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Giant Fluctuations

Fractal Fronts in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface between two miscible fluids in zero gravity
[1, 2, 3]. A similar pattern is seen over a broad range of Schmidt numbers
and is affected strongly by nonzero gravity.
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Giant Fluctuations

Fluctuating Navier-Stokes Equations

We will consider a binary fluid mixture with mass concentration
c = ρ1/ρ for two fluids that are dynamically identical, where
ρ = ρ1 + ρ2 (e.g., fluorescently-labeled molecules).

Ignoring density and temperature fluctuations, equations of
incompressible isothermal fluctuating hydrodynamics are

∂tv + v ·∇v =−∇π + ν∇2v + ∇ ·
(√

2νρ−1 kBT W
)

∂tc + v ·∇c =χ∇2c + ∇ ·
(√

2mχρ−1 c(1− c)W(c)

)
,

where the kinematic viscosity ν = η/ρ, and π is determined from
incompressibility, ∇ · v = 0.

We assume that W can be modeled as spatio-temporal white noise
(a delta-correlated Gaussian random field), e.g.,

〈Wij(r, t)W?
kl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).
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Giant Fluctuations

Nonequilibrium Fluctuations

When macroscopic gradients are present, steady-state thermal
fluctuations become long-range correlated.

Consider a binary mixture of fluids and consider concentration
fluctuations around a steady state c0(r):

c(r, t) = c0(r) + δc(r, t)

The concentration fluctuations are advected by the random
velocities v(r, t) = δv(r, t), approximately:

∂t (δc) + (δv) ·∇c0 = χ∇2 (δc) +
√

2χkBT (∇ ·Wc)

The velocity fluctuations drive and amplify the concentration
fluctuations leading to so-called giant fluctuations [2].
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Giant Fluctuations

Back of the Envelope

The coupled linearized velocity-concentration system in one
dimension:

vt = νvxx +
√

2νWx

ct = χcxx − v c̄x ,

where g = c̄x is the imposed background concentration gradient.
The linearized system can be easily solved in Fourier space to give a
power-law divergence for the spectrum of the concentration
fluctuations as a function of wavenumber k,

〈ĉ ĉ?〉 ∼ (c̄x)2

χ(χ+ ν)k4
.

Concentration fluctuations become long-ranged and are enhanced as
the square of the gradient, to values much larger than equilibrium
fluctuations.
In real life the divergence is suppressed by surface tension, gravity, or
boundaries (usually in that order).
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Giant Fluctuations

Diffusive Mixing in Gravity
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Giant Fluctuations

Giant Fluctuations in Experiments

Experimental results by A. Vailati et al. from a microgravity environment
[2] showing the enhancement of concentration fluctuations in space (box
scale is macroscopic: 5mm on the side, 1mm thick).
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Fluctuating Hydrodynamics

Low Mach Approximation

For isothermal mixtures of fluids with unequal densities, the incompressible
approximation needs to be replaced with a low Mach approximation

Dtρ =− ρ (∇ · v)

ρ (Dtv) =−∇P + ∇ ·
[
η
(
∇v + ∇vT

)
+ Σ

]
ρ (Dtc) =∇ · [ρχ (∇c) + Ψ] ,

where Dt� = ∂t� + v ·∇ (�) and Σ and Ψ are stochastic fluxes
determined from fluctuation-dissipation balance.
The incompressibility condition is replaced by the equation of state
(EOS) constraint

∇ · v = ρ−1

(
∂ρ

∂c

)
P,T

(Dtc) .

.
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Fluctuating Hydrodynamics

Fluctuating Hydrodynamics Equations

Adding stochastic fluxes to the non-linear NS equations produces
ill-behaved stochastic PDEs (solution is too irregular).

No problem if we linearize the equations around a steady mean
state, to obtain equations for the fluctuations around the mean.

Finite-volume discretizations naturally impose a grid-scale
regularization (smoothing) of the stochastic forcing.

A renormalization of the transport coefficients is also necessary [1].

We have algorithms and codes to solve the compressible equations
(collocated and staggered grid), and recently also the
incompressible and low Mach number ones (staggered grid) [4, 3].

Solving these sort of equations numerically requires paying attention
to discrete fluctuation-dissipation balance, in addition to the usual
deterministic difficulties [4].
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Fluctuating Hydrodynamics

Finite-Volume Schemes

ct = −v ·∇c + χ∇2c + ∇ ·
(√

2χW
)

= ∇ ·
[
−cv + χ∇c +

√
2χW

]
Generic finite-volume spatial discretization

ct = D
[
(−Vc + Gc) +

√
2χ/ (∆t∆V )W

]
,

where D : faces→ cells is a conservative discrete divergence,
G : cells→ faces is a discrete gradient.

Here W is a collection of random normal numbers representing the
(face-centered) stochastic fluxes.

The divergence and gradient should be duals, D? = −G.

Advection should be skew-adjoint (non-dissipative) if ∇ · v = 0,

(DV)? = − (DV) if (DV) 1 = 0.
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Fluctuating Hydrodynamics

Molecular Dynamics Simulations

We performed event-driven hard disk simulations of diffusive mixing
with about 1.25 million disks.

The two species had equal molecular diameter but potentially
different molecular masses, with density ratio R = m2/m1 = 1, 2 or 4.

In order to convert the particle data to hydrodynamic data, we
employed finite-volume averaging over a grid of 1282 hydrodynamic
cells 10× 10 molecular diameters (about 76 disks per hydrodynamic
cell).

We also performed fluctuating low Mach number finite-volume
simulations using the same grid of hydrodynamic cells, at only a
small fraction of the computational cost [5].

Quantitative statistical comparison between the molecular dynamics
and fluctuating hydrodynamics was excellent once the values of the
bare diffusion and viscosity were adjusted based on the level of
coarse-graining.
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Fluctuating Hydrodynamics

Hard-Disk Simulations
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Fluctuating Hydrodynamics

“Hard-Sphere” Simulations
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Limiting Diffusive Dynamics

Passively-Advected (Fluorescent) Tracers
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Limiting Diffusive Dynamics

Diffusion by Velocity Fluctuations

Consider a large collection of passively-advected particles immersed
in a fluctuating Stokes velocity field,

∂tv =P
[
ν∇2v + ∇ ·

(√
2νρ−1 kBT W

)]
∂tc =− v ·∇c + χ∇2c + ∇ ·

(√
2χcW(c)

)
,

where c is the number density for the particles, and P is the
orthogonal projection onto the space of divergence-free velocity fields.

In liquids diffusion of mass is much slower than diffusion of
momentum, χ� ν, leading to a Schmidt number

Sc =
ν

χ
∼ 103.

[With Eric Vanden-Eijnden]: There exists a limiting dynamics for c in
the limit Sc →∞ in the scaling

ν = χSc , χ(χ+ ν) ≈ χν = const
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Limiting Diffusive Dynamics

Rescaling Dynamics

Consider a family of equations with rescaled coefficients

ν ′ = ε−1ν, χ′ = εχ,

which has ν ′χ′ = χν but S ′c = ε−2Sc .

For ε = 1 we get the original dynamics, and as ε→ 0 we get the
limiting dynamics Sc →∞.

Rescale time as t ′ = ε−1t, to get the rescaled equations

∂t′v =P
[
ε−2ν∇2v + ∇ ·

(√
2ε−2νρ−1 kBT W

)]
∂t′c =− ε−1v ·∇c + χ∇2c + stoch.

On the rescaled time scale the dynamics will be very similar to the
limiting dynamics if ε is small, specifically, if there is a very large
separation of scales between the velocity and concentration dynamics.
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Limiting Diffusive Dynamics

Adiabatic Elimination of v

The existence of the limiting dynamics follows from well-established
limit theorems, see review by Eric Vanden-Eijnden in Section IV of [6]
or a series of three articles on “Adiabatic elimination in stochastic
systems” in Phys. Rev. A [7].

Briefly, if the Liouville operator has the form

L = L0 + ε−1L1 + ε−2L2,

in the limiting dynamics ε→ 0 we have

L′ = PεL0Pε − PεL1L
−1
2 L1Pε,

where Pε is a Zwanzig projection operator

In our specific case

L0 ←→ χ∇2c, L1 ←→ −ε−1v ·∇c, L2 ←→ Pε−2ν∇2v
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Limiting Diffusive Dynamics

Limiting Dynamics

A Fourier-space calculation gives approximately the following limiting
stochastic advection-diffusion equation for concentration
(common in turbulence models):

∂tc = −v ·∇c + (χ+ ∆χ)∇2c,

where ∆χ is a renormalization of the diffusion coefficient [1],
approximated here by a local diffusion.

The advection velocity here is a white-in-time process that can be
sampled by solving the steady Stokes equation

∇π = ν∇2v + ∇ ·
(√

2νρ−1 kBT W
)

∇ · v = 0.
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Limiting Diffusive Dynamics

Simulating the Limiting Dynamics

The limiting dynamics can be efficiently simulated using the following
predictor-corrector algorithm:

1 Generate a random advection velocity

∇πn+ 1
2 = ν

(
∇2vn

)
+ ∆t−

1
2∇ ·

(√
2νρ−1 kBT Wn

)
∇ · vn = 0.

2 Take a predictor step for concentration, e.g., using Crank-Nicolson,

c̃n+1 − cn

∆t
= −vn ·∇cn + χ∇2

(
cn + c̃n+1

2

)
.

3 Take a corrector step for concentration

cn+1 − cn

∆t
= −vn ·∇

(
cn + c̃n+1

2

)
+ χ∇2

(
cn + cn+1

2

)
.
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Limiting Diffusive Dynamics

Multiscale Temporal Integrators

There are two ways in which the rescaled dynamics can be used.
Recall that

ν ′ = ε−1ν, χ′ = εχ ⇒ S ′c = ε−2Sc .

The first one is to increase ε� 1 and use this to decrease the
separation of time scales to the point where the rescaled dynamics is
computationally feasible, in the spirit of the seamless HMM
method (Vanden-Eijnden et al).

The second one is to decrease ε→ 0 and directly simulate the liming
dynamics, which assumes infinite separation of scales (overdamped
limit).

If there is strong separation of scales in the original problem either will
do and in fact there may exist integrators that can handle the limit
ε→ 0 gracefully (stiffly-accurate integrators).
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Limiting Diffusive Dynamics

Changing Sc from 1 to ∞
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Limiting Diffusive Dynamics

Questionable Separation

The above animation makes it clear Sc needs to be very large to be
close to the limiting dynamics.

The separation of time scales between the slowest velocity mode and
the fastest concentration mode is

k2
maxν

k2
minχ

=
Sc
N2
c

,

where Nc is the number of modes (along a direction).

Full separation of scales requires Sc � N2
c , which is often not met in

practice, e.g., Sc ∼ 500 in a typical liquid like water.

Similarly questionable is the assumption that particles immersed in
a fluid follow a diffusion equation: what about large-scale slow
velocity fluctuations?

Under certain conditions the limiting dynamics should be a good
approximation, but seems hard to justify in general.
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Limiting Diffusive Dynamics

Conclusions

Fluctuations are not just a microscopic phenomenon: giant
fluctuations can reach macroscopic dimensions or certainly dimensions
much larger than molecular.

Fluctuating hydrodynamics agrees with molecular dynamics of
diffusive mixing in mixtures of hard disks and seems to be a very good
coarse-grained model for fluids, despite unresolved issues.

Diffusion is strongly affected and often dominated by advection by
velocity fluctuations.

Even coarse-grained methods need to be accelerated due to large
separation of time scales between advective and diffusive
phenomena. One can both decrease or increase the separation of
scales to allow for efficient simulation.

In the case of SPDEs there are many (� 1) length and time scales.
Can one construct many-scale temporal integrators that are
accurate even when they under-resolve the fast fluctuations?
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Limiting Diffusive Dynamics

References

A. Donev, A. L. Garcia, Anton de la Fuente, and J. B. Bell.

Enhancement of Diffusive Transport by Nonequilibrium Thermal Fluctuations.
J. of Statistical Mechanics: Theory and Experiment, 2011:P06014, 2011.

A. Vailati, R. Cerbino, S. Mazzoni, C. J. Takacs, D. S. Cannell, and M. Giglio.

Fractal fronts of diffusion in microgravity.
Nature Communications, 2:290, 2011.

F. Balboa Usabiaga, J. B. Bell, R. Delgado-Buscalioni, A. Donev, T. G. Fai, B. E. Griffith, and C. S. Peskin.

Staggered Schemes for Incompressible Fluctuating Hydrodynamics.
To appear in SIAM J. Multiscale Modeling and Simulation, 2012.

A. Donev, E. Vanden-Eijnden, A. L. Garcia, and J. B. Bell.

On the Accuracy of Explicit Finite-Volume Schemes for Fluctuating Hydrodynamics.
CAMCOS, 5(2):149–197, 2010.

A. J. Nonaka, A. Donev, T. Fai, A. L. Garcia, and J. B. Bell.

Low Mach Number Fluctuating Hydrodynamics of Fluid Mixtures.
In preparation, 2012.
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