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Fluid-Particle Coupling

Levels of Coarse-Graining

Figure: From Pep Español, “Statistical Mechanics of Coarse-Graining”.
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Fluid-Particle Coupling

Incompressible Fluctuating Hydrodynamics

The particles are immersed in an incompressible fluid that we assume
can be described by the time-dependent fluctuating incompressible
Stokes equations for the velocity v (r, t),

ρ∂tv + ∇π = η∇2v + f +
√

2ηkBT ∇ ·W (1)

∇ · v = 0,

along with appropriate boundary conditions.

Here the stochastic momentum flux is modeled via a random
Gaussian tensor field W(r, t) whose components are white in space
and time with mean zero and covariance

〈Wij(r, t)Wkl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′). (2)
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Fluid-Particle Coupling

Fluid-Structure Coupling

We want to construct a bidirectional coupling between a fluctuating
fluid and a small spherical Brownian particle (blob).

Macroscopic coupling between flow and a rigid sphere:

No-slip boundary condition at the surface of the Brownian particle.
Force on the bead is the integral of the (fluctuating) stress tensor over
the surface.

The above two conditions are questionable at nanoscales, but even
worse, they are very hard to implement numerically in an efficient and
stable manner.

Let u be the linear and ω is angular velocity of the body, F the
applied force and τ is the applied torque, me the excess mass of the
body, and Ie the excess moment of inertia over that of the fluid.

A. Donev (CIMS) RigidIBM 10/2014 6 / 35



Fluid-Particle Coupling

Immersed Rigid Bodies

In the immersed boundary method we extend the fluid velocity
everywhere in the domain,

ρ∂tv + ∇π = η∇2v −
∫

Ω
λ (q) δ (r − q) dq +

√
2ηkBT ∇ ·W

∇ · v = 0 everywhere

me u̇ = F +

∫
Ω
λ (q) dq

Ieω̇ = τ +

∫
Ω

[q× λ (q)] dq

v (q, t) = u + q× ω

=

∫
v (r, t) δ (r − q) dr for all q ∈ Ω,

where the induced fluid-body force [1] λ (q) is a Lagrange
multiplier enforcing the final no-slip condition (rigidity).
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Fluid-Particle Coupling

Overdamped Limit

Ignoring fluctuations, for viscous-dominated flow we can switch to
the steady Stokes equation.

The result is a linear mapping or extended mobility matrix M,

[U , Ω]T = M [F , T ]T ,

where the left-hand side collects the linear and angular velocities, and
the right hand side collects the applied forces.

When the inertia-free or overdamped limit is taken carefully, an
overdamped Langevin equation for the positions Q and
orientations Θ of the bodies emerge.

Fluctuation-dissipation balance needs to be studied more
rigorously, but see Hinch and especially work by Roux [2].

Problem: How to compute M and the simulate the Brownian
motion of the particles?
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Minimally-Resolved Blob Model

Brownian Particle Model

Consider a Brownian “particle” of size a with position q(t) and
velocity u = q̇, and the velocity field for the fluid is v(r, t).

We do not care about the fine details of the flow around a particle,
which is nothing like a hard sphere with stick boundaries in reality
anyway.

Take an Immersed Boundary Method (IBM) approach and describe
the fluid-blob interaction using a localized smooth kernel δa(∆r) with
compact support of size a (integrates to unity).

Often presented as an interpolation function for point Lagrangian
particles but here a is a physical size of the particle (as in the Force
Coupling Method (FCM) of Maxey et al).

We will call our particles “blobs” since they are not really point
particles.
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Minimally-Resolved Blob Model

Local Averaging and Spreading Operators

Postulate a no-slip condition between the particle and local fluid
velocities,

q̇ = u = [J (q)] v =

∫
δa (q− r) v (r, t) dr,

where the local averaging linear operator J(q) averages the fluid
velocity inside the particle to estimate a local fluid velocity.
The induced force density in the fluid because of the force F applied
on particle is:

f = −Fδa (q− r) = − [S (q)] F,

where the local spreading linear operator S(q) is the reverse (adjoint)
of J(q).
The physical volume of the particle ∆V is related to the shape and
width of the kernel function via

∆V = (JS)−1 =

[∫
δ2
a (r) dr

]−1

. (3)
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Minimally-Resolved Blob Model

Many-Particle Systems

Denote composite vector of positions Q = {q1, . . . ,qN} and
Θ = {θ1, . . . ,θN} the orientations of all of the N blobs.

Composite velocity U = {u1, . . . ,uN} and
angular velocity Ω = {ω1, . . . ,ωN}.
Applied forces F (Q) = {F1 (Q) , . . . ,FN (Q)},
applied torques T = {τ 1, . . . , τN}.
Define composite local averaging linear operator J (Q) operator, is
the composite spreading linear operator, S (Q) = J ? (Q),

(J v)i =

∫
δa (qi − r) v (r, t) dr

(SF) (r) =
N∑
i=1

Fiδa (qi − r) .
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Minimally-Resolved Blob Model

Inertial Equations of Motion

The momentum equation, ∇ · v = 0 and

ρ∂tv + ∇π = η∇2v +
√

2ηkBT ∇ ·W + SF +
1

2
∇× (ST ) + fth.

The suspended particles are prescribed to follow the local fluid
motion, leading to the N minimally-resolved no-slip conditions

U = dQ/dt = J v, (4)

Ω = dΘ/dt = ∇× (J v) /2.

Henceforth we will not include rotation and only consider translational
DOFs.
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Minimally-Resolved Blob Model

Fluctuation-Dissipation Balance

One must ensure fluctuation-dissipation balance in the coupled
fluid-particle system: our equations are ergodic with respect to the
Gibbs-Boltzmann distribution [3]

Peq (Q,Θ) ∼ exp (−U (Q,Θ) /kBT ) ,

where F = −∂QU and T = −∂ΘU.

No entropic contribution to the coarse-grained free energy because
our formulation is isothermal and the particles do not have internal
structure.

In order to ensure that the dynamics is ergodic with respect to an
appropriate Gibbs-Boltzmann distribution), add the thermal or
stochastic drift forcing [4, 3, 5]

fth = (kBT ) ∂Q · S (Q) . (5)
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Minimally-Resolved Blob Model Overdamped Limit

Overdamped Limit

Let us assume that the Schmidt number is very large,

Sc = η/ (ρχ)� 1,

where χ ≈ kBT/ (6πηa) is a typical value of the diffusion coefficient
of the particles.

To obtain the asymptotic dynamics in the limit Sc→∞ heuristically,
we delete the inertial term ρ∂tv in (1), ∇ · v = 0 and

∇π = η∇2v + SF +
√

2ηkBT ∇ ·W ⇒ (6)

v = η−1L−1
(
SF +

√
2ηkBT ∇ ·W

)
,

where L−1 � 0 is the Stokes solution operator.
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Minimally-Resolved Blob Model Overdamped Limit

Overdamped Limit

A rigorous adiabatic mode elimination procedure informs us that the
correct interpretation of the noise term in this equation is the kinetic
stochastic integral,

dQ (t)

dt
= J (Q)L−1

[
1

η
S(Q)F(Q) +

√
2kBT

η
∇ �W (r, t)

]
. (7)

This is equivalent to the standard equations of Brownian Dynamics
(BD),

dQ

dt
= MF + (2kBTM)

1
2 W̃(t)+kBT (∂Q ·M), (8)

where M(Q) � 0 is the symmetric positive semidefinite (SPD)
mobility matrix

M = η−1JL−1S.
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Minimally-Resolved Blob Model Overdamped Limit

Brownian Dynamics via Fluctuating Hydrodynamics

It is not hard to show that M is very similar to the Rotne-Prager
mobility used in BD, for particles i and j ,

Mij = η−1

∫
δa(qi − r)K(r, r′)δa(qj − r′) drdr′ (9)

where K is the Green’s function for the Stokes problem (Oseen
tensor for infinite domain).

The self-mobility defines a consistent hydrodynamic radius of a blob,

Mii = Mself =
1

6πηa
I.

For well-separated particles we get the correct Faxen correction,

Mij ≈ η−1

(
I +

a2

6
∇2

r

)(
I +

a2

6
∇2

r′

)
K(r − r′)

∣∣r=qj

r′=qi
.

At smaller distances the mobility is regularized in a natural way and
positive-semidefiniteness ensured automatically.
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Minimally-Resolved Blob Model Overdamped Limit

Numerical Methods

Both compressible and incompressible, inertial and overdamped,
numerical methods have been implemented by Florencio Balboa
(UAM) on GPUs for periodic BCs (public-domain!), and in the
parallel IBAMR code of Boyce Griffith by Steven Delong for general
boundary conditions (to be made public-domain next fall!).

Spatial discretization is based on previously-developed staggered
schemes for fluctuating hydro [6] and the immersed-boundary
method kernel functions of Charles Peskin.

Temporal discretization follows a second-order splitting algorithm
(move particle + update momenta), and is limited in stability only by
advective CFL.

We have constructed specialized temporal integrators that ensure
discrete fluctuation-dissipation balance, including for the
overdamped case.
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Minimally-Resolved Blob Model Overdamped Limit

(Simple) Midpoint Scheme

Fluctuating Immersed Boundary Method (FIBM) method:

Solve a steady-state Stokes problem (here δ � 1)

∇πn = η∇2vn +
√

2ηkBT ∇ ·Zn + SnF (qn)

+
kBT

δ

[
S
(

qn +
δ

2
W̃

n
)
− S

(
qn − δ

2
W̃

n
)]

W̃
n

∇ · vn = 0.

Predict particle position:

qn+ 1
2 = qn +

∆t

2
J nv

Correct particle position,

qn+1. = qn + ∆tJ n+ 1
2 v.
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Minimally-Resolved Blob Model Results

Slit Channel
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Figure: Probability distribution of the distance H to one of the walls for a
freely-diffusing blob in a two dimensional slit channel.
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Minimally-Resolved Blob Model Results

Colloidal Gellation: Cluster collapse
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Figure: Relaxation of the radius of gyration of a colloidal cluster of 13 spheres
toward equilibrium, taken from Furukawa+Tanaka.
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Rigid Bodies

Blob/Bead Models

Figure: Blob or “raspberry”models of: a spherical colloid, and a lysozyme [7].
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Rigid Bodies

Review: Immersed Rigid Bodies

In the immersed boundary method we extend the fluid velocity
everywhere in the domain,

ρ∂tv + ∇π = η∇2v −
∫

Ω
λ (q) δ (r − q) dq +

√
2ηkBT ∇ ·W

∇ · v = 0 everywhere

me u̇ = F +

∫
Ω
λ (q) dq

Ieω̇ = τ +

∫
Ω

[q× λ (q)] dq

v (q, t) = u + q× ω

=

∫
v (r, t) δ (r − q) dr for all q ∈ Ω,

where the induced fluid-body force [1] λ (q) is a Lagrange
multiplier enforcing the final no-slip condition (rigidity).
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Rigid Bodies

Rigid-Body Immersed-Boundary Method

A neutrally-buoyant rigid-body immersed boundary formulation
using blobs:

ρ∂tv + ∇π = η∇2v − SΛ +
√

2ηkBT ∇ ·W + fth

∇ · v = 0 (Lagrange multiplier is π)∑
i

λi = F (Lagrange multiplier is u) (10)∑
qi × λi = τ (Lagrange multiplier is ω), (11)

J v = u + ω ×Q + slip (activity)

where Λ = {λ1, . . . ,λN} are the unknown rigidity forces on each
blob that need to be solved for (this is the hard part!).

1 Specified kinematics (e.g., swimming object): Unknowns are v, π and
Λ, while F and τ are outputs (easier).

2 Free bodies (e.g., colloidal suspension): Unknowns are v, π and Λ, u
and ω, while F and τ are inputs (harder).
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Rigid Bodies Overdamped Limit

Rigid-Body Langevin Dynamics

This system of equations (once fth is determined) is ergodic wrt the
Gibbs-Boltzmann distribution.

The many-body mobility matrix N takes into account higher-order
hydrodynamic interactions,

N =
(
KM−1K?

)−1
,

relating the total applied forces and torques with the resulting linear
and angular velocities.
Here K is a simple geometric matrix, defined via
K? [U,Ω]T = U + Ω×Q.

This works for confined systems, non-spherical particles, and even
active particles.
Can also be extended to semi-rigid structures (e.g., bead-link
polymer chains).
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Rigid Bodies Overdamped Limit

Overdamped Limit

The overdamped limit can be taken and amounts to (aside from
thermal drift terms) to simply deleting ρ∂tv, to get[

U
Ω

]
= N

([
F
T

]
+

√
2kBT

η
KM−1JL−1∇ �W

)
= (12)

= N
[
F
T

]
+ (2kBTN )

1
2 ∇ �W

Observe the noise automatically has the right covariance,

N
1
2

(
N

1
2

)?
= NKM−1

(
JL−1LL−1S

)
M−1K?N ,

= N
(
KM−1K

)
N = N

without any approximations and for all types of boundary conditions.
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Rigid Bodies Numerical Tests

Shell-in-Shell Test

Figure: Error in the velocity and pressure for different resolutions. (Left) Outer:
162, Inner: 12 blobs. (Right) Outer: 642, Inner: 42 blobs.
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Rigid Bodies Numerical Tests

Steady Stokes Test

Figure: Error in the velocity and pressure for different resolutions. (Left) Outer:
2562, Inner: 162 blobs. (Right) Outer: 10242, Inner: 642 blobs.
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Rigid Bodies Numerical Tests

Alternative Discretizations

Figure: Error in the velocity and pressure for shell-in-shell steady Stokes test with
double-shell.
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Rigid Bodies Numerical Tests

Sphere in Shear Flow

The low-order moments of the fluid-particle stress converge
relatively rapidly.

The total drag (zeroth moment) and torque (antisymmetric part of
the second moment),

F =
∑
i

Λi and τ =
∑
i

λi × ri .

These are nonzero and consistent even for a single blob.

But to get a nonzero stresslet (symmetric part of the second
moment) we need a raspberry-type model,

S = SymmTraceless

{∑
i

λi ⊗ ri

}
.
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Rigid Bodies Numerical Tests

Accuracy

Compare to theoretical formulae to derive an effective hydrodynamic
radius:

T = 8πµR3ω where ω = (∇× v) /2 (13)

S =
10π

3
ηR3γ̇ where γ̇ = ∇v + ∇Tv.

# blobs Drag Rh Torque Rτ Stresslet Rs Geom Rg

12 1.4847 1.3774 1.4492 1

42 1.2152 1.1671 1.2474 1

162 1.0864 1.0730 1.0959 1

642 1.0377 1.0343 1.0405 1

2562 1.0172 1.0163 1.0184 1

Table: Hydrodynamic radii for several resolutions of shell sphere models.
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Outlook

Conclusions

Fluctuating hydrodynamics seems to be a very good coarse-grained
model for fluids, and coupled to immersed particles to model
Brownian suspensions (model can be justified microscopically,
ongoing work with Pep Espanol).

The minimally-resolved blob approach provides a low-cost but
reasonably-accurate representation of rigid particles in flow (has been
extended to reaction-diffusion problems).

Particle and fluid inertia can be included in the description, or, an
overdamped limit can be taken if Sc � 1.

More complex particle shapes can be built out of a collection of
blobs to form a rigid body.

A postdoc position is available in my group:
Fluctuating Hydrodynamics of chemically reactive + multiphase +
multispecies liquid mixtures
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