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Quick Intro

Bulk colloidal suspensions in three dimensions (3D) have been studied
for a long time.

We consider colloids that are confined by some strong potential to
remain on a plane [1].
An example are colloids confined to diffuse on a planar liquid-liuid
interface. This has been studied before by Johannes Bleibel, Alvaro
Doḿınguez, and collaborators.

In the limit of strong confining potential, the diffusive dynamics of the
colloids is restricted to the plane: quasi two-dimensions (q2D).

Note that the fluid flow around the colloids, mediating hydrodynamic
interactions among the particles, is still three dimensional.

If we consider colloids in a very thin film, we have 2D fluid flow: true
two-dimensions (t2D).

The goal of this talk will be to study the surprising differences
between 3D, t2D and q2D suspensions.
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Diffusion in bulk 2D and 3D

Diffusion in Liquids

There is a common belief that diffusion in all sorts of materials,
including gases, liquids and solids, is described by random walks and
Fick’s law for the concentration of labeled (tracer) particles c (r, t),

∂tc = ∇ · [χ (r; c)∇c] ,

where χ � 0 is a diffusion tensor.

But there is well-known hints that the microscopic origin of Fickian
diffusion is different in liquids from that in gases or solids, and that
thermal velocity fluctuations play a key role [2].

The Stokes-Einstein relation connects mass diffusion to
momentum diffusion (viscosity η) for dilute solutions in 3D,

χ ≈ kBT

6πση
,

where σ is the tracer (hydrodynamic) diameter.
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Diffusion in bulk 2D and 3D

Fluctuating Hydrodynamics

The thermal velocity fluctuations are described by the (unsteady)
fluctuating Stokes equation,

ρ∂tv + ∇π = η∇2v +
√

2ηkBT ∇ ·W , and ∇ · v = 0. (1)

where the thermal (stochastic) momentum flux is spatio-temporal
white noise,

〈Wij(r, t)W?
kl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).

The solution of this SPDE is a white-in-space distribution (very far
from smooth!).

Define a smooth advection velocity field, ∇ · u = 0,

u (r, t) =

∫
σ
(
r − r′

)
v
(
r′, t
)
dr′ ≡ σ ? v,

where the smoothing kernel σ filters out features at scales below a
molecular cutoff scale σ.
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Diffusion in bulk 2D and 3D

Inertial Dynamics

Lagrangian description of a passive tracer diffusing in the fluid,

q̇ = u (q, t) +
√

2χ0 Wq, (2)

where Wq(t) is a collection of white-noise processes (independent
among tracers).
In this case σ is the typical size of the tracers.

Eulerian description of the concentration c (r, t) with an (additive
noise) fluctuating advection-diffusion equation,

∂tc = −u ·∇c + χ0∇2c, (3)

where χ0 is the bare diffusion coefficient.

The two descriptions are equivalent. When χ0 = 0,
c (q(t), t) = c (q(0), 0) or, due to reversibility,
c (q(0), t) = c (q(t), 0).
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Diffusion in bulk 2D and 3D

Fluctuating Hydrodynamics SPDEs

ρ∂tv + ∇π = η∇2v +
√

2ηkBT ∇ ·W , and ∇ · v = 0.

u (r, t) =

∫
σ
(
r, r′
)

v
(
r′, t
)
dr′ ≡ σ ? v

∂tc = −u ·∇c + χ0∇2c
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Diffusion in bulk 2D and 3D

Fractal Fronts in Diffusive Mixing in 2D

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface due to the effect of thermal fluctuations.
These giant fluctuations have been studied experimentally [3] and with
hard-disk molecular dynamics.
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Diffusion in bulk 2D and 3D

Separation of Time Scales

In liquids molecules are caged (trapped) for long periods of time as
they collide with neighbors:
Momentum and heat diffuse much faster than does mass.

This means that χ� ν, leading to a Schmidt number

Sc =
ν

χ
∼ 103 − 104.

This extreme stiffness solving the concentration/tracer equation
numerically challenging.

There exists a limiting (overdamped) dynamics for c in the limit
Sc →∞ in the scaling

χν = const.
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Diffusion in bulk 2D and 3D

Eulerian Overdamped Dynamics

Adiabatic mode elimination gives the following limiting stochastic
advection-diffusion equation (reminiscent of the Kraichnan’s model
in turbulence),

∂tc = −w �∇c + χ0∇2c, (4)

where � denotes a Stratonovich dot product.

The advection velocity w (r, t) is white in time, with covariance
proportional to a Green-Kubo integral of the velocity auto-correlation
function,

〈w (r, t)⊗w
(
r′, t ′

)
〉 = 2 δ

(
t − t ′

) ∫ ∞
0
〈u (r, t)⊗ u

(
r′, t + t ′

)
〉dt ′,

In the Ito interpretation, there is enhanced diffusion,

∂tc = −w ·∇c + χ0∇2c + ∇ · [χ (r)∇c] (5)

where χ (r) is an analog of eddy diffusivity in turbulence.
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Diffusion in bulk 2D and 3D

Stokes-Einstein Relation

An explicit calculation for Stokes flow gives the explicit result

χ (r) =
kBT

η

∫
σ
(
r − r′

)
G
(
r′ − r′′

)
σT
(
r − r′′

)
dr′dr′′, (6)

where G is the Green’s function for steady Stokes flow.

For an appropriate filter σ, this gives Stokes-Einstein formula for
the diffusion coefficient in a finite domain of length L,

χ =
kBT

η

{
(4π)−1 ln L

σ if d = 2

(6πσ)−1
(

1−
√

2
2
σ
L

)
if d = 3.

The limiting dynamics is a good approximation if the effective
Schmidt number Sc = ν/χeff = ν/ (χ0 + χ)� 1.

The fact that for many liquids Stokes-Einstein holds as a good
approximation implies that χ0 � χ:
Diffusion in liquids is dominated by advection by thermal
velocity fluctuations, and is more similar to eddy diffusion in
turbulence than to standard Fickian diffusion.
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Diffusion in bulk 2D and 3D

Relation to Brownian Dynamics

If we take an overdamped limit of the Lagrangian equation we get
the the Ito equations of Brownian Dynamics (BD) for the
(correlated) positions of the N particles Q (t) = {q1 (t) , . . . ,qN (t)},

dQ = M · F (Q) dt + (2kBT M)
1
2 dB + kBT (∂Q ·M) dt,

where B(t) is a vector of Brownian motions, and F (Q) are forces.

Here M (Q) � 0 is a symmetric positive semidefinite (SPD) mobility
matrix, assumed here to have a far-field pairwise approximation

Mij (Q) ≡Mij

(
qi ,qj

)
= R

(
qi − qj

)
,

where R is the hydrodynamic kernel.

The self-diffusion tensor of a single isolated particle is

χ = (kBT )R (0) .
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Diffusion in bulk 2D and 3D

Rotne-Prager-Yamakawa Tensor

In our model the hydrodynamic kernel is

R (r1 − r2) =

∫
σ
(
r1 − r′

)
G
(
r′ − r′′

)
σ
(
r2 − r′′

)
dr′dr′′.

Observe that in the far-field, r � a, the RPY tensor becomes the
long-ranged Oseen tensor

R (r � a)→ G (r) =
1

8πr

(
I +

r ⊗ r

r2

)
. (7)

For 3D bulk suspensions, if σ (r) = δ (r − a) is a surface delta
function, we get the widely-used Rotne-Prager-Yamakawa tensor

R (r) =
1

6πηa

(
3a

4r
+

a3

2r3

)
I +

(
3a

4r
− 3a3

2r3

)
r ⊗ r

r2
, r > 2a.
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Diffusion in bulk 2D and 3D

Force Coupling Tensor

Replace the surface delta function δa by a smooth Gaussian kernel
with standard deviation σ = a/

√
π to give χ = kBT/ (6πηa).

This gives the FCM kernel that is just as good as RPY:

R (r) = f (r) I + g (r)
r ⊗ r

r2
, where[

f (r)
g(r)

]
=

1

8πηr

(
1 +

[
2
−6

]
a2

π r2

)
erf

(
r
√
π

2a

)
.

− 1

8πηr

[
2
−6

]
a

π r
exp

(
−π r

2

4a2

)
.

The use of FHD (fluctuating hydrodynamics) with Gaussian kernels
allows for very efficient (linear time!) BD, even for the RPY kernel
[4].
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Diffusion in Quasi2D

Divergence of the mobility

dQ = M · F (Q) dt + (2kBT M)
1
2 dB + kBT (∂Q ·M) dt.

An important property of the 3D RPY and FCM kernel is that they
are divergence free,

∇ ·R3D(r) = 0,

which follows from the fact the 3D flow is incompressible,
∇ ·G(r) = 0, and implies that

∂Q ·M = 0.

This has important consequences on collective diffusion.

The same applies for t2D systems as well,

∇ ·Rt2D(r) = 0,

but there are still some important differences between t2D and 3D
diffusion related to giant fluctuations.
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Diffusion in Quasi2D

Quasi-2D suspensions

For q2D, dynamics can be described by BD-HI with q = (x , y) being
position in the plane.

Now the hydrodynamic kernel is still the same RPY or FCM kernel,
but now the flow is not incompressible in the plane,

∇(x ,y) ·Rq2D(r) 6= 0,

which means that there will be a nonzero ∂Q ·M, and the diffusive
dynamics will be very different from either 3D or t2D.

To start take the Oseen tensor as the hydrodynamic kernel,

f (r � a) ≈ g (r � a) ≈ 1

8πηr
,

which gives something that in the far field looks like a repulsive
Coulomb force,

dqi

dt
= · · ·+ kBT (∂Q ·M)i = · · ·+

∑
j 6=i

kBT

8πηr
·

qi − qj∥∥qi − qj

∥∥2
+ ...
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Diffusion in Quasi2D

Diffusion Equation with HIs

For the majority of the rest of this talk we assume particles do
not interact with a direct potential (ideal gas).
Unphysical but steric repulsion does not change (short-time) collective
diffusion that much.

Define a concentration from the positions of the particles qi (t),

c (r, t) =
N∑
i=1

δ (qi (t)− r) , (8)

Ito’s rule gives the following (formal) closed but nonlinear stochastic
advection-diffusion equation for the concentration [5],

∂tc(r, t) = ∇ · (χ(r)∇c(r, t))−∇ · (w (r, t) c(r, t))

+ (kBT )∇ ·
(
c(r, t)

∫
R(r, r′)∇′c(r′, t) dr′

)
.

(9)

Fluctuations come via the random velocity field w that comes from
the fluctuating fluid velocity in FHD.
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Diffusion in Quasi2D

Nonlocal (Far-Field) HIs in 3D/t2D

The nonlinear nonlocal hydrodynamic term can be rewritten as

∇ ·
(
c(r, t)

∫
R(r, r′)∇′c(r′, t) dr′

)
=

−∇ ·
(
c(r, t)

∫ (
∇′ ·R(r, r′)

)
c(r′, t) dr′

)
.

For 3D and t2D, ∇ ·R(r, r′) = ∇′ ·R(r, r′) = 0, and (9) becomes a
linear stochastic equation that can easily be solved numerically.

Importantly, in 3D/t2D, we get Fick’s law even with HIs [2]:

∂tc
(1) (r, t) = ∇ ·

(
χ(r)∇c(1) (r, t)

)
,

for the single-particle distribution function c(1) (r, t) = 〈c (r, t)〉.
But the story is not so simple if one looks at giant fluctuations, as I
will show later and has been measured in 3D experiments.
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Diffusion in Quasi2D

Nonlocal (Far-Field) HIs in q2D

The story is very different in q2D because now ∇ ·R(r) 6= 0 and it is
long-ranged, giving

∂tc
(1) (r, t) = ∇ ·

(
χ(r)∇c(1) (r, t)

)
+ (10)

(kBT ) ∇ ·
(∫

R
(
r, r′
)
∇′c(2)

(
r, r′, t

)
dr′
)
,

which is not closed, is nonlocal, and nonlinear.

For an ideal gas, the standard closure for the two-particle correlation
function is

c(2)
(
r, r′, t

)
≈ c(1) (r, t) c(1)

(
r′, t
)
,

giving the approximation

∂tc
(1) (r, t) = ∇ ·

(
χ(r)∇c(1) (r, t)

)
. (11)

+ (kBT )∇ ·
(
c(1) (r, t)

∫
R
(
r, r′
)
∇′c(1)

(
r′, t
)
dr′
)
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Diffusion in Quasi2D

Dynamics of Density Fluctuations in q2D

Consider the case of a spatially uniform system with concentration
c(r, t) = c0 + δc(r, t), where δc � c0.

If we linearize (9) around the uniform state and ignore fluctuations:

∂tδc(r, t) = χ∇2δc(r, t) + (kBT )∇ ·
(
c0

∫
R(r − r′)∇′δc(r′, t) dr′

)
.

This equation can trivially be solved in Fourier space,
d

dt

(
δ̂ck

)
= −

(
χk2 + (kBT ) c0k · R̂k · k

)
δ̂ck = −χk2Dc (k) δ̂ck,

where Dc (k) is the short-time collective diffusion coefficient,

Dc (k) = χ

(
1 +

1

kLh

)
= χ+ (kBT )

c0

4ηk
. (12)

For high packing densities φ = πc0a
2 ∼ 1, we have Lh ∼ a:

strong collective diffusion effects at all length scales.
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Brownian Dynamics in Q2D

Hydrodynamics in q2D

By combining the Fluctuating Immersed Boundary (FIB) method with
the Fluctuating Force Coupling Method (FCM) we obtain an efficient
O(N) algorithm for q2D-BD.

The key idea behind both of these is to use fluctuating
hydrodynamics to obtain the random displacements but I will
present it here from a more algebraic perspective [4].

The key is to go Fourier space, with κ = (k, kz),

R̂k =
1

2π

∫
kz

dkz
ηκ2

(
I− κ⊗ κ

κ2

)
exp

(
−a2κ2

π

)
.

=
1

ηk3

(
c2 (ka) k⊥ ⊗ kT

⊥ + c1 (ka) k⊗ kT
)
. (13)

where both c1 and c2 decay exponentially ∼ exp
(
−a2k2

)
in Fourier

space (pseudospectral methods).
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Brownian Dynamics in Q2D

Comparison to true 2D

For small k we have the 2D projection of the t2D or q2D Oseen
tensor,

c1 (K = ka� 1) ≈ 1

4
for q2D, and 0 for t2D, and

c2 (K = ka� 1) ≈ 1

2
for q2D, and

1

k
for t2D.

The short-time self diffusion coefficient χ0 = f (kBT/η),

f =
1

6πa
· 1

1 + 4.41a/L
≈ 1

6πa
for q2D, and (14)

f =
1

4π
ln

(
L

3.71a

)
for t2D,

and L is the system size.
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Brownian Dynamics in Q2D

Diffusion as random advection

For an ideal gas we have the Ito BD equation:

dQ = (2kBT M)
1
2 dB + kBT (∂Q ·M) dt, (15)

Brownian motion of a particle in an ideal gas in q2D [5]:

dqi

dt
= w (qi , t) + kBT

a (qi ) +
∑
j 6=i

b
(
qi ,qj

), (16)

where a (r) = ∇ ·R (r, r) = ∇ · χ (r) and b(r, r′) = ∇′ ·R(r, r′).

For a translationally-invariant system a = 0, and for t2D b = 0.

Here w (r, t) is a random fluid velocity that advects the particles,

〈w (r, t)⊗w
(
r′, t ′

)
〉 = 2 (kBT )R

(
r, r′
)
δ
(
t − t ′

)
. (17)
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Brownian Dynamics in Q2D

Efficient Brownian Dynamics in q2D

The final BD equation is, with ∂iδa (r) = ∂δa (r) /∂ri [5],
dqi

dt
= w (qi , t) +

∫
δa
(
qi − r′

)∑
j

G
(
r′, r′′

)
dr′dr′′ · (18)

[
Fjδa

(
qj − r′′

)
+ (kBT ) (∂δa)

(
qj − r′′

)]
.

From (13) we get

ŵk =

√
2kBT

ηk3

(√
c2 (ka) k⊥Z

(2)
k +

√
c1 (ka) kZ(1)

k

)
, (19)

where Z(1/2)
k (t) are independent white noise processes – stochastic

momentum flux in fluctuating Stokes equation.

For FCM the kernel δa is a Gaussian with σ = a/
√
π,

Ĝk = R̂k exp

(
a2k2

π

)
=

1

η

[
gk (k) k⊥ ⊗ kT

⊥ + fk (k) k⊗ kT
]
.
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Brownian Dynamics in Q2D

BD-q2D algorithm (I)

1 Evaluate particle forces Fn = F (Qn).

2 Compute in real space on a grid the fluid forcing

f (r) =
∑
i

Fiδa (qi − r) + (kBT )
∑
i

(∂δa) (qi − r).

and use the FFT to convert f to Fourier space, f̂k.

3 Compute the fluid velocity resulting from fluid forcing f in Fourier
space as a convolution with the Green’s function,

v̂det
k = Ĝkf̂k.
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Brownian Dynamics in Q2D

BD-q2D algorithm (II)

1 Generate a random fluid velocity with covariance (2kBT ) Ĝk in
Fourier space,

v̂stoch
k =

√
2kBT

η∆t

(√
gk (k) k⊥Z

(2)
k +

√
fk (k) kZ(1)

k

)
.

2 Use the FFT to compute v (r) from

v̂k = v̂det
k + v̂stoch

k .

3 Convolve v (r) with a Gaussian in real space to compute particle
velocities,

ui =

∫
δa (qi − r) v (r) dr.

4 Advance the particles,

qn+1
i = qn

i + ui∆t.
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Numerical Results

Collective diffusion coefficient
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Figure: Short time collective diffusion coefficient in q2D obtained from the
dynamic structure factor (autocorrelation function of the spatial FFT).
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Numerical Results

Relaxation of density bump (instance)

Figure: Expansion of clump in Quasi2D (top) and True2D (bottom). Compare
fluctuations for classical diffusion BD-noHI to True2D.
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Numerical Results

Relaxation of density bump (mean)
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Figure: Comparison of ensemble average to (numerical) DDFT-HI.
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Numerical Results

Diffusion of tracers/color (theory)

If we color the particles red and green, c(1) = c
(1)
R + c

(1)
G , we expect:

∂tc
(1)
R/G (r, t) = ∇ ·

(
χ∇c

(1)
R/G (r, t)

)
+ (kBT )

∇ ·
(
c

(1)
R/G (r, t)

∫
R
(
r, r′
)
∇′
(
c

(1)
R

(
r′, t
)

+ c
(1)
G

(
r′, t
))

dr′
)

If we start the system with a uniform density, c(1) = c
(1)
R + c

(1)
G = c0,

this will remain the case forever and we just get two uncoupled
diffusion equations

∂tc
(1)
R/G (r, t) = ∇ ·

(
χ∇c

(1)
R/G (r, t)

)
.

This means that diffusive mixing in q2D, is the same on average as
for simple BD-noHI (uncorrelated Brownian walkers) and t2D.
But the fluctuations are different.
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Numerical Results

Diffusive mixing (q2D vs t2D)

Figure: Color diffusion in q2D (left) versus t2D (right) (100K particles, φ ≈ 1).
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Numerical Results

Diffusive mixing (no-HI, q2D, and t2D)

Figure: Diffusion of a perturbation of color (no-HI, q2D, and t2D)
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Numerical Results

Giant Color Fluctuations in t2D
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Numerical Results

Giant Color Fluctuations in q2D
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Numerical Results

Conclusions/questions

1 Diffusion is very strongly affected by hydrodynamic correlations and
its nature depends heavily on the geometry of the fluid and the
diffusion manifold.

2 In true-2D (diffusion in thin films) the mean obeys simple Fick’s law
at all scales but the fluctuations are giant.

3 In quasi-2D (diffusion on flat interfaces) the fluctuations are not
giant but the mean does not obey Fick’s law (at any scale?).

4 How are lipid membranes different: At what scales does the
Saffman kernel work?

5 What is the long-time collective diffusion coefficient in q2D?
Does a generalized Einstein-relation relating a “Fick” coefficient to
collective mobility and isothermal compressibility hold?

6 How about diffusion of colloids on a sphere?
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Numerical Results
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