Temporal integrators for Langevin equations arising in Fluctuating Hydrodynamics

Steven Delong, CIMS \&

Eric Vanden-Eijnden and Aleksandar Donev, CIMS

Courant Institute, New York University
Hydrodynamics at Small Scales, SIAM CSE15
Salt Lake City, Utah,
March 18th, 2015

Light-Activated Diffusion/Osmophoresis

Figure: From Jeremie Palacci, Paul Chaikin lab (NYU Physics) [1]

Non-Spherical Colloids near Boundaries

Figure: (Left) Cross-linked spheres; Kraft et al. [2]. (Right) Lithographed boomerangs; Chakrabarty et al. [3].

Immersed Spherical Particles

- For simplicity, we first consider the dynamics of several immersed spherical particles with positions given by $\boldsymbol{x}=\left\{\boldsymbol{x}_{i}\right\}$.
- For now we will ignore the orientation of the particles.
- We assume that inertia evolves much faster than particle position, and consider the overdamped equations for particle motion.

Brownian Dynamics

- We write the overdamped Langevin equation for the Brownian dynamics of the particles.

$$
\partial_{t} x=-M \partial_{x} U(x)+\sqrt{2 k_{B} T} M_{\frac{1}{2}} \mathcal{W}+k_{B} T \partial_{x} \cdot(M)
$$

- M is the mobility operator, $M_{\frac{1}{2}} M_{\frac{1}{2}}^{\star}=M, U$ is the potential energy, $k_{B} T$ is the temperature, and \mathcal{W} is a vector of independent white noise.
- The thermal drift term $\partial_{\boldsymbol{x}} \cdot(M)$ can be written as $\sum_{j=1}^{N} \partial_{x_{j}} M_{i j}(x)$.
- These equations of motion are time reversible w.r.t the Gibbs Boltzmann distribution

$$
\rho_{e q}(x)=Z^{-1} \exp \left(-U(x) / k_{B} T\right)
$$

Difficulties in Integration

- The mobility M includes all particle interaction and boundary effects. Constructing this operator is non trivial (Aleksandar Donev will talk more on this).
- Calculating just the application of M and $M_{\frac{1}{2}}$ is an expensive process.
- More complicated objects such as $\partial_{\boldsymbol{x}} \cdot M$ and \boldsymbol{M}^{-1} may not be directly computable.
- This talk focuses on the thermal drift. Our goal is to develop schemes that use only only application of M and $M_{\frac{1}{2}}$.

Fixman's Method

- A standard way to handle the themal drift is with Fixman's midpoint method

$$
\begin{aligned}
x^{n+\frac{1}{2}}= & x^{n}-\frac{\Delta t}{2} M^{n} \partial_{x} U\left(x^{n}\right)+\sqrt{\frac{k_{B} T \Delta t}{2}} M_{\frac{1}{2}}^{n} W^{n} \\
x^{n+1}= & x^{n}-\Delta t M^{n+\frac{1}{2}} \partial_{x} U\left(x^{n+\frac{1}{2}}\right) \\
& +\sqrt{2 k_{B} T \Delta t} M^{n+\frac{1}{2}}\left(M_{\frac{1}{2}}^{n}\right)^{-1} W^{n} .,
\end{aligned}
$$

where \boldsymbol{W}^{n} is a vector of independent $\boldsymbol{\mathcal { N }}(0,1)$ variables.

- While this achieves the correct drift, it requires knowledge of $\left(M_{\frac{1}{2}}^{n}\right)^{-1}=M^{-1} M_{\frac{1}{2}}$, which we recall is not easy to obtain.

Random Finite Difference

- We can also generate the drift with $\left(\boldsymbol{M}\left(\boldsymbol{x}^{n}+\delta \widetilde{\boldsymbol{W}}\right)-\boldsymbol{M}^{n}\right) \widetilde{\boldsymbol{W}} / \delta$, where $\widetilde{\boldsymbol{W}}$ is a vector of independent $\boldsymbol{\mathcal { N }}(0,1)$ variables.
- This leads to the Random Finite Difference (RFD) scheme

$$
\begin{aligned}
x^{n+1}= & x^{n}-\Delta t M^{n} \partial_{x} U+\sqrt{2 k_{B} T \Delta t} M_{\frac{1}{2}}^{n} W^{n} \\
& +\frac{k_{B} T}{\delta}\left(M\left(x^{n}+\delta \widetilde{W}\right)-M^{n}\right) \widetilde{W}
\end{aligned}
$$

- This scheme makes an error of order δ. Fixman takes $\delta \sim \Delta t$, but this is not neccessary.
- We need to apply $M^{n}, M_{\frac{1}{2}}^{n}$, and $M\left(x^{n}+\delta \widetilde{W}\right)$, but $\operatorname{not}\left(M_{\frac{1}{2}}^{n}\right)^{-1}$.

Bodies with rotation

- We can extend our work to simulate bodies with rotational DOFs by formulating the appropriate Langevin equation and using a RFD approach to for temporal integration.
- For simplicity, first we consider a single body with only rotational degrees of freedom.
- Orientation is an element of $\mathrm{SO}(3)$ so we need to parameterize it: we use normalized quaternion (point on the unit 4-sphere)

$$
\boldsymbol{\theta} \in \mathbb{R}^{4}, \quad\|\boldsymbol{\theta}\|_{2}=\boldsymbol{\theta} \cdot \boldsymbol{\theta}=1
$$

- This offers several advantages over several other common approaches, such as rotation angles, rotation matrices, and Euler angles[4].

Quaternions

- Successive rotations can be accumulated by quaternion multiplication.
- In three dimensions, there exists a 4×3 matrix $\boldsymbol{\Psi}(\boldsymbol{\theta})$ such that, given a conservative potential $U(\boldsymbol{\theta})$,

$$
\dot{\boldsymbol{\theta}}=\boldsymbol{\Psi} \boldsymbol{\omega}, \quad \boldsymbol{\tau}=\boldsymbol{\Psi}^{T} \partial_{\boldsymbol{\theta}} U(\boldsymbol{\theta})
$$

Here $\boldsymbol{\tau}$ is the torque applied to the body, and $\boldsymbol{\omega}$ is the angular velocity.

- One can also rotate a body by an oriented angle ϕ, denoted as

$$
\boldsymbol{\theta}^{n+1}=\operatorname{Rotate}\left(\boldsymbol{\theta}^{n}, \boldsymbol{\phi}\right) .
$$

Equations for Rotation

- We assume now that we know the mobility tensor $M_{\omega \tau}$,

$$
\omega=M_{\omega \tau} \tau
$$

- Given $M_{\omega \tau}$ and a potential $U(\boldsymbol{\theta})$, the Langevin Equation for orientation is

$$
\begin{aligned}
\partial_{t} \boldsymbol{\theta}= & -\left(\boldsymbol{\Psi} \boldsymbol{M}_{\omega \tau} \boldsymbol{\Psi}^{T}\right) \partial_{\boldsymbol{\theta}} U+\sqrt{2 k_{B} T} \boldsymbol{\Psi} M_{\omega \tau}^{\frac{1}{2}} \mathcal{W} \\
& +k_{B} T \partial_{\boldsymbol{\theta}} \cdot\left(\boldsymbol{\Psi} \boldsymbol{M}_{\omega \tau} \boldsymbol{\Psi}^{T}\right)
\end{aligned}
$$

- This equation preserves the unit norm constraint and is time reversible w.r.t. the Gibbs Boltzmann distribution

$$
P_{\mathrm{eq}}(\boldsymbol{\theta})=Z^{-1} \exp \left(-U(\boldsymbol{\theta}) / k_{B} T\right) \delta\left(\boldsymbol{\theta}^{T} \boldsymbol{\theta}-1\right)
$$

Random Finite Difference for Orientation

- We construct a RFD scheme for timestepping the quaternion orientation

$$
\begin{aligned}
\boldsymbol{\theta}^{\star}= & \operatorname{Rotate}\left(\boldsymbol{\theta}^{n}, \delta \widetilde{\boldsymbol{W}}\right) \\
\boldsymbol{\omega}^{n}= & -\left(\boldsymbol{M} \boldsymbol{\Psi}^{T} \frac{\partial U}{\partial \boldsymbol{\theta}}\right)^{n}+\left(\frac{2 k_{B} T}{\Delta t} \boldsymbol{M}^{n}\right)^{\frac{1}{2}} \boldsymbol{W}^{n} \\
& +\left(\frac{k_{B} T}{\delta}\right)\left(\boldsymbol{M}^{\star}-\boldsymbol{M}^{n}\right) \widetilde{\boldsymbol{W}} \\
\boldsymbol{\theta}^{n+1}= & \operatorname{Rotate}\left(\boldsymbol{\theta}^{n}, \boldsymbol{\omega}^{n} \Delta t\right) .
\end{aligned}
$$

Algorithm with Translation

- To include translation, we introduce the matrix $\overline{\text { E, letting } \boldsymbol{u}=\dot{\boldsymbol{q}}}$ where \boldsymbol{q} is the location of the body.

$$
\equiv=\left[\begin{array}{cc}
\mathbf{l} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{\Psi}
\end{array}\right], \quad[\dot{\boldsymbol{q}}, \dot{\boldsymbol{\theta}}]^{T}=\equiv[\boldsymbol{u}, \boldsymbol{\omega}]^{T}
$$

- The equations of motion in this case are

$$
\boldsymbol{v}=\frac{d x}{d t}=-\left(\equiv N \Xi^{\star}\right) \partial_{x} U+\sqrt{2 k_{B} T} \equiv N^{\frac{1}{2}} \mathcal{W}+\left(k_{B} T\right) \partial_{\mathbf{x}} \cdot\left(\equiv N \Xi^{\star}\right)
$$

where $\boldsymbol{x}=(\boldsymbol{q}, \boldsymbol{\theta})^{T}, \boldsymbol{v}=(\boldsymbol{u}, \dot{\boldsymbol{\theta}})^{T}$, and \boldsymbol{N} is the grand mobility tensor, such that given force F on the body, we have.

$$
[\boldsymbol{u}, \boldsymbol{\omega}]^{T}=\boldsymbol{N}[\boldsymbol{F}, \boldsymbol{\tau}]^{T} .
$$

Random Finite Difference with Translation

- We can also write a RFD scheme that works with translation

$$
\begin{aligned}
\tilde{\boldsymbol{v}} & =\widetilde{\boldsymbol{W}} \\
\tilde{\boldsymbol{q}} & =\boldsymbol{q}^{n}+\delta \tilde{\boldsymbol{u}} \\
\tilde{\boldsymbol{\theta}} & =\operatorname{Rotate}\left(\boldsymbol{\theta}^{n}, \delta \tilde{\boldsymbol{\omega}}\right) \\
\boldsymbol{v}^{n} & =-\left(\boldsymbol{N} \equiv^{T} \partial_{\boldsymbol{x}} U\right)^{n}+\sqrt{\frac{2 k_{B} T}{\Delta t}}\left(\boldsymbol{N}^{\frac{1}{2}}\right)^{n} \boldsymbol{W}^{n}+\frac{k_{B} T}{\delta}\left(\widetilde{\boldsymbol{N}}-\boldsymbol{N}^{n}\right) \widetilde{\boldsymbol{W}} \\
\boldsymbol{q}^{n+1} & =\boldsymbol{q}^{n}+\Delta t \boldsymbol{u}^{n} \\
\boldsymbol{\theta}^{n+1} & =\operatorname{Rotate}\left(\boldsymbol{\theta}^{n}, \Delta t \boldsymbol{\omega}^{n}\right)
\end{aligned}
$$

Computing Mobilty

- There are different ways to obtain M (more in talk by Aleksandar Donev):
- In unbounded domains we can just use the Rotne-Prager-Yamakawa tensor (RPY) (always SPD!).
- In simple geometries such as a single wall we can use a generalization of RPY;
We use the analytical mobility for a single wall (Swan\&Brady [5]).
- In more general cases we can use a fluctuating FEM/FVM fluid Stokes solver combined with an immersed-boundary representation of the particles [6].
- In [6] we develop an RFD scheme that requires only one Stokes solve per time step for spherical particles.

Simulation: particles in a channel

- For the single particle case, we can write down the biased distribution that we expect when no drift is present (Euler Maruyama).

Figure: Distribution of a particle diffusing in a channel.

Importance of stochastic drift

Equilibrium Distribution for Particle 2

Figure: Height distribution of a vertex of a tetrahedron of spheres near a wall with one vertex tethered (rotation only).

Non-uniform Icosahedron

Figure: Translational Mean Square Displacement of a non-uniform Icosahedron.

Non-uniform Icosahedron

Figure: Height and Orientation distributions for a non-uniform icosahedron.

Conclusion

- We introduced the Random Finite Difference (RFD) scheme for timestepping the overdamped Langevin equations.
- This scheme requires only applications of M and $M_{\frac{1}{2}}$, and in particular we do not need to invert the mobility.
- We formulate an overdamped Langevin equation for angular degrees of freedom using quaternions.
- We can apply a specialized version of RFD to handle the thermal drift in the equations for orientation.

References

Jeremie Palacci, Stefano Sacanna, Asher Preska Steinberg, David J Pine, and Paul M Chaikin. Living crystals of light-activated colloidal surfers.
Science, 339(6122):936-940, 2013.
Daniela J. Kraft, Raphael Wittkowski, Borge ten Hagen, Kazem V. Edmond, David J. Pine, and Hartmut Löwen.
Brownian motion and the hydrodynamic friction tensor for colloidal particles of complex shape. Phys. Rev. E, 88:050301, 2013.

Ayan Chakrabarty, Andrew Konya, Feng Wang, Jonathan V Selinger, Kai Sun, and Qi-Huo Wei. Brownian motion of boomerang colloidal particles.
Physical review letters, 111(16):160603, 2013.
Raphael Wittkowski and Hartmut Löwen.
Self-propelled brownian spinning top: Dynamics of a biaxial swimmer at low reynolds numbers. Phys. Rev. E, 85:021406, 2012.

James W. Swan and John F. Brady.
Simulation of hydrodynamically interacting particles near a no-slip boundary.
Physics of Fluids, 19(11):113306, 2007.
S. Delong, F. Balboa Usabiaga, R. Delgado-Buscalioni, B. E. Griffith, and A. Donev.

Brownian Dynamics without Green's Functions.
J. Chem. Phys., 140(13):134110, 2014.

