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Quick Intro

@ Bulk colloidal suspensions in three dimensions (3D) have been studied
for a long time.

@ We consider colloids that are confined by some strong potential to
remain on a plane [1].
An example are colloids confined to diffuse on a planar liquid-liuid
interface. This has been studied before by Johannes Bleibel, Alvaro
Dominguez, and collaborators.

@ In the limit of strong confining potential, the diffusive dynamics of the
colloids is restricted to the plane: quasi two-dimensions (q2D).

@ Note that the fluid flow around the colloids, mediating hydrodynamic
interactions among the particles, is still three dimensional.

o If we consider colloids in a very thin film, we have 2D fluid flow: true
two-dimensions (t2D).

@ The goal of this talk will be to study the surprising differences
between 3D, t2D and g2D suspensions.
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Diffusion in bulk 2D and 3D
Diffusion in Liquids

@ There is a common belief that diffusion in all sorts of materials,
including gases, liquids and solids, is described by random walks and
Fick’s law for the concentration of labeled (tracer) particles c (r, t),

Oic =V - [x(r;c)Vc],
where x = 0 is a diffusion tensor.

@ But there is well-known hints that the microscopic origin of Fickian
diffusion is different in liquids from that in gases or solids, and that
thermal velocity fluctuations play a key role [2].

@ The Stokes-Einstein relation connects mass diffusion to
momentum diffusion (viscosity 1) for dilute solutions in 3D,

_ keT
= 6mwon’
where o is the tracer (hydrodynamic) diameter.
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Diffusion in bulk 2D and 3D
Fluctuating Hydrodynamics

@ The thermal velocity fluctuations are described by the (unsteady)
fluctuating Stokes equation,

POV + V1 =9V +/2nkgTV-W, and V-v=0. (1)
where the thermal (stochastic) momentum flux is spatio-temporal
white noise,

<W,~j(r, t)WZ/(I’/, t/)> = (5ik5jl + 5il5jk) ot — t/)(S(I’ — r/).
The solution of this SPDE is a white-in-space distribution (very far
from smooth!).

@ Define a smooth advection velocity field, V - u =0,
u(r,t) = /o’(r—r’)v(r’,t) dr' = o * v,

where the smoothing kernel o filters out features at scales below a
molecular cutoff scale o.
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Diffusion in bulk 2D and 3D
Inertial Dynamics

e Lagrangian description of a passive tracer diffusing in the fluid,

a=u(a,t)+ v2x0 Wa, )
where Wq(t) is a collection of white-noise processes (independent
among tracers).
In this case o is the typical size of the tracers.

e Eulerian description of the concentration c (r, t) with an (additive
noise) fluctuating advection-diffusion equation,

d¢c = —u- Ve + xoVic, (3)
where g is the bare diffusion coefficient.

@ The two descriptions are equivalent. When yo = 0,
c(q(t), t) = c(q(0),0) or, due to reversibility,
c(a(0),t) = c(a(t),0).
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Diffusion in bulk 2D and 3D

Fluctuating Hydrodynamics SPDEs

POV + V=0V +/2nkgTV - W, and V-v=0.

u(r,t) /a(r,r’)v(r’,t) dr = o xv

0ic=—u-Vc+ X0V2c
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Diffusion in bulk 2D and 3D

Fractal Fronts in Diffusive Mixing in 2D

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface due to the effect of thermal fluctuations.
These giant fluctuations have been studied experimentally [3] and with

hard-disk molecular dynamics.
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Diffusion in bulk 2D and 3D
Separation of Time Scales

@ In liquids molecules are caged (trapped) for long periods of time as
they collide with neighbors:
Momentum and heat diffuse much faster than does mass.

@ This means that x < v, leading to a Schmidt number

v
Se = — ~10° — 10%.
X
This extreme stiffness solving the concentration/tracer equation

numerically challenging.
@ There exists a limiting (overdamped) dynamics for ¢ in the limit
Sc — oo in the scaling
XV = const.
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Diffusion in bulk 2D and 3D
Eulerian Overdamped Dynamics

@ Adiabatic mode elimination gives the following limiting stochastic
advection-diffusion equation (reminiscent of the Kraichnan's model
in turbulence),

6tc = —W@VC+XOV2C; (4)
where ® denotes a Stratonovich dot product.

@ The advection velocity w (r, t) is white in time, with covariance
proportional to a Green-Kubo integral of the velocity auto-correlation
function,

(w(r,t)ow(rt))=20(t—1t) / (u(r,t)@u(r,t+1t))dt
Jo
@ In the lto interpretation, there is enhanced diffusion,
drc = —w-Vc+ xoV2c+ V- [x(r) V(] (5)

where x (r) is an analog of eddy diffusivity in turbulence.
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Diffusion in bulk 2D and 3D

Stokes-Einstein Relation

@ An explicit calculation for Stokes flow gives the explicit result

x (r) = ke T o (r — r’) G (r/ — r") o’ (r — r”) dr'dr”,  (6)

where G is the Green's function for steady Stokes flow.

e For an appropriate filter o, this gives Stokes-Einstein formula for
the diffusion coefficient in a finite domain of length L,

kpT [(4m) tint if d =2
n \(6ro) t(1- ) ifd=3

@ The limiting dynamics is a good approximation if the effective
Schmidt number Sc = v/xeff = v/ (x0 + X) > 1.

@ The fact that for many liquids Stokes-Einstein holds as a good
approximation implies that xo < x:
Diffusion in liquids is dominated by advection by thermal

velocity fluctuations, and is more similar to eddy diffusion in
turbulence than to standard Fickian diffusion.

X:
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Diffusion in bulk 2D and 3D
Relation to Brownian Dynamics

o If we take an overdamped limit of the Lagrangian equation we get
the the Ito equations of Brownian Dynamics (BD) for the
(correlated) positions of the N particles Q (t) = {q; (t),...,aqy(t)},

dQ =M -F(Q)dt + (2ks TM)z dB + kg T (g - M) dt,
where B(t) is a vector of Brownian motions, and F (Q) are forces.

@ Here M(Q) > 0 is a symmetric positive semidefinite (SPD) mobility
matrix, assumed here to have a far-field pairwise approximation
M;; (Q) = M (qia qJ') =R (q,- - CIj) )
where R is the hydrodynamic kernel.

@ The self-diffusion tensor of a single isolated particle is
x = (ks T)R(0).
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Diffusion in bulk 2D and 3D
Rotne-Prager-Yamakawa Tensor

@ In our model the hydrodynamic kernel is
’R,(rl — r2) = /0- (rl _ r/) G (r/ . r//) p (r2 . r”) dr'dr”.

@ Observe that in the far-field, r > a, the RPY tensor becomes the

long-ranged Oseen tensor

R(rs3) > G(r) = — <|+’®’>. 7)

" 8nr r2
@ For 3D bulk suspensions, if o (r) = d (r — a) is a surface delta
function, we get the widely-used Rotne-Prager-Yamakawa tensor

1 (32 & 3a 323\ ror
R(r)= TRl LR G 2a.
() 6mna <4r * 2r3> * (4r 2r3> iz el
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Diffusion in bulk 2D and 3D
Force Coupling Tensor

@ Replace the surface delta function §, by a smooth Gaussian kernel
with standard deviation o = a/\/7 to give x = kg T/ (67na).
@ This gives the FCM kernel that is just as good as RPY:

R(r) = f(N1+g(r) 5", where
00 | (0 [ B ] ) (57).

v f2]a (7
8mnr | —6 | wr P\ %22 )

@ The use of FHD (fluctuating hydrodynamics) with Gaussian kernels
allows for very efficient (linear time!) BD, even for the RPY kernel
[4].
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Diffusion in Quasi2D

Divergence of the mobility

dQ =M F(Q)dt + (2ks TM)2 dB + kg T (Jg - M) dt.

@ An important property of the 3D RPY and FCM kernel is that they
are divergence free,
V - Rs3p(r) =0,
which follows from the fact the 3D flow is incompressible,
V -G(r) =0, and implies that
dq - M =0.
This has important consequences on collective diffusion.
@ The same applies for t2D systems as well,
V - Rip(r) =0,
but there are still some important differences between t2D and 3D
diffusion related to giant fluctuations.
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Diffusion in Quasi2D
Quasi-2D suspensions

e For q2D, dynamics can be described by BD-HI with q = (x, y) being
position in the plane.
@ Now the hydrodynamic kernel is still the same RPY or FCM kernel,
but now the flow is not incompressible in the plane,
V(x,y) : quD(r) 7é 0,
which means that there will be a nonzero dq - M, and the diffusive
dynamics will be very different from either 3D or t2D.

@ To start take the Oseen tensor as the hydrodynamic kernel,

flr>a)~g(r>a)~gor

which gives something that in the far field looks like a repulsive
Coulomb force,

da:
9 :...+kBT(aQ.M)i:...+Z

keT  d;—q;
dt : Tt
J#i

8 o — >
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Diffusion in Quasi2D
Diffusion Equation with Hls

@ For the majority of the rest of this talk we assume particles do
not interact with a direct potential (ideal gas).
Unphysical but steric repulsion does not change (short-time) collective
diffusion that much.

@ Define a concentration from the positions of the particles q;(t),

N
c(r,t):ZMqi(t)—r), (8)

Ito’s rule gives the following (formal) closed but nonlinear stochastic
advection-diffusion equation for the concentration [5],

Orc(r,t) =V - (x(r)Ve(r,t)) — V- (w(r, t) c(r, t))

+ (kg T)V - <c(r, t) / R(r,¢)V'c(r, ) dr’)_ (9)

@ Fluctuations come via the random velocity field w that comes from
the fluctuating fluid velocity in FHD.
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Diffusion in Quasi2D

Nonlocal (Far-Field) Hls in 3D/t2D

@ The nonlinear nonlocal hydrodynamic term can be rewritten as

V- <c(r, t)/R(r, rYV'c(r,t) dr') =

-V <c(r, t)/ (V' -R(r,¥)) c(¥, t) dr’).
e For 3D and t2D, V - R(r,¢r') = V' - R(r,r') = 0, and (9) becomes a
linear stochastic equation that can easily be solved numerically.
e Importantly, in 3D/t2D, we get Fick's law even with Hls [2]:
0rc (r,6) = V- (x()VeV (1)),
for the single-particle distribution function ¢ (r, t) = (c(r, t)).

@ But the story is not so simple if one looks at giant fluctuations, as |
will show later and has been measured in 3D experiments.
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Diffusion in Quasi2D

Nonlocal (Far-Field) Hls in g2D

@ The story is very different in g2D because now V - R(r) # 0 and it is
long-ranged, giving

9Dty = V. <X(r)Vc(1) (r, t)) n (10)

(keT) V- </’R (r,¢) Vv'c® (r,¥, 1) dr’) ,

which is not closed, is nonlocal, and nonlinear.

@ For an ideal gas, the standard closure for the two-particle correlation
function is
@ AR c@W(r, 1) (¥, 1),
giving the approximation

9D (r, 1) =V - (X(r)vc<1> (r, t)) . (11)

+ (kg T) V- <c(1) (r,t) /’R, (r, ) V' (V1) dr’)

A. Donev (CIMS) q2D 10/2018 21/ 40



Diffusion in Quasi2D

Dynamics of Density Fluctuations in q2D

@ Consider the case of a spatially uniform system with concentration
c(r,t) = co + 0c(r, t), where dc < ¢p.
o If we linearize (9) around the uniform state and ignore fluctuations:

Ordc(r, t) = xV25c(r,t) + (kg T) V - <co /’R(r - \V'sc(r, t) dr’> :
@ This equation can trivially be solved in Fourier space,

& (ex) =~ (WK + (ks T) ok - R+ k) de = —xKDe (k) e,

where D (k) is the short-time collective diffusion coefficient,

D) =x (14 4 ) = v+ (kaT) 2 (12)

@ For high packing densities ¢ = mcpa® ~ 1, we have Lj ~ a:
strong collective diffusion effects at all length scales.
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Brownian Dynamics in Q2D

Hydrodynamics in q2D

@ By combining the Fluctuating Immersed Boundary (FIB) method with
the Fluctuating Force Coupling Method (FCM) we obtain an efficient
O(N) algorithm for q2D-BD.

@ The key idea behind both of these is to use fluctuating
hydrodynamics to obtain the random displacements but | will
present it here from a more algebraic perspective [4].

@ The key is to go Fourier space, with k = (k, k),

S 1 dkz K ® K 32/{2
Rk = — | — _aE
k 27 /k Ui < K2 > P ( ™ )
1
= k3 (c2(ka) ki ® k! +ci(ka) k® kT) ) (13)

where both ¢; and ¢, decay exponentially ~ exp (—ak?) in Fourier
space (pseudospectral methods).
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Brownian Dynamics in Q2D

Comparison to true 2D

@ For small k we have the 2D projection of the t2D or q2D Oseen
tensor,

a(K=kakl) =~ for 2D, and 0 for t2D, and

NIl—= =

1
aK=k<l) = for q2D, and p for t2D.
@ The short-time self diffusion coefficient xo = f (kg T /1),

1 1 1
f = — ———~— forqg2D, and 14
6ra 1+4.41a/L  6ma erast, an (14)

1 L
f = Eln (3.71‘_)) for t2D,

and L is the system size.
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Brownian Dynamics in Q2D
Diffusion as random advection

@ For an ideal gas we have the Ito BD equation:

dQ = (2kg TM)2 dB + kg T (9q - M) dt, (15)
@ Brownian motion of a particle in an ideal gas in q2D [5]:
i _ (apt)+ ks T a(a)+>_ b(a,q;) (16)
dr i i — i1y )

where a(r) =V - R (r,r) =V - x(r) and b(r,r') = V' - R(r,r).
e For a translationally-invariant system a = 0, and for t2D b = 0.

@ Here w(r, t) is a random fluid velocity that advects the particles,
(w(r,t)ow(rt")=2(ksT)R (r,¥) o (t—1t). (17)
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Brownian Dynamics in Q2D

Efficient Brownian Dynamics in q2D

@ The final BD equation is, with 9;0, (r ) da(r) /Ori [5],
C::L" =w(q;,t /6 (G (r’,r”) dr'dr” - (18)

e From (13) we get
. 2kg T
T (\/ (ka) k1 22 + \/c1 (ka) kZ(l)) (19)
n
where le /2 )(t) are independent white noise processes — stochastic
momentum flux in fluctuating Stokes equation.

@ For FCM the kernel §, is a Gaussian with o = a/ /T,
A a’k? 1
Gk = Rkexp< - ):n[gk(k)kL®kI+fk(k)k®kT]
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Brownian Dynamics in Q2D

BD-q2D algorithm (1)

© Evaluate particle forces F” = F (Q").
@ Compute in real space on a grid the fluid forcing

f(r) = Z Fida (qi - r) + (kB T) Z (853) (qi - r)'

1
and use the FFT to convert f to Fourier space, fk.

© Compute the fluid velocity resulting from fluid forcing f in Fourier
space as a convolution with the Green's function,
05t = Gy fy.
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Brownian Dynamics in Q2D

BD-q2D algorithm (II)

Q@ Generate a random fluid velocity with covariance (2kg T) Gy in
Fourier space,

. 2kg T
i = [T ar (Ve z? + iwka?)

@ Use the FFT to compute v (r) from
Ok — ";L;i(et + ";itoch.

@ Convolve v (r) with a Gaussian in real space to compute particle
velocities,

ai= [ 6@~ r)v(e)dr.

@ Advance the particles,
q§’+1 =q; + u;At.
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Numerical Results
Collective diffusion coefficient

o Experimental data ||
— 4de,(/KL))

100~

XC/ Xo' 1

Figure: Short time collective diffusion coefficient in q2D obtained from the
dynamic structure factor (autocorrelation function of the spatial FFT).
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Numerical Results

Relaxation of density bump (instance)

Figure: Expansion of clump in Quasi2D (top) and True2D (bottom). Compare
fluctuations for classical diffusion BD-noHI to True2D.
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Numerical Results

Relaxation of density bump (mean)
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Figure: Comparison of ensemble average to (numerical) DDFT-HI.
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Numerical Results
Diffusion of tracers/color (theory)

@ If we color the particles red and green, ) = Cf(?l) + c(Gl), we expect:

D) (0,1) = V- (xVel (1)) + (ke T)

V-(,(?l/)c(r /’Rrr)V'(c,(?)(r t)—i—c()(r t)) dr)

o 4 @)

o If we start the system with a uniform density, c(!) = g’ tcg’ =,
this will remain the case forever and we just get two uncoupled
diffusion equations

atc,‘(?l/)c (r,t) = V. (XVC’,(?l/)G( t)) .
@ This means that diffusive mixing in q2D, is the same on average as

for simple BD-noHI (uncorrelated Brownian walkers) and t2D.
But the fluctuations are different.
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Numerical Results

Diffusive mixing (q2D vs t2D)

Figure: Color diffusion in q2D (left) versus t2D (right) (100K particles, ¢ ~ 1).
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Numerical Results

Diffusive mixing (no-HI, q2D, and t2D)

Figure: Diffusion of a perturbation of color (no-HI, q2D, and t2D)
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Numerical Results
Giant Color Fluctuations in t2D
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Numerical Results
Giant Color Fluctuations in g2D
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Numerical Results
Conclusions/questions

@ Diffusion is very strongly affected by hydrodynamic correlations and
its nature depends heavily on the geometry of the fluid and the
diffusion manifold.

@ In true-2D (diffusion in thin films) the mean obeys simple Fick's law
at all scales but the fluctuations are giant.

@ In quasi-2D (diffusion on flat interfaces) the fluctuations are not
giant but the mean does not obey Fick's law (at any scale?).

© How are lipid membranes different: At what scales does the
Saffman kernel work?

© What is the long-time collective diffusion coefficient in q2D?
Does a generalized Einstein-relation relating a “Fick” coefficient to
collective mobility and isothermal compressibility hold?

@ How about diffusion of colloids on a sphere?
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Numerical Results
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