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First-Passage Kinetic Monte Carlo (FPKMC) Introduction

Reaction-Diffusion Particle Models

Systems of diffusing particles that react with other particles upon
collision are a common model in computational materials science:
reaction-diffusion models.

Examples include: diffusion-limited chemical reactions, signal
transduction in cells, radiation damage in metals, dopant implantation
in semiconductors, epitaxial deposition and growth of thin films,
population dynamics, etc.

Continuum models are often unable to correctly capture some key
property, notably the strong heterogeneity in space/time (e.g.,
clustering), and intrinsic fluctuations (e.g., nucleation)

Continuous-Time Markov Chain models are an attractive but
expensive alternative:
A collection of Brownian hard spheres that diffuse through a
homogeneous continuum and react upon collision with other particles
or surfaces.
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First-Passage Kinetic Monte Carlo (FPKMC) Introduction

Example: Chemotaxis in E. Coli.

Figure: Bacterial chemotaxis as studied using Smoldyn by Karen Lipkow and
Steven Andrews [J. Bacteriol. 187(1):45-53, (2005)]
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First-Passage Kinetic Monte Carlo (FPKMC) Introduction

Example: Radiation Damage

Figure: Defect creation and clustering in metals during irradiation.
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First-Passage Kinetic Monte Carlo (FPKMC) FPKMC

Diffusion Kinetic Monte Carlo

(MNG)

Some or all unit events are diffusion
hops: a set of N hard objects walking
randomly on a lattice or in continuum
space.

Upon collision particles react
(collision events).

Example: Diffusion-controlled
annihilation A + A→ 0.

Great many diffusion hops necessary
to bring particles to collisions at low
density.

Traditional synchronous n−fold event-driven algorithm (BKL). Other types
of Poisson events (birth, decay, boundary, etc.) are easy to handle.
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First-Passage Kinetic Monte Carlo (FPKMC) FPKMC

Green’s Function Diffusion Theory

Given a region of space Ω, one can
determine the probability distributions
for when and where (on ∂Ω) a particle
will first leave that region (first-event
prediction).

Given that a particle has not yet left
that region, one can determine the
probability of finding the particle at
some point inside the region at a given
time (no-event propagation).

For pairs of particles, reduce to two independent center-of-mass and
difference walkers.
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First-Passage Kinetic Monte Carlo (FPKMC) FPKMC

First Passage Kinetic Monte Carlo (FPKMC)

(MNG)

Construct disjoint protective regions
(cubes, spheres) at t = 0.

Main events are (super)hops to ∂Ω.
For each walker (particle or pair)
randomly draw first passage time
from the appropriate PDF.

Find the earliest time in the queue,
propagate the particle/pair to
boundary/collision, construct a new
protective region, insert back into
queue with a new event time, repeat
[1, 2]!

A. Donev (CIMS) Reaction-Diffusion 7/2014 8 / 34

Graphics/Anihilation2D.FPKMC.mng


First-Passage Kinetic Monte Carlo (FPKMC) FPKMC

Advantages of the Algorithm

The FPKMC algorithm is exact for continuous diffusion problems
because it breaks the hard N-body problem into tractable one- and
two-body problems.

It is the first use we know of of time-dependent Green’s functions.

The algorithm automatically adjusts to variable timescales:
multiscale.

We have a code that implements different types of reactions
(annihilation, coalescence, chemical reactions, decay/emission,
hard-sphere repulsion).
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First-Passage Kinetic Monte Carlo (FPKMC) FPKMC

Disadvantages of the Algorithm

The method is significantly more complicated to implement than
BKL KMC and it requires analytical solutions (1-body and 2-body
problems).

Multi-particle reactions cause complications or slowdown (ex., nearly
triple collisions).

One can combine the asynchronous super-hops with local synchronous
small hops in a mixed time-driven/event-driven approach [3].

FPKMC can be viewed as a general-purpose accelerator that brings
particle within interaction range quickly, after which
application-specific handling should take over.
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First-Passage Kinetic Monte Carlo (FPKMC) Results: Radiation Damage in Fe

FPKMC for Radiation Damage

Diffusion-reaction model for radiation damage in metals: diffusing
and reacting vacancies and interstitials and their clusters

A Kinetic Monte Carlo (KMC) simulation faithfully follows every
atomistic event: cascade insertion, diffusion hop, annihilation,
recombination, clustering, dissociation, trapping, escape, etc [4].
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First-Passage Kinetic Monte Carlo (FPKMC) Results: Radiation Damage in Fe

Radiation Damage KMC Model

Very simple additive hard-sphere model for testing purposes, based
on work by Barbu et al.

Species:

monomers, including highly-mobile interstitials (I ) and less-mobile
vacancies (V ), with diffusion coefficient

D1 = D0e−Em/kT

mobile cluster species, including dimers (I2 and V2) and trimers (I3 and
V3), with radius

Rc ∼ R0 + (R1 − R0)c1/3

immobile species representing clusters larger than any of the mobile
species (Ic and Vc)
Frenkel pairs (IV ), inserted randomly with some rate
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First-Passage Kinetic Monte Carlo (FPKMC) Results: Radiation Damage in Fe

Model contd.

Reactions:

Coalescence: I + I → I2 or V + V3 → Vc=4

Partial annihilation: I2 + Vc=4 → V2

Decay or emission: Vc=5 → Vc=4 + V , or I2 → I + I , with rate

Γc = Γ0D1a−2c2/3e−Eb(c)/kT ,

Eb(c) = Ef + [Eb(2)− Ef ]
c2/3 − (c − 1)2/3

22/3 − 1
.
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First-Passage Kinetic Monte Carlo (FPKMC) Results: Radiation Damage in Fe

Validation
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Figure: Comparison of the density profile between FPKMC (symbols) and CEA
OKMC code from LAKIMOCA (lines) simulations of a 0.287µm-thick film of
α-iron subjected to 120 seconds of electron radiation at a temperature
T = 200oC .
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First-Passage Kinetic Monte Carlo (FPKMC) Results: Radiation Damage in Fe

Extensions of FPKMC

Recently the group of Linda Petzold has extended first-passage to
lattice models (discrete space), notably, surface growth [5].

The groups of Paul Atzberger and Samuel Isaacson have recently
extended FPKMC to handle external biasing potentials [6].

First-passage problem out of the protective domain U [6]:

∂tρ = D∇ ·
(

ρ

kBT
∇V + ∇ρ

)
and

ρ (r, 0) = δ (r − r0) and ρ (∂U, t) = 0,

is hard to solve analytically so in [6] a lattice discretization is used.
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Immersed-Boundary Reaction-Diffusion Minimally-Resolved Reaction-Diffusion

Continuum Reaction-Diffusion Models

If we have many small diffusing particles that react with (nearly)
stationary large sinks and sources we can spatially coarse-grain the
particle description and use a continuum concentration field c (r, t)
for each species.

It is important to note that this “continuum” description can also
account for spatial fluctuations (fluctuating hydrodynamics, discussed
later).

Consider a diffusing species that reacts upon touching the surface of a
sphere S (Smoluchowski model), henceforth called a particle.

Diffusion equation for the concentration of the species c (r, t),

∂tc = χ∇2c + s (r, t) in Ω \ S, (1)

χ (n ·∇c) = k c on ∂S, (2)

where k is the surface reaction rate.
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Immersed-Boundary Reaction-Diffusion Minimally-Resolved Reaction-Diffusion

Minimally-Resolved Model

Often KMC similar to FPKMC (“walk on spheres”) is used to solve
this equation by simulating explicit trajectories of the diffusing
particles: expensive.

We have developed a minimimally-resolved continuum modeling
approach that solves the diffusion PDE using standard grid
methods.

We do not care about the fine details of the concentration around a
particle, and only account for an effective source-sink.
We will call our particles “blobs” since they can be thought of as a
sort of diffuse sphere.

Take an Immersed Boundary (IB) method approach and describe
the interaction using a localized smooth kernel δa(∆r) with compact
support of size a (integrates to unity).
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Immersed-Boundary Reaction-Diffusion Minimally-Resolved Reaction-Diffusion

Local Averaging and Spreading Operators

The reactant concentration field c(r, t) is extended over the whole
domain, including the particle interior. Let the position of the
spherical particle be q.
The local averaging operator J(q) averages the concentration inside
the particle to estimate the local concentration

cq (t) =

∫
δa (q− r) c (r, t) dr ≡ [J(q)] c.

The reverse of local averaging is accomplished using the local
spreading operator S(q),

λq (r, t) = λ (t) δa (q− r) ≡ [S(q)]λ.

For multi-particle problems, define composite local averaging and
spreading operators,

(J c)i ≡ [J(qi )] c and Sλ =
N∑
i=1

[S(qi )]λi .
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Immersed-Boundary Reaction-Diffusion Spatio-Temporal Discretization

Discrete Averaging and Spreading

Figure: Illustration of discrete kernel functions used to represent the interaction
between the particles and the grid used to solve the concentration equation. (Left
panel) The three-point (w = 3) Peskin kernel ϕ3. (Right panel) The four-point
(w = 4) Peskin kernel ϕ4.
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Immersed-Boundary Reaction-Diffusion Spatio-Temporal Discretization

Reactive Blobs

Smoluchowski model:

∂tc = χ∇2c + s (r, t) in Ω \ S, (3)

χ (n ·∇c) = k c on ∂S, (4)

Reactive-blob model [7]:

∂tc = χ∇2c − κ
[∫

δa (q− r) c (r, t) dr

]
δa (q− r) + s,

or compactly, continuum or discrete,

∂tc = χ∇2c − (SκJ ) c + s, (5)

where κ = 4πka2 is the overall reaction rate.
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Immersed-Boundary Reaction-Diffusion Spatio-Temporal Discretization

Spatio-Temporal Discretization

After temporal discretization using a backward Euler step for c,

cn+1 − cn

∆t
= χLcn+1 − SnκJ ncn+1 + sn, (6)

which requires solving a linear system of the form(
∆t−1I− χL + SκJ

)
c = Bc = g. (7)

If ∆t →∞ the backward Euler method approaches a steady-state
solver.

We have developed multigrid-based iterative solvers to solve the
reaction-diffusion equation (7) [7].
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Immersed-Boundary Reaction-Diffusion Spatio-Temporal Discretization

Diffusion-Limited Regime

In the diffusion-limited case, κi →∞ and the boundary condition
becomes absorbing,

c = 0 on ∂S.

The reactive blob equations approach a saddle-point (constrained)
problem:

∂tc = χ∇2c − Sλ+ s,

s.t. J c = 0, (8)

where the sink strengths λ← κJ c are a Lagrange multiplier
corresponding to the constraint.

Numerically solving the saddle-point system is hard but recently we
have developed efficient preconditioners that can handle up to 10K
blobs (particles, sinks or sources) in three dimensions.
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Immersed-Boundary Reaction-Diffusion Example

Smoluchowski problem

For an isolated sphere of radius a immersed in a reservoir of the
reactant with concentration c∞,

c (r) = c∞

(
1− 1

1 + P

a

r

)
. (9)

The speed of diffusion vs reaction is measured by the dimensionless
number P = χ/(ka) = Da−1:
The reaction is diffusion-limited if P � 1, and reaction-limited if
P � 1.

The total rate of consumption of the reactant is

λ =
4πaχc∞
(1 + P)

. (10)
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Immersed-Boundary Reaction-Diffusion Example

Example: Numerics

Figure: Ratio c(r)/c∞ for a single blob placed at the center a large cubic box
with the concentration at the boundaries fixed to c∞.
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Immersed-Boundary Reaction-Diffusion Example

Example contd.
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Figure: Decay of the concentration around a blob in a cubic domain of 1003 grid
cells with Dirichlet boundary conditions.
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Reactions and Thermal Fluctuations

Reaction-Diffusion Processes

Let us now consider the case when the small diffusing particles react
with each other, but there is enough particles to allow for a
description in terms of concentration fields.
There will be a number of species and reaction channels converting
species: (

ϑ+
1 , . . . , ϑ

+
n

)
↔
(
ϑ−1 , . . . , ϑ

−
n

)
.

The standard stochiometric coefficients are ν = ϑ−−ϑ+ (negative
for reactants), and mass conservation requires that

∑
k νkmk = 0,

where m are the molecular masses.
Cluster dynamics modeling of radiation damage falls in this category
(each species is a given cluster size), as do chemical reactions.
We can also account for fluctuations by writing a Master Equation
(ME) description of the reactions.
One can use (asynchronous or synchronous) KMC algorithms to
generate trajectories according to the ME (Gillespie SSA, first
reaction, next reaction, etc.).
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Reactions and Thermal Fluctuations

Rate Equations

For large concentrations we expect deterministic law of mass action
(LMA) kinetics with rate r (n),

∂tn =

(
k+

reac∏
k

n
ϑ+
k

k − k−
prod∏
k

n
ϑ−k
k

)
ν =

(
r + (n)− r− (n)

)
ν = r (n)ν,

where n (t) = N (t) /V is the number density and V is the volume of
the “well-stirred vessel” containing N (t) molecules.

For a single uni-directional reaction channel, KMC solves the
non-Gaussian SDE,

dn = V−1 P (V r (n) dt)ν,

where P (X ) is a Poisson random variable with mean X .
Note that the random increments are most of the time zero and
occasionally one or so (inefficient – use KMC/SSA instead!)
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Reactions and Thermal Fluctuations

Chemical Langevin Equation

If the populations are large, N� 1 and V →∞, we can replace the
Poisson variable by a Gaussian random variable (Kurtz theorem) and
write

dn = N
(
r (n) dt, V−1 r (n) dt

)
ν

where N
(
µ, σ2

)
denotes a normal variable of mean µ and variance

σ2.

This is the Chemical Langevin Equation (CLE) of Gillespie

dn =

[
r (n) dt +

√
V−1r (n) dtN (0, 1)

]
ν,

which is consistent with a standard SODE driven by Brownian motion.

Unfortunately, the CLE has limitied utility: It only describes short
time dynamics. The CLE fails to correctly describe long-time
dynamics, including reproducing the correct steady-state (equilibrium)
distribution or rare events (transitions among metastable states).
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Reactions and Thermal Fluctuations

Langevin Approximation

For a reversible reaction we get the Ito SODE driven by the
white-noise process W (t),

dn

dt
=

[(
r + (n)− r− (n)

)
+ (2V )−

1
2

(
r + (n) + r− (n)

2

) 1
2

W (t)

]
ν.

It can be shown that if the original ME obeys detailed balance with
respect to a suitable distribution, there is only one Gaussian SODE
that is also in detailed balance with the right distribution, and
correctly reproduces very long-time dynamics (including rare events).

This SODE was first proposed by Hanggi/Grabert/Talkner [8] and
relies on the kinetic stochastic interpretation:

dn

dt
=

[
· · ·+ (2V )−

1
2

(
r + (n)− r− (n)

ln r + (n)− ln r− (n)

) 1
2

�W (t)

]
ν.
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Reactions and Thermal Fluctuations

Langevin Approximation

The key differences between the two Langevin approximations is that
the CLE uses an arithmetic mean of r + (n) and r− (n) and is Ito,
while the Hanggi equation uses the logarithmic mean and is
kinetic.
This makes a big difference in terms of long-time dynamics!

Note that for the Hanggi equation to apply the reaction has to be
reversible (otherwise there cannot be detailed balance and
thermodynamic equilibrium).

But both Langevin equations seem to have serious deficiencies and
in general it is not clear a Langevin approximation is suitable.

The idea of τ -leaping is to generate Poisson V−1P (V r (n) τ)
instead of Gaussian increments, and otherwise pretend one is solving a
standard SODE.

Perhaps one can replace Poisson (integer) variables with something
easier to generate efficiently (e.g., continuous approximation)?
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Reactions and Thermal Fluctuations

Fluctuating Hydrodynamics

One can include diffusion, and more generally full hydrodynamics in
the description: fluctuating hydrodynamics.

As an example consider the simple dimerization reaction

2A
k′



k

A2

call c1 the concentration of A and c2 of A2 (not independent!).

For a spatially-extended system, with diffusion, the dynamics can
(perhaps) be described by the spatial CLE

∂tc2(r, t) =
(
kc2

1 − k ′c2

)
+
(
kc2

1 + k ′c2

) 1
2 W(r, t) reaction

+ χ∇2c2 + ∇ ·
(

(2χc2)
1
2 Z(r, t)

)
diffusion

or the related Hanggi-type equation (work in progress).
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Conclusions

Conclusions

Asynchronous event-driven algorithms like FPKMC are powerful
tools to deal with systems with vastly disparate time scales, but they
require lots of precomputed analytical solutions.

Future: Account for long-ranged interactions (e.g., electrostatic or
elastic) approximately to model radiation damage modeling without
bias factors.

Future: When very fast species (e.g., interstitials) are present they
slow down even event-driven algorithms: multiscale methods to utilize
this separation of time-scales.
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Conclusions

contd.

After spatial coarse-graining over a reference volume V one can
obtain reaction-diffusion (S)PDEs from the microscopic dynamics.

When the reaction can be treated as a boundary condition on surfaces
we can use immersed boundary methods to solve the diffusion
equation.

When the reactions are among diffusing particles themselves a
combined ME/SPDE/CLE description applies: reactive fluctuating
hydrodynamics.

In general real-world problems such as radiation damage require
combining all approaches.
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