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Introduction

Non-Spherical Colloids near Boundaries

Figure: (Left) Cross-linked spheres; Kraft et al. [1]. (Right) Lithographed
boomerangs; Chakrabarty et al. [2].

A. Donev (CIMS) RigidBlobs 11/2015 2 / 29



Introduction

Bent Active Nanorods

Figure: From the Courant Applied Math Lab of Zhang and Shelley
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Introduction

Thermal Fluctuation Flips

QuickTime
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Brownian Motion in a Liquid

Fluctuating Hydrodynamics

We consider a rigid body Ω immersed in an unbounded fluctuating fluid.
In the fluid domain

−∇ · σ = ∇π − η∇2v − (2kBTη)
1
2 ∇ ·Z = 0

∇ · v = 0,

where the fluid stress tensor

σ = −πI + η
(
∇v + ∇Tv

)
+ (2kBTη)

1
2 Z (1)

consists of the usual viscous stress as well as a stochastic stress
modeled by a symmetric white-noise tensor Z (r, t), i.e., a Gaussian
random field with mean zero and covariance〈

Zij(r, t)Zkl(r′, t ′)
〉

= (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).
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Brownian Motion in a Liquid

Fluid-Body Coupling

At the fluid-body interface the no-slip boundary condition is assumed to
apply,

v (q) = u + q× ω for all q ∈ ∂Ω, (2)

with the force and torque balance∫
∂Ω
λ (q) dq = F and

∫
∂Ω

[q× λ (q)] dq = τ , (3)

where λ (q) is the normal component of the stress on the outside of the
surface of the body, i.e., the traction

λ (q) = σ · n (q) .

To model activity we can, for example, add active slip on the active parts
of the surface, or add an active stress.
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Brownian Motion in a Liquid

Steady Stokes Flow (Re→ 0)

Consider a suspension of Nb rigid bodies with positions
Q =

{
%1, . . . ,%Nb

}
and orientations Θ = {θ1, . . . ,θNb

}.
We describe orientations using quaternions.

For viscous-dominated flows we can assume steady Stokes flow and
define the body mobility matrix N (Q,Θ),

[U , Ω]T = N [F , T ]T ,

where the left-hand side collects the linear U = {υ1, . . . ,υNb
} and

angular Ω = {ω1, . . . ,ωNb
} velocities,

and the right hand side collects the applied forces
F (Q,Θ) = {F1, . . . ,FNb

} and torques T (Q,Θ) = {τ 1, . . . , τNb
}.
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Brownian Motion in a Liquid

Brownian Dynamics

The Brownian motion of the rigid bodies is described by the
overdamped Langevin equation, symbolically:[

dQ/dt
dΘ/dt

]
=

[
U
Ω

]
= N

[
F
T

]
+ (2kBTN )

1
2 �W (t) .

How to represent orientations using normalized quaternions and
handle the constraint ‖Θk‖ = 1?

What is the correct thermal drift (i.e., what does � mean)?

How to compute (the action of) N and N
1
2 and simulate the

Brownian motion of the bodies?
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Brownian Motion in a Liquid

Difficulties/Goals

Stochastic drift It is crucial to handle stochastic calculus issues carefully
for overdamped Langevin dynamics. Since diffusion is slow
we also want to be able to take large time step sizes.

Complex shapes We want to stay away from analytical approximations
that only work for spherical particles.

Boundary conditions Whenever observed experimentally there are
microscope slips (glass plates) that modify the
hydrodynamics strongly. It is preferred to use no Green’s
functions but rather work in complex geometry.

Gravity Observe that in all of the examples above there is gravity and
the particles sediment toward the bottom wall, often very
close to the wall (∼ 100nm). This is a general feature of all
active suspensions but this is almost always neglected in
theoretical models.

Many-body Want to be able to scale the algorithms to suspensions of
many particles–nontrivial numerical linear algebra.
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Blob models of complex particles

Blob/Bead Models

Figure: Blob or “raspberry”models of a spherical colloid.

The rigid body is discretized through a number of “beads” or “blobs”
with hydrodynamic radius a.

Standard but usually with stiff springs instead of rigid multiblobs.

But first let’s consider blobs that are free to move relative to one
another.
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Blob models of complex particles

Rigidly-Constrained Blobs

The blob-blob mobility matrix M describes the hydrodynamic
relations between the blobs, accounting for the influence of the
boundaries:

U = MF

The 3× 3 block Mij maps a force on blob j to a velocity of blob i .

For well-separated spheres of radius a we have the Faxen expressions

Mij ≈ η−1

(
I +

a2

6
∇2

r

)(
I +

a2

6
∇2

r′

)
G(r − r′)

∣∣r=qj

r′=qi

where G is the Green’s function (Oseen tensor for unbounded).

This gives the well-known Rotne-Prager-Yamakawa tensor for the
mobility of pairs of blobs.
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Blob models of complex particles

Rigidly-Constrained Blobs

We add rigidity forces as Lagrange multipliers λ = {λ1, . . . ,λn} to
constrain a group of blobs to move rigidly,∑

j

Mijλj =u + ω × (ri − q), ∀i (4)

∑
i

λi =F∑
i

(ri − q)× λi =τ ,

where u is the velocity of the tracking point q, ω is the angular
velocity of the body around q, F is the total force applied on the
body, τ is the total torque applied to the body about point q, and ri
is the position of blob i .

This can be a very large linear system for suspensions of many bodies
discretized with many blobs: iterative solvers that require a good
preconditioner.
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Blob models of complex particles

Suspensions of Rigid Bodies

In matrix notation we have a linear system of equations for the
rigidity forces Λ and unknown motion Y ,

MΛ = KY + slip

K?Λ = R,

where the unknown Y = [U , Ω]T are the body kinematics,
R = [F , T ]T are the applied forces and torques.

Taking the Schur complement of the linear system we get

Y =

[
U
Ω

]
= NR = N

[
F
T

]
+ slip terms.

The many-body mobility matrix N takes into account rigidity and
higher-order hydrodynamic interactions,

N =
(
K?M−1K

)−1
.

A. Donev (CIMS) RigidBlobs 11/2015 13 / 29



Blob models of complex particles

How to Approximate the Mobility

In order to make this method work we need a way to compute the
(action of the) blob-blob mobility M.

There are different ways to obtain M:

In unbounded domains we can just use the Rotne-Prager-Yamakawa
tensor (RPY) (always SPD!).
In simple geometries such as a single wall we can use a generalization
of RPY [3].
For periodic domains we can use Ewald-type summations or
non-uniform FFTs with a fluctuating spectral fluid solver [4].
In more general cases we can use a fluctuating FEM/FVM fluid
Stokes solver [5]:
Brownian Dynamics without Green’s functions! [6]
In the grid-based approach adding thermal fluctuations (Brownian
motion) can be done using fluctuating hydrodynamics.
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Rotational Diffusion

Bodies with rotation

We can extend our work to simulate bodies with rotational DOFs by
formulating the appropriate Langevin equation and using a RFD
approach to for temporal integration.

For simplicity, first we consider a single body with only rotational
degrees of freedom.

Orientation is an element of SO(3) so we need to parameterize it: we
use normalized quaternion (point on the unit 4-sphere)

θ ∈ R4, ‖θ‖2 = θ · θ = 1.

This offers several advantages over several other common approaches,
such as rotation angles, rotation matrices, and Euler angles.
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Rotational Diffusion

Quaternions

Successive rotations can be accumulated by quaternion
multiplication.

In three dimensions, there exists a 4× 3 matrix Ψ(θ) such that, given
a conservative potential U(θ),

θ̇ = Ψω, τ = ΨT∂θU(θ).

Here τ is the torque applied to the body, and ω is the angular velocity.

One can also rotate a body by an oriented angle φ, denoted as

θn+1 = Rotate (θn, φ) .

A. Donev (CIMS) RigidBlobs 11/2015 16 / 29



Rotational Diffusion

Equations for Rotation

We assume now that we know the mobility tensor Mωτ ,

ω =Mωττ .

Given Mωτ and a potential U(θ), the Overdamped Langevin
Equation for orientation is

∂tθ =−
(
ΨMωτΨT

)
∂θU +

√
2kBTΨM

1
2
ωτW

+ kBT∂θ ·
(
ΨMωτΨT

)
.

This equation preserves the unit norm constraint and is time
reversible w.r.t. the Gibbs-Boltzmann distribution

Peq (θ) = Z−1 exp (−U (θ) /kBT ) δ
(
θTθ − 1

)
.

A. Donev (CIMS) RigidBlobs 11/2015 17 / 29



Rotational Diffusion

Algorithm with Translation

To include translation, we introduce the matrix Ξ, letting u = q̇
where q is the location of the body,

Ξ =

[
I 0
0 Ψ

]
,
[
q̇, θ̇

]T
= Ξ [u,ω]T

The complete overdamped Langevin equations are[
u

θ̇

]
=− (ΞNΞ?)

[
∂qU
∂θU

]
+
√

2kBT ΞN
1
2W + (kBT ) ∂x · (ΞNΞ?)

We have developed specialized temporal integrators to solve these
equations efficiently for confined bodies [7].
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Rotational Diffusion

Random Finite Difference

To take a time step in a Brownian Dynamics algorithm with
rotational diffusion we do:

ṽ =W̃

q̃ =qn + δũ

θ̃ =Rotate (θn, δω̃)

vn =−
(
NΞT∂xU

)n
+

√
2kBT

∆t

(
N

1
2

)n
Wn +

kBT

δ

(
Ñ−Nn

)
W̃

qn+1 =qn + ∆tun

θn+1 =Rotate (θn,∆tωn) .
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Confined Brownian Motion

Brownian motion under gravity

We consider the Brownian motion of a single rigid body near a no-slip
boundary.

Temporal integration of the overdamped equations is done using a
random finite different (RFD).

Number of blobs is small and we have a simple geometry so we use
approximate Blake-Rotne-Prager tensor (Brady & Swan [3])

For this test we use direct linear algebra to compute N and

Cholesky factorization to compute N
1
2 .

We add gravity which makes the equilibrium Gibbs-Boltzmann
distribution be

PGB (Q,Θ) ∼ exp

[
−mgh + Usteric

kBT

]
,

where h is the center-of-mass height and Usteric is a Yukawa-type
repulsion with the wall.

A. Donev (CIMS) RigidBlobs 11/2015 20 / 29



Confined Brownian Motion

Diffusion of a Confined Boomerang

Quasi-2D (g = 20)
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Confined Brownian Motion

Translational+Rotational Diffusion

We define the total mean square displacement (MSD) at time τ

D(τ ; x) =〈∆X(τ ; x) (∆X(τ ; x))T 〉, (5)

where ∆X (τ ; x) = (∆q(τ ; x), ∆û(τ ; x)), with orientation increment
∆û(τ) [1]

∆û (∆t) ≡ 1

2

3∑
i=1

ui (0)× ui (∆t) . (6)

The Stokes-Einstein relation gives the short-time mean square
displacement,

χst =
1

2
lim
τ→0

〈Dtrans(τ ; x)〉
τ

= kBT 〈MuF (x)〉 . (7)

In general, it is much harder to characterize the long-time diffusion
coefficient

χlt =
1

2
lim
τ→∞

〈Dtrans(τ ; x)〉
τ

(8)
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Confined Brownian Motion

Quasi-2D Diffusion

Brownian motion is confined near the bottom wall so it quasi-two
dimensional.

Without external forcing the Brownian motion along the wall should
be isotropic diffusive at long time scales.

A naive guess for the effective 2D diffusion coefficient would be
the Gibbs-Boltzmann average of the parallel translational mobility:

D‖ = kBT
〈
µ‖
〉

GB
.

This is in fact a theorem for a sphere because rotational Brownian
motion does not change the mobility.
Is it true for non-spherical particles?
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Confined Brownian Motion

MSD for a sphere
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Figure: Mean square displacement (MSD) for a non-uniform spherical particle of
unit diameter discretized as an icosahedron of 12 blobs or just a single blob.
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Confined Brownian Motion

The choice of tracking point matters
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Figure: MSD for a non-spherical particle (tetrahedron/tetramer).
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Confined Brownian Motion

Tracking Point

We want the translational MSD to be strictly linear in time so that
the long and short time diffusion coefficients are equal.

Does there exist a choice of tracking point that makes the MSD linear
in time? (No!)

But some candidates for a better choice of tracking point exist.

For any body shape and specific position relative to the boundary,
there exists a unique point in the body called the center of mobility
(CoM) that makes the coupling tensors symmetric,

MT
ωF = MωF = Muτ = MT

uτ .

This is the best tracking point for isotropic (bulk) diffusion.

For some bodies of sufficient symmetry, there exists a point called the
center of hydrodynamic stress (CoH), where the cross-coupling
vanishes,

MωF = Muτ = 0.

Track an approximate CoH for quasi-2D diffusion [2]?
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Confined Brownian Motion

Boomerangs: Translation
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Figure: Translational MSD for a boomerang
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Confined Brownian Motion

Boomerangs: Rotation
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Figure: Rotational MSD for a boomerang
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Confined Brownian Motion
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