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Introduction

Light-Activated Diffusion/Osmophoresis

Figure: From Jeremie Palacci, Paul Chaikin lab (NYU Physics) [1]
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Introduction

Non-Spherical Colloids near Boundaries

Figure: (Left) Cross-linked spheres; Kraft et al. [2]. (Right) Lithographed
boomerangs; Chakrabarty et al. [3].
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Introduction

Immersed Spherical Particles

For simplicity, we first consider the dynamics of several immersed
spherical particles with positions given by x = {x i} .
For now we will ignore the orientation of the particles.
We assume that inertia evolves much faster than particle position, and
consider the overdamped equations for particle motion.
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Introduction

Brownian Dynamics

We write the overdamped Langevin equation for the Brownian
dynamics of the particles.

∂tx =−M∂xU(x) +
√

2kBTM 1
2
W + kBT∂x · (M)

M is the mobility operator, M 1
2
M?

1
2

= M , U is the potential energy,
kBT is the temperature, and W is a vector of independent white
noise.
The thermal drift term ∂x · (M) can be written as

∑N
j=1 ∂xj Mij(x).

These equations of motion are time reversible w.r.t the Gibbs
Boltzmann distribution

ρeq(x) = Z−1 exp (−U(x)/kBT )
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Introduction

Difficulties in Integration

The mobilityM includes all particle interaction and boundary effects.
Constructing this operator is non trivial (Aleksandar Donev will talk
more on this).
Calculating just the application of M and M 1

2
is an expensive process.

More complicated objects such as ∂x ·M and M−1 may not be
directly computable.
This talk focuses on the thermal drift. Our goal is to develop schemes
that use only only application of M and M 1

2
.
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Temporal Integrators

Fixman’s Method

A standard way to handle the themal drift is with Fixman’s midpoint
method

xn+ 1
2 =xn − ∆t

2
Mn∂xU(xn) +

√
kBT∆t

2
Mn

1
2
W n

xn+1 =xn −∆tMn+ 1
2∂xU(xn+ 1

2 )

+
√

2kBT∆tMn+ 1
2

(
Mn

1
2

)−1
W n.,

where W n is a vector of independent N (0, 1) variables.
While this achieves the correct drift, it requires knowledge of(
Mn

1
2

)−1
= M−1M 1

2
, which we recall is not easy to obtain.
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Temporal Integrators

Random Finite Difference

We can also generate the drift with
(
M(xn + δW̃ )−Mn

)
W̃ /δ,

where W̃ is a vector of independent N (0, 1) variables.
This leads to the Random Finite Difference (RFD) scheme

xn+1 =xn −∆tMn∂xU +
√

2kBT∆tMn
1
2
W n

+
kBT
δ

(
M(xn + δW̃ )−Mn

)
W̃ .

This scheme makes an error of order δ. Fixman takes δ ∼ ∆t, but this
is not neccessary.

We need to apply Mn, Mn
1
2
, and M

(
xn + δW̃

)
, but not

(
Mn

1
2

)−1
.
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Including Rotation

Bodies with rotation

We can extend our work to simulate bodies with rotational DOFs by
formulating the appropriate Langevin equation and using a RFD
approach to for temporal integration.
For simplicity, first we consider a single body with only rotational
degrees of freedom.
Orientation is an element of SO(3) so we need to parameterize it: we
use normalized quaternion (point on the unit 4-sphere)

θ ∈ R4, ‖θ‖2 = θ · θ = 1.

This offers several advantages over several other common approaches,
such as rotation angles, rotation matrices, and Euler angles[4].
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Including Rotation

Quaternions

Successive rotations can be accumulated by quaternion
multiplication.
In three dimensions, there exists a 4× 3 matrix Ψ(θ) such that, given
a conservative potential U(θ),

θ̇ = Ψω, τ = ΨT∂θU(θ).

Here τ is the torque applied to the body, and ω is the angular velocity.
One can also rotate a body by an oriented angle φ, denoted as

θn+1 = Rotate (θn, φ) .
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Including Rotation

Equations for Rotation

We assume now that we know the mobility tensor Mωτ ,

ω =Mωττ .

Given Mωτ and a potential U(θ), the Langevin Equation for
orientation is

∂tθ =−
(
ΨMωτΨ

T
)
∂θU +

√
2kBTΨM

1
2
ωτW

+ kBT∂θ ·
(
ΨMωτΨ

T
)
.

This equation preserves the unit norm constraint and is time reversible
w.r.t. the Gibbs Boltzmann distribution

Peq (θ) = Z−1 exp (−U (θ) /kBT ) δ
(
θTθ − 1

)
.
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Including Rotation

Random Finite Difference for Orientation

We construct a RFD scheme for timestepping the quaternion
orientation

θ? =Rotate
(
θn, δW̃

)
ωn =−

(
MΨT ∂U

∂θ

)n

+

(
2kBT

∆t
Mn
) 1

2

W n

+

(
kBT
δ

)
(M? −Mn) W̃

θn+1 =Rotate (θn, ωn∆t) .
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Including Rotation

Algorithm with Translation

To include translation, we introduce the matrix Ξ, letting u = q̇
where q is the location of the body.

Ξ =

[
I 0
0 Ψ

]
,
[
q̇, θ̇

]T
= Ξ [u,ω]T

The equations of motion in this case are

υ =
dx
dt

=− (ΞNΞ?) ∂xU +
√

2kBT ΞN
1
2W + (kBT ) ∂x · (ΞNΞ?) ,

where x = (q,θ)T , υ =
(
u, θ̇

)T
, and N is the grand mobility tensor,

such that given force F on the body, we have.

[u,ω]T = N [F , τ ]T .
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Including Rotation

Random Finite Difference with Translation

We can also write a RFD scheme that works with translation

ṽ =W̃
q̃ =qn + δũ

θ̃ =Rotate (θn, δω̃)

vn =−
(
NΞT∂xU

)n
+

√
2kBT

∆t

(
N

1
2

)n
W n +

kBT
δ

(
Ñ −Nn

)
W̃

qn+1 =qn + ∆tun

θn+1 =Rotate (θn,∆tωn) .
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Numerical Results

Computing Mobilty

There are different ways to obtain M (more in talk by Aleksandar
Donev):

In unbounded domains we can just use the Rotne-Prager-Yamakawa
tensor (RPY) (always SPD!).
In simple geometries such as a single wall we can use a generalization
of RPY;
We use the analytical mobility for a single wall (Swan&Brady [5]).
In more general cases we can use a fluctuating FEM/FVM fluid
Stokes solver combined with an immersed-boundary representation of
the particles [6].

In [6] we develop an RFD scheme that requires only one Stokes solve
per time step for spherical particles.
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Numerical Results

Simulation: particles in a channel

For the single particle case, we can write down the biased distribution
that we expect when no drift is present (Euler Maruyama).
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Figure: Distribution of a particle diffusing in a channel.
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Numerical Results

Importance of stochastic drift
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Figure: Height distribution of a vertex of a tetrahedron of spheres near a wall
with one vertex tethered (rotation only).

S. Delong (CIMS) RFD 3/2015 17 / 21



Numerical Results

Non-uniform Icosahedron
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Figure: Translational Mean Square Displacement of a non-uniform Icosahedron.
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Numerical Results

Non-uniform Icosahedron
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Figure: Height and Orientation distributions for a non-uniform icosahedron.
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Numerical Results

Conclusion

We introduced the Random Finite Difference (RFD) scheme for
timestepping the overdamped Langevin equations.
This scheme requires only applications of M and M 1

2
, and in

particular we do not need to invert the mobility.
We formulate an overdamped Langevin equation for angular degrees of
freedom using quaternions.
We can apply a specialized version of RFD to handle the thermal drift
in the equations for orientation.
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Numerical Results
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