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Introduction
Coarse-Graining for Fluids

@ Assume that we have a fluid (liquid or gas) composed of a collection
of interacting or colliding point particles, each having mass m; = m,
position r;(t), and velocity v;.

@ Because particle interactions/collisions conserve mass, momentum,
and energy, the field

~ p m;
Urt)= |5 | =>_| mvi |[dr—ri(t)]
é i m,'v,-2/2

captures the slowly-evolving hydrodynamic modes, and other modes
are assumed to be fast (molecular).

@ We want to describe the hydrodynamics at mesoscopic scales using
a stochastic continuum approach.
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Introduction
Continuum Models of Fluid Dynamics

@ Formally, we consider the continuum field of conserved quantities

p p -
Urt)=1{1]j | = pv = U(r, t),
e pcy T + pv2/2

where the symbol = means something like approximates over long
length and time scales.

@ Formal coarse-graining of the microscopic dynamics has been

performed to derive an approximate closure for the macroscopic
dynamics.

@ This leads to SPDEs of Langevin type formed by postulating a
random flux term in the usual Navier-Stokes-Fourier equations with
magnitude determined from the fluctuation-dissipation balance
condition, following Landau and Lifshitz.
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Introduction

The SPDEs of Fluctuating Hydrodynamics

@ Due to the microscopic conservation of mass, momentum and
energy,

8:U= -V [F(U) - Z] = -V - [Fy(U) — Fp(VU) — BW],

where the flux is broken into a hyperbolic, diffusive, and a
stochastic flux.

@ We assume that W can be modeled as spatio-temporal white noise,
i.e., a Gaussian random field with covariance

Wi(r, t)VVf(r’, t')) = (0;) 6(t — t'")o(r — ).
@ We will consider here binary fluid mixtures, p = p1 + p2, of two fluids

that are indistinguishable, i.e., have the same material properties.

@ We use the concentration ¢ = p;/p as an additional primitive
variable.
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Introduction

Compressible Fluctuating Navier-Stokes

Neglecting viscous heating, the equations of compressible fluctuating
hydrodynamics are

Dip=—p(V-v)
p(Dv) == VP+ V- (nVv+EX)

pcy (D:T)=—P(V-v)+ V- (kVT+Z2)
p(Dic) =V - [px (V) + W],

where D0 = 90+ v - V (0) is the advective derivative,
Vv =(Vv+Vv)—2(V -v)I/3

the heat capacity ¢, = 3kg/2m, and the pressure is P = p (kg T /m).
The transport coefficients are the viscosity 7, thermal conductivity x, and
the mass diffusion coefficient y.
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Introduction

Incompressible Fluctuating Navier-Stokes

@ Ignoring density and temperature fluctuations, equations of
incompressible isothermal fluctuating hydrodynamics are

Orv =P [—V-Vv+yv2v+p_1 (V-%)]
V.v=0
drc=—v-Vc+xVic+p H (V- W),

where the kinematic viscosity v = n/p, and
v-Vc=V-(cv)andv- Vv ="V (w') because of
incompressibility.

@ Here P is the orthogonal projection onto the space of divergence-free
velocity fields.
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Introduction
Stochastic Forcing

@ The capital Greek letters denote stochastic fluxes that are modeled as
white-noise random Gaussian tensor and vector fields, with
amplitudes determined from the fluctuation-dissipation balance
principle, notably,

¥ =/ 2nkg T WW
W= /2myp c(1 — c) W',

where the W's denote white random tensor/vector fields.
@ Adding stochastic fluxes to the non-linear NS equations produces
ill-behaved stochastic PDEs (solution is too irregular).

@ For now, we will simply linearize the equations around a steady
mean state, to obtain equations for the fluctuations around the
mean,

U= (U)+dU=Up+dU.
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Nonequilibrium Fluctuations

Nonequilibrium Fluctuations

@ When macroscopic gradients are present, steady-state thermal
fluctuations become long-range correlated.

o Consider a binary mixture of fluids and consider concentration
fluctuations around a steady state co(r):

c(r,t) = co(r) + dc(r, t)

@ The concentration fluctuations are advected by the random
velocities v(r, t) = ov(r, t), approximately:

Ot (6¢) + (0v) - Voo = x V2 (5¢) + /2xks T (V - W,)
@ The velocity fluctuations drive and amplify the concentration

fluctuations leading to so-called giant fluctuations [1].
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Nonequilibrium Fluctuations

Fractal Fronts in Diffusive Mixing

Figure: Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface between two miscible fluids in zero gravity [2, 1, 3].
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Nonequilibrium Fluctuations

Giant Fluctuations in Experiments

+3%

+2%

Space

+1%

0%

-1%

Earth

-2%

Relative varation of shadowgraph intensity

-3%

Os 500 s 1000's 2000s

Figure: Experimental results by A. Vailati et al. from a microgravity environment
[1] showing the enhancement of concentration fluctuations in space (box scale is
macroscopic: 5mm on the side, Imm thick).
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Fluctuation-Enhanced Diffusion Coefficient

Concentration-Velocity Correlations

@ The nonlinear concentration equation includes a contribution to the
mass flux due to advection by the fluctuating velocities,

Ot (6c) + (0v) - Vg =V - [— (dc) (ov) + xV (dc)] + ...

@ The linearized equations can be solved in the Fourier domain
(ignoring boundaries for now) for any wavenumber k, denoting
ki = ksinf and k|| = kcos®f.

@ One finds that concentration and velocity fluctuations develop
long-ranged correlations:

—~ % k T
ASc,y = ((5c)(8vy)) = _m

@ A quasi-linear (perturbative) approximation gives the extra flux [4, 5]:
Aj = —((d¢) (0v)) = —((dc) (6¥))iinear =
— (2n) / Sew (k) dk = (Ax) Ve,
k

(sin2 9) .
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Fluctuation-Enhanced Diffusion Coefficient

Fluctuation-Enhanced Diffusion Coefficient

@ The fluctuation-renormalized diffusion coefficient is y + Ax
(think of eddy diffusivity in turbulent transport), and we call x the
bare diffusion coefficient [6].

@ The enhancement Ax due to thermal velocity fluctuations is

_ - _ ke T . _
Ax = —(2n) 3/kASC,V (k) dk = 2Pt /k(sm2 0) k=2 dk.

@ Because of the k—2-like divergence, the integral over all k above
diverges unless one imposes a lower bound ki, ~ 27/L and a
phenomenological cutoff kp,.x ~ m/Lne [5] for the upper bound,
where L, is a “molecular” length scale.

@ More importantly, the fluctuation enhancement Ax depends on the
small wavenumber cutoff kpmj, ~ 27 /L, where L is the system size.
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Fluctuation-Enhanced Diffusion Coefficient
System-Size Dependence

@ Consider the effective diffusion coefficient in a system of dimensions
Ly x L, x L, with a concentration gradient imposed along the y axis.

@ In two dimensions, L, < L, < L, linearized fluctuating
hydrodynamics predicts a logarithmic divergence

(20) keT | Lx
et X T o+ )L L

@ In three dimensions, [, = L, = L < L, xeff converges as L — oo
to the macroscopic diffusion coefficient,

(3D) - OszT <1 1)
Xeff =~ P(X+V) LO L

@ We have verified these predictions using particle (DSMC) simulations
at hydrodynamic scales [2].
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Fluctuation-Enhanced Diffusion Coefficient
Particle Simulations
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Fluctuation-Enhanced Diffusion Coefficient
Three Dimensions
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Conclusions

Microscopic, Mesoscopic and Macroscopic Fluid Dynamics

@ Instead of an ill-defined “molecular” or “bare” diffusivity, one should
define a locally renormalized diffusion coefficient x( that depends
on the length-scale of observation.

@ This coefficient accounts for the arbitrary division between continuum
and particle levels inherent to fluctuating hydrodynamics.

@ A deterministic continuum limit does not exist in two dimensions, and
is not applicable to small-scale finite systems in three dimensions.

@ Fluctuating hydrodynamics is applicable at a broad range of scales

if the transport coefficient are renormalized based on the cutoff scale
for the random forcing terms.
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Conclusions
Relations to VACF

In the literature there is a lot of discussion about the effect of the
long-time hydrodynamic tail on the transport coefficients [7],

B _ kg T L2 12
C(t) = (v(0) - v(1)) = 2 D+ 7 for (X+'V) <<

This is in fact the same effect as the one we studied! Ignoring prefactors,

t=L2/(x+v) ke T kg T <1 1)
L )

AXxvacF ~ / ~ - =
=2, /o) plx+ o) P2 PO+ v) \Lmot L

which is like what we found (all the prefactors are in fact identical also).
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Conclusions
Future Directions

@ Stochastic homogenization: Can we write a nonlinear equation that
is well-behaved and correctly captures the flow at scales above some
chosen ‘“coarse-graining” scale?

Other types of nonlinearities in the LLNS equations:

e Dependence of transport coefficients on fluctuations.
e Dependence of noise amplitude on fluctuations.

Transport of other quantities, like momentum and heat.

Implications to finite-volume solvers for fluctuating hydrodynamics.
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Conclusions
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