solver.

We need to be able to solve

N−1Y =
(
K?M−1K

)
Y = R + R̃,

which we can either do using direct or iterative solvers.

There are different ways to obtain M:

In unbounded domains we can just use the Rotne-Prager-Yamakawa
tensor (RPY) (always SPD!).
In simple geometries such as a single wall we can use a generalization
of RPY [5].
For periodic domains we can use Ewald-type summations or
non-uniform FFTs with a fluctuating spectral fluid solver.
In more general cases we can use a fluctuating FEM/FVM fluid
Stokes solver [6, 7].
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Results

Brownian motion under gravity

We consider the Brownian motion of a single rigid body near a no-slip
boundary.

Temporal integration of the overdamped equations is done using a
random finite different (RFD) approach as described by Steven
Delong.

Number of blobs is small and we have a simple geometry so we use
approximate Blake-Rotne-Prager tensor (Brady & Swan [8])

For this test we use direct linear algebra to compute N and

Cholesky factorization to compute N
1
2 .

We add gravity which makes the equilibrium Gibbs-Boltzmann
distribution be

PGB (Q,Θ) ∼ exp

[
−mgh + Usteric

kBT

]
,

where h is the center-of-mass height and Usteric is a Yukawa-type
repulsion with the wall.
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Results

Quasi-2D Diffusion

Brownian motion is confined near the bottom wall so it quasi-two
dimensional.

Without external forcing the Brownian motion along the wall should
be isotropic diffusive at long time scales.

A naive guess for the effective 2D diffusion coefficient would be
the Gibbs-Boltzmann average of the parallel translational mobility:

D‖ = kBT
〈
µ‖
〉

GB
.

This is in fact a theorem for a sphere because rotational Brownian
motion does not change the mobility.
Is it true for non-spherical particles?
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Results

MSD for a sphere
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Figure: Mean square displacement (MSD) for a non-uniform spherical particle of
unit diameter discretized as an icosahedron of 12 blobs or just a single blob.
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Results

MSD for a tetrahedron
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Figure: MSD for a non-spherical particle (tetrahedron/tetramer).
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Results

The choice of tracking point matters
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Figure: MSD for a non-spherical particle (tetrahedron/tetramer).
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Results

Resolving lubrication forces
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Figure: The drag coefficient for a periodic array of cylinders in steady Stokes flow
for close-packed arrays with inter-particle gap ε, showing the correct asymptotic
ε−

5
2 lubrication force divergence.
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Results
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