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Levels of Coarse-Graining

Figure : From Pep Español, “Statistical Mechanics of Coarse-Graining”.
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Velocity Autocorrelation Function

Key is the velocity autocorrelation function (VACF) for the
immersed particle

C (t) = 〈V(t0) · V(t0 + t)〉

From equipartition theorem C (0) =
〈
V 2
〉

= d kBT/M for a
compressible fluid, but for an incompressible fluid the kinetic energy
of the particle that is less than equipartition.

Hydrodynamic persistence (conservation) gives a long-time
power-law tail C (t) ∼ (kBT/M)(t/tvisc)−3/2.

Diffusion coefficient is given by the integral of the VACF and is hard
to compute in MD even for a single nanocolloidal particle.
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Brownian Bead

Classical picture for the following dissipation process: Push a sphere
suspended in a liquid with initial velocity Vth ≈

√
kBT/M and watch

how the velocity decays:

Sound waves are generated from the sudden compression of the fluid
and they take away a fraction of the kinetic energy during a sonic time
tsonic ≈ a/c, where c is the (adiabatic) sound speed.
Viscous dissipation then takes over and slows the particle
non-exponentially over a viscous time tvisc ≈ ρa2/η, where η is the
shear viscosity.
Thermal fluctuations get similarly dissipated, but their constant
presence pushes the particle diffusively over a diffusion time
tdiff ≈ a2/D, where

D ∼ kBT/(aη) (Stokes-Einstein relation).
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Timescale Estimates

The mean collision time is tcoll ≈ λ/Vth ∼ η/(ρc2),

tcoll ∼ 10−15s = 1fs

The sound time

tsonic ∼
{

1ns for a ∼ µm
1ps for a ∼ nm

, with gap
tsonic

tcoll
∼ 102 − 105

It is often said that sound waves do not contribute to the long-time
diffusive dynamics because their contribution to the VACF integrates
to zero.
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Estimates contd...

Viscous time estimates

tvisc ∼
{

1µs for a ∼ µm
1ps for a ∼ nm

, with gap
tvisc

tsonic
∼ 1− 103

Finally, the diffusion time can be estimated to be

tdiff ∼
{

1s for a ∼ µm
1ns for a ∼ nm

, with gap
tdiff

tvisc
∼ 103 − 106

which can now reach macroscopic timescales!

In practice the Schmidt number is very large,

Sc = ν/D = tdiff /tvisc � 1,

which means the diffusive dynamics is overdamped.
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Brownian Dynamics

Overdamped equations of Brownian Dynamics (BD) for the particle
positions R (t) are

dR

dt
= MF + (2kBTM)

1
2 W(t) + kBT (∂R ·M) , (1)

where M(R) � 0 is the symmetric positive semidefinite (SPD)
hydrodynamic mobility matrix.
Hydrodynamic mobility matrix is given by Green-Kubo formula

(kBT )Mij =

∫ τ

0
dt 〈Vi (0)·Vj (t)〉eq . (2)

The upper bound τ must satisfy

τ �
r2
ij

ν
∼ L2

ν
� tvisc ,

so that the whole VACF power law tail is included in the integral.
Therefore computing hydrodynamic interactions is infeasible
with MD.
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Hydrodynamic Diffusion Tensor

Since computing the hydrodynamic mobility is so difficult in MD,
usually M is modeled by the Rotne-Prager mobility [1],

Mij ≈ η−1

(
I +

a2

6
∇2

r

)(
I +

a2

6
∇2

r′

)
G(r − r′)

∣∣r=qj

r′=qi
.

where G is the Green’s function for the Stokes problem (Oseen
tensor for infinite domain).

This is not only an approximate closure neglecting a number of
effects, but also requires an estimate of the effective hydrodynamic
radius a as input.

Our goal will be to split the integral into a short-time piece,
computed by feasible MD via Green-Kubo integrals, and a long-time
contribution, computed by fluctuating hydrodynamics coupled to an
immersed particle.
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“Old” approach: Particle/Continuum Hybrid

Figure : Hybrid method for a polymer chain.
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VACF using a hybrid

Split the domain into a particle and a
continuum (hydro) subdomains [2].

Particle solver is a coarse-grained fluid
model (Isotropic DSMC).

Hydro solver is a simple explicit
(fluctuating) compressible
fluctuating hydrodynamics code.

Time scales are limited by the MD
part despite increased efficiency.
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Small Bead (˜10 particles)
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Large Bead (˜1000 particles)
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New Approach: Fluctuating Hydrodynamics

Figure : Coarse-Graining a Nanoparticle: Schematic representation of a
nanoparticle (left) surrounded by molecules of a simple liquid solvent (in blue).
The shaded area around node µ located at rµ is the support of the finite element
function ψµ(r) and defines the hydrodynamic cell (right).
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Notation

Define an orthogonal set of basis functions,

||δµψν || = δµν , (3)

where ||f || ≡
∫
drf (r).

Continuum fields which are interpolated from discrete “fields”:

ρ(r) = ψµ(r)ρµ (4)

Introduce a regularized Dirac delta function

∆(r, r′) ≡ δµ(r)ψµ(r′) = ∆(r′, r) (5)

Note the exact properties∫
drδµ(r) = 1,

∫
dr rδµ(r) = rµ (6)∫

dr′∆(r, r′)δµ(r′) = δµ(r)
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Slow variables

Key to the Theory of Coarse-Graining is the proper selection of the
relevant or slow variables.

We assume that the nanoparticle is smaller than hydrodynamic
cells and accordingly choose the coarse-grained variables [3],

R̂ (z = {q,p}) = q0, (7)

We define the mass and momentum densities of the hydrodynamic
node µ according to

ρ̂µ(z) =
N∑

i=0

miδµ(qi ), discrete of ρ̂r(z) =
N∑

i=0

miδ(qi − r)

ĝµ(z) =
N∑

i=0

piδµ(qi ), discrete of ĝr(z) =
N∑

i=0

piδ(qi − r)

where i = 0 labels the nanoparticle. Note that both mass and
momentum densities include the nanoparticle!
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Final Discrete (Closed) Equations

dR

dt
= v(R)− D0

kBT

∂F
∂R

+
D0

kBT
Fext +

√
2kBTD0 W(t)

dρµ
dt

= ||ρ v ·∇δµ||

dgµ
dt

= ||g v·∇δµ||+ kBT∇δµ(R)− ||δµ∇P||+ δµ(R)Fext

+ η||δµ∇2v||+
(η

3
+ ζ
)
||δµ∇ (∇·v) ||+ d g̃µ

dt
(8)

The pressure equation of state is modeled by

P(r) ' c2

2ρeq

(
ρ(r)2 − ρ2

eq

)
+ m0

(c2
0 − c2)

ρeq
∆(R, r)ρ(r), (9)

and the gradient of the free energy is modeled by

∂F
∂R
' m0

(c2
0 − c2)

ρeq

∫
dr∆(R, r)∇ρ(r). (10)
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Final Continuum Equations

The same equations can be obtained from a Petrov-Galerkin discretization
of the following system of the fluctuating hydrodynamics SPDEs

d

dt
R =

∫
dr∆(r,R)v(r) +

D0

kBT
Fext +

√
2kBTD0 W(t)

− D0

kBT

m0(c2
0 − c2)

ρeq

∫
dr∆(R, r)∇ρ(r)

∂tρ(r, t) = −∇·g
∂tg(r, t) = −∇·(gv)− kBT∇∆(r,R)

−∇P(r) + Fext∆(r,R)

+ η∇2v +
(η

3
+ ζ
)
∇ (∇·v) + ∇·Σαβ

r (11)

where v = g/ρ, and the pressure is given by

P(r) =
c2

2ρeq

(
ρ(r)2 − ρ2

eq

)
+

m0(c2
0 − c2)

ρeq
∆(R, r)ρ(r) (12)
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Diffusion Coefficient

The scalar bare diffusion coefficient is grid-dependent,

D0 =
1

d

∫ τ

0
dt
〈
δV̂(0)·δV̂(t)

〉
eq

(13)

where the particle excess velocity over the fluid is

δV̂ = V̂ −
〈

V̂
〉R̂ρ̂ĝ

≈ V̂ − v(R).

The crucial point is that now the integration time τ � h2/ν, where h
is the grid spacing, is accessible in MD.

The true or renormalized diffusion coefficient [4] should be
grid-independent,

D = D0 + ∆D ≈ D0 +
1

d

∫ τ

0
dt 〈v̄(R(0))·v̄(R(t))〉eq

≈ D0 +
1

d

∫ ∞
0

dt ψµ(R)
〈
vµ(0)·vµ′(t)

〉eq
R
ψµ′(R)
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Numerical VACF
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Figure : VACF for a neutrally buoyant particle for D0 = 0 and c = c0, from
coupling a finite-volume fluctuating hydrodynamic solver [5, 6].
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Conclusions

We considered the problem of modeling the Brownian motion of a
solvated nanocolloidal particle over a range of time scales.
Hydrodynamic scales are not accessible in direct MD so
coarse-grained models are necessary.
If one eliminates the solvent DOFs one obtains a long-memory
non-Markovian SDE in the inertial case or a long-ranged overdamped
SDE in the Brownian limit.
If fluctuating hydrodynamic variables are retained in the
description, one obtains a large system of Markovian S(P)DEs.
A concurrent hybrid coupling approach couples MD directly to
fluctuating hydrodynamics; time scales are limited by the MD.
We derive coarse-grained equations by a combination of Mori-Zwanzig
with physically-informed modeling.
It remains to actually try this in practice and see what range of
effects can be captured correctly and efficiently.
It also remains to generalize this to a denser suspension of colloids.
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