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Introduction

Bent Active Nanorods

Figure: From the Courant Applied Math Lab of Zhang and Shelley [1]
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Introduction

Thermal Fluctuation Flips

QuickTime
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Introduction

Steady Stokes Flow (Re→ 0)

Consider a suspension of Nb rigid bodies with positions
Q =

{
%1, . . . ,%Nb

}
and orientations Θ = {θ1, . . . ,θNb

}.
We describe orientations using quaternions but this will not be
important in this talk.

For viscous-dominated flows we can assume steady Stokes flow and
define the body mobility matrix N (Q,Θ),

[U , Ω]T = N [F , T ]T ,

where the left-hand side collects the linear U = {υ1, . . . ,υNb
} and

angular Ω = {ω1, . . . ,ωNb
} velocities,

and the right hand side collects the applied forces
F (Q,Θ) = {F1, . . . ,FNb

} and torques T (Q,Θ) = {τ 1, . . . , τNb
}.
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Introduction

Brownian Motion

The Brownian dynamics of the rigid bodies is given by the
overdamped Langevin equation[

dQ/dt
dΘ/dt

]
=

[
U
Ω

]
= N

[
F
T

]
+ (2kBTN )

1
2 �W (t) .

How to compute (the action of) N and N
1
2 and simulate the

Brownian motion of the bodies?

This talk focuses on the deterministic aspects of computing N and
not on the stochastic aspects; but it all works together!

We will also focus on passive rigid bodies but activity in the form of
active slip or active kinematics can easily be incorporated.
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Introduction

Goals / Preview

Our methods are unique in that they:

Work for the steady Stokes regime (Re = 0) as well as finite
Reynolds numbers because there is no time splitting.

Strictly enforce the rigidity constraint: no penalty parameters.

Require no Green’s functions, but rather, use a finite-volume
staggered-grid fluid solver to include hydrodynamics.

Ensure fluctuation-dissipation balance even in the presence of
nontrivial boundary conditions.
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Semi-continuum rigid-body formulation

Immersed Rigid Body

In the immersed boundary method we extend the fluid velocity
everywhere in the domain,

ρ∂tv + ∇π = η∇2v +

∫
Ω
λ (q) δ (r − q) dq + ∇ ·

(√
2ηkBT W

)
∇ · v = 0 everywhere

me u̇ = F−
∫

Ω
λ (q) dq

Ieω̇ = τ −
∫

Ω

[(
q− %0

)
× λ (q)

]
dq

v (q, t) = υ +
(
q− %0

)
× ω for all q ∈ Ω

=

∫
v (r, t) δ (r − q) dr,

where the induced fluid-body force [2] λ (q) is a Lagrange
multiplier enforcing the final no-slip condition (rigidity).
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Semi-continuum rigid-body formulation

Immersed-Boundary Method

Figure: Flow past a rigid cylinder computed using our rigid-body
immersed-boundary method at Re = 20. The cylinder is discretized using 121
markers/blobs.
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Semi-continuum rigid-body formulation

Blob/Bead Models

Figure: Blob or “raspberry”models of: a spherical colloid, and a lysozyme [3].

The rigid body is discretized through a number of “markers” or
“blobs” [4] with positions Q = {q1, . . . ,qN}.
Composite velocity U = {u1, . . . ,uN} and rigidity forces
Λ = {λ1, . . . ,λN}.
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Semi-continuum rigid-body formulation

Blob Model

Take an Immersed Boundary Method (IBM) approach and describe
the fluid-blob interaction using a localized smooth kernel δa(r) with
compact support of size a (regularized delta function).

Define composite local averaging linear operator J (Q) operator, is
the composite spreading linear operator, S (Q) = J ? (Q),

ui = (J v)i = Jiv =

∫
δa (qi − r) v (r, t) dr

λ (r) = (SΛ) (r) =
N∑
i=1

λiδa (qi − r) =
N∑
i=1

Siλi .

In reality these are sums over grid points and δa is the Peskin 6-pt
kernel.
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Semi-continuum rigid-body formulation

Rigid-Body Immersed-Boundary Method

Rigidly-constrained NS for a neutrally-buoyant body:

ρ∂tv + ∇π = η∇2v +
N∑
i=1

Siλi +
√

2ηkBT ∇ ·W

∇ · v = 0 (Lagrange multiplier is π)∑
i

λi = F (Lagrange multiplier is υ) (1)∑
i

(
qi − %0

)
× λi = τ (Lagrange multiplier is ω),

Jiv = υ + ω ×
(
qi − %0

)
+ slip (Multiplier is λi )

1 Specified kinematics (e.g., swimming object): Unknowns are v, π and
Λ, while F and τ are outputs (easier).

2 Free bodies (e.g., colloidal suspension): Unknowns are v, π and Λ, υ
and ω, while F and τ are inputs (harder).
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Spatio-Temporal Discretization

Fluid Solver

Discretize the fluid equation using the staggered-grid (MAC)
second-order scheme on a uniform Cartesian grid with grid spacing h,
using the discrete gradient G, the discrete divergence D = −G?, and
the velocity Laplacian L.

After temporal discretization of the fluid equations, using backward
Euler or Crank-Nicolson, we get

ρ

∆t
I− ηLv

Denote β = ν∆t/h2 = η∆t/
(
ρh2
)

is the viscous CFL number,
β →∞ for Steady stokes, β = 0 for inviscid, and define

A = ηh−2
(
β−1I− h2L

)
.

The dimensionless matrix β−1I− h2L is essentially a discretization of
an imaginary Helmholtz or screened Poisson equation and the
action of A−1 can be obtained using geometric multigrid.
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Spatio-Temporal Discretization

Saddle-Point Problem

Define the geometric matrix K that converts body kinematics to
marker kinematics,

KY = K [U ,Ω]T = U + Ω×
(
Q−Q0

)
.

After temporal discretization of the constrained NS equations, we get
the free-kinematics constrained Stokes saddle-point problem,

A G −S 0
−D 0 0 0
−J 0 0 K

0 0 K? 0




v
π
Λ
Y

 =


g
0
0
R

 ,
where Y = [U , Ω]T and R = [F , T ]T , and recall that S = J ?.
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Spatio-Temporal Discretization

Fluid Solver

The Stokes saddle-point problem[
A G
−D 0

] [
v
π

]
=

[
SΛ + g

0

]
,

using a GMRES solver with a multigrid-based projection-method
preconditioner [5], to obtain

v = L−1 (SΛ + g) =

=
(

A−1 − A−1G
(
DA−1G

)−1
DA−1

)
(SΛ + g) ,

where the Stokes solution operator L−1 is expressed in terms of the
Schur complement DA−1G of the saddle-point problem.

A. Donev (CIMS) RigidIBM 12/2014 14 / 42



Spatio-Temporal Discretization

Specified Kinematics

Let’s first consider the simpler problem of specified kinematics (e.g.,
swimming fish) and the simpler constrained Stokes saddle-point
problem:  A G −S

−D 0 0
−J 0 0

 v
π
Λ

 =

 g
0
−KY

 . (2)

The solution can expressed in terms of the Schur complement M,

Λ = M−1
(
KY −JL−1g

)
, (3)

The all-important 3N × 3N block mobility matrix M is

M = JL−1S,

and the main computational challenge will be to approximate the
action of M−1 for preconditioning.
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Spatio-Temporal Discretization

Suspensions of Rigid Bodies

The 3× 3 block Mij = JiL−1Sj has a simple physical
interpretation: It maps a force on marker j to a velocity of marker i .

For steady Stokes flow

Mij ≈ η−1

∫
δa(qi − r)G(r, r′)δa(qj − r′) drdr′ (4)

where G is the Green’s function for the Stokes problem; Oseen
tensor for an infinite domain.

The many-body mobility matrix N takes into account higher-order
hydrodynamic interactions,

[U , Ω]T = N [F , T ]T where N =
(
K?M−1K

)−1
.
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Spatio-Temporal Discretization

Brownian Motion

By adding the stochastic forcing ∇ ·
(√

2ηkBT W
)

to the fluid
equation we obtain the correct fluctuating velocities (Brownian
motion), [

U
Ω

]
= N

[
F
T

]
+ (2kBTN )

1
2 �W ,

where the “square root” of the mobility is explicitly constructed as

N
1
2 =

√
2kBT NKM−1JL−1DvW .

Observe that discrete fluctuation-dissipation balance is
guaranteed,

N
1
2

(
N

1
2

)?
= NKM−1

(
JL−1LL−1S

)
M−1K?N ,

= N
(
KM−1K

)
N = N .

This works for confined systems, non-spherical particles, and even
active particles. Can also be extended to semi-rigid structures
(e.g., bead-link polymer chains).
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Preconditioning

Iterative Solver

The difficulty in the numerical method is solving the large
saddle-point system: A G −S

−D 0 0
−J 0 0

 v
π
Λ

 =

 g
h = 0

w = −KY

 . (5)

We use an iterative method (FGMRES) preconditioned by using a
Schur complement approximation in which we approximate M
analytically relying on near translational-invariance of the Peskin IB
method [6].

Fast direct solvers (related to FMMs) are required to approximately
compute the action of M−1.
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Preconditioning

Preconditioner

1 Solve the fluid sub-problem approximately (i.e., few multigrid
sweeps) to obtain ṽ [

A G
−D 0

] [
ṽ
π̃

]
=

[
g
h

]
.

2 Solve mobility sub-problem Λ = −M̃
−1

(J ṽ + w), where

M̃
−1
≈M−1 (key to efficiency!)

3 Solve the fluid subproblem again approximately:[
A G
−D 0

] [
v
π

]
=

[
g + SΛ

h

]
.
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Preconditioning

Well-Posedness

The constrained Stokes system will be well-conditioned if the mobility
matrix M has a controlled conditioning number.

We find that M is ill-conditioned if markers come closer
than two grid cells apart.

This is not unexpected at all but it is different from usual IB wisdom
for elastic bodies (markers half a grid cell apart).

If markers are too far apart the flow “leaks” through the body.

So for now we keep markers two grid cells apart and refine both
fluid grid and marker grid in unison.
This should ensure a sort of LBB-like condition (?).

We can do better if we combine with a finite-element method for the
rigid body (see Outlook section)...
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Preconditioning

Spectrum of M
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Preconditioning

Approximating the mobility matrix

The 3× 3 pairwise block Mij = JiL−1Sj has a simple physical
interpretation: force on marker j 7→ velocity of marker i .

Idea #1: Ignore boundary conditions and consider an unbounded
domain at rest at infinity.
Let the Krylov solver correct the errors due to ignoring the BCs.

In principle, due to the presence of a fixed Eulerian grid, Mij depends
on the positions of the marker relative to the grid. But Peskin’s
kernels are specifically construct to ensure near translational
invariance!

Idea #2: Assume translational invariance and approximate

Mij = JiL−1Sj ≈ M̃ij = fβ (rij) I + gβ (rij) r̂ij ⊗ r̂ij ,

where rij = ri − rj , and fβ(r) and gβ(r) are two kernel-dependent
functions of distance that depend on the viscous CFL number β.
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Preconditioning

Approximate pairwise mobility

Use knowledge of Green’s functions to model fβ (r) and gβ(r) with
coefficients to be obtained by fitting numerical data.

For example, for steady Stokes flow in 3D we know:

Self-mobility gives the effective hydrodynamic radius of the blob a
(e.g., a = 1.47 h for 6pt kernel),

f∞(0) = (6πηa)−1 and g∞(0) = 0.

Since Oseen tensor decays like 1/ (8πηr), define the normalized
functions

f̃ (x) = (8πηr) f (r)

g̃(x) = (8πηr) g(r),

where x = r/h is the normalized distance between the blobs:
f̃ (x � 1) ≈ 4x/(3a/h) and g̃ (x � 1) = O

(
x2
)

f̃ (x � 1) ≈ g̃ (x � 1) ≈ 1.
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Preconditioning

Rotne-Prager-Yamakawa Mobility

The numerical data is well-fitted by the well-known
Rotne-Prager-Yamakawa tensor commonly used in Brownian dynamics
simulations:

f (r) =
1

6πηa

{
3a
4r + a3

2r3 , r > 2a

1− 9r
32a , r ≤ 2a

(6)

and

g(r) =
1

6πηa

{
3a
4r −

3a3

2r3 , r > 2a
3r

32a , r ≤ 2a
(7)

An important property of the RPY mobility is that M is guaranteed to be
symmetric positive semidefinite.
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Preconditioning

Translational invariance (steady Stokes)

A. Donev (CIMS) RigidIBM 12/2014 25 / 42



Preconditioning

Empirical Mobility

In practice we fit numerical data with semi-empirical rational
functions that have the right asymptotic behavior:

f̃ (x) = b1xe
−b2x +

b3x
2 + x4

1 + b4x2 + x4
if x ≥ 1

g̃(x) =
x3

b5 + b6x2 + x3
.

Similar reasoning can be applied for the case of finite Reynolds
number, for example, we can split the asymptotic behavior into an
inviscid (dipole) and a viscid (monopole) term:

fβ (r � h) ∼ − β

ηh

[
1

4πx3
+

1

8πxβ
exp

(
− x

C
√
β

)]
.
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Preconditioning

Translational invariance (unsteady Stokes)
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Preconditioning

Fast Solvers

After we approximate M analytically, we still need to solve the linear
system approximately

MΛ = U.

For smallish number of markers we just use dense direct linear
solvers (LAPACK). For large number of markers we need
application-specific approaches.

We have also had some success with the HODLR low-rank
approximation fast solvers of Sivaram Ambikasaran (CIMS).

An alternative is to use an iterative solver with Fast Multipole
Method (we are using Leslie Greengard’s codes) for the matrix
vector-product, and a body-block-diagonal preconditioner (one
dense diagonal block per rigid body).

Presently working with the group of Eric Darve (Stanford) to develop
better low-rank (HODLR) approximate factorizations to be used as a
preconditioner for the FMM-based iterative solver...
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Preconditioning

FMM + Block-Diagonal Preconditioner
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Numerical Tests

Convergence

We have implemented this method using the IBAMR software
framework developed by Boyce Griffith: RigidIBAMR.

We have tested the solver on some examples of zero and finite
Reynolds number flows in 2D and 3D for which analytical answers are
known, e.g., a moving sphere inside a stationary fixed shell
(shell-in-shell or sphere-in-shell test) for steady Stokes.

We observe strong convergence of the force density on the surface
of the inner sphere as we refine the grid but the convergence is only
first-order (as expected) and quite slow, and very sensitive to the
marker spacing due to ill-conditioning.

It appears weak convergence (of stress moments) is much more
robust and rapid: most important for suspensions and obtaining
qualitatively correct physics for minimally-resolved or
coarsely-resolved models.
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Numerical Tests

Shell-in-Shell Test

Figure: Error in the velocity and pressure for different resolutions. (Left) Outer:
162, Inner: 12 blobs. (Right) Outer: 642, Inner: 42 blobs.
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Numerical Tests

Steady Stokes Test

Figure: Error in the velocity and pressure for different resolutions. (Left) Outer:
2562, Inner: 162 blobs. (Right) Outer: 10242, Inner: 642 blobs.
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Numerical Tests

Alternative Discretizations

Figure: Error in the velocity and pressure for shell-in-shell steady Stokes test with
double-shell.
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Numerical Tests

Strong Accuracy
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Figure: Convergence of surface stresses to their theoretical values for the three
finest resolutions. (Left) Normal component of stress σ · n, σij r̂j r̂j . (Right)

Tangential component of stress in direction of flow σij r̂j θ̂j .
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Numerical Tests

Sphere in Shear Flow

The low-order moments of the fluid-particle stress converge
relatively rapidly.

The total drag (zeroth moment) and torque (antisymmetric part of
the second moment),

F =
∑
i

Λi and τ =
∑
i

λi × ri .

These are nonzero and consistent even for a single blob.

But to get a nonzero stresslet (symmetric part of the second
moment) we need a raspberry-type model,

S = SymmTraceless

{∑
i

λi ⊗ ri

}
.
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Numerical Tests

Weak Accuracy

Compare to theoretical formulae to derive an effective hydrodynamic
radius:

T = 8πµR3ω where ω = (∇× v) /2 (8)

S =
10π

3
ηR3γ̇ where γ̇ = ∇v + ∇Tv.

# blobs Drag Rh Torque Rτ Stresslet Rs Geom Rg

12 1.4847 1.3774 1.4492 1

42 1.2152 1.1671 1.2474 1

162 1.0864 1.0730 1.0959 1

642 1.0377 1.0343 1.0405 1

2562 1.0172 1.0163 1.0184 1

Table: Hydrodynamic radii for several resolutions of shell sphere models.
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Numerical Tests

Lubrication forces
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Figure: The drag coefficient for a periodic array of cylinders in steady Stokes flow
for close-packed arrays with inter-particle gap ε, showing the correct asymptotic
ε−

5
2 lubrication force divergence.
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Numerical Tests

Finite Reynolds number

Figure: Flow past a rigid 121-marker cylinder at Re = 20 (drag matches literature
up to Re = 100).
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Outlook

Comparison to other methods

At the level of the formulation, for steady Stokes flow this is very
similar to existing methods, e.g., Regularized Stokeslets.
Main difference is that the mobility matrix in our formulation is SPD.

It also looks like a regularized first-kind boundary-element
formulation (so not very good!).
Leslie Greengard and Manas Rachh are developing better second-kind
methods but thermal fluctuations require a bit more work.

The main difference with above is that we do not use Green’s
functions but rely on a fluid solver; this works with various boundary
conditions, finite Reynolds numbers, variable viscosity flows.

Unlike Stokesian dynamics and related multipole-based methods
such as Force Coupling Method this approach has controlled
accuracy (no ad hoc lubrication), but also more expensive.

The treatment of thermal fluctuations is similar to that in the popular
Lattice Boltzmann Method but the fluid solver here is very
different (allowing zero Reynolds and Mach numbers, for example).
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Outlook

FEM (Filtering)

We are presently working on using a Finite Element method to
represent the rigid body and the induced force density λ (q) using
standard FEM basis functions.

In this approach by Boyce Griffith the IB markers are placed at the
Gauss nodes of the FEM mesh.

Algebraically this amounts to transforming the Schur complement
from M to the filtered mobility

MFE = ΨMΨT ,

where Ψ is a sparse FEM assembly matrix that connects nodes of the
grid to Gauss points.

This filtering decreases the number of DOFs and improves the
conditioning dramatically, and may lead to much improved strong
convergence (but still first order).

Effective preconditioning needs to be developed...
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Outlook

Future Directions

Develop fast solvers for RPY-like kernels (with Eric Darve)

Incorporate thermal fluctuations and develop stochastic integration
algorithms (in progress).

Develop formulations more akin to (regularized) second-kind integral
equations to get improved accuracy and conditioning.

Do active-body suspension applications (volunteers?).

A. Donev (CIMS) RigidIBM 12/2014 41 / 42



Outlook
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