## Coupling a nano-particle with fluctuating hydrodynamics

#### Aleksandar Donev

Courant Institute, New York University & Pep Español, UNED, Madrid, Spain

Advances in theory and simulation of non-equilibrium systems NESC16, Sheffield, England July 2016

## Levels of Coarse-Graining



Figure : From Pep Español, "Statistical Mechanics of Coarse-Graining".

• Key is the **velocity autocorrelation function** (VACF) for the immersed particle

$$C(t) = \langle \mathbf{V}(t_0) \cdot \mathbf{V}(t_0 + t) \rangle$$

- From equipartition theorem  $C(0) = \langle V^2 \rangle = d k_B T/M$  for a compressible fluid, but for an incompressible fluid the kinetic energy of the particle that is **less than equipartition**.
- Hydrodynamic persistence (conservation) gives a **long-time** power-law tail  $C(t) \sim (k_B T/M)(t/t_{visc})^{-3/2}$ .
- Diffusion coefficient is given by the **integral of the VACF** and is hard to compute in MD even for a single nanocolloidal particle.

- Classical picture for the following dissipation process: Push a sphere suspended in a liquid with initial velocity  $V_{th} \approx \sqrt{k_B T/M}$  and watch how the velocity decays:
  - Sound waves are generated from the sudden compression of the fluid and they take away a fraction of the kinetic energy during a sonic time  $t_{sonic} \approx a/c$ , where c is the (adiabatic) sound speed.
  - Viscous dissipation then takes over and slows the particle non-exponentially over a viscous time  $t_{visc} \approx \rho a^2/\eta$ , where  $\eta$  is the shear viscosity.
  - Thermal fluctuations get similarly dissipated, but their constant presence pushes the particle diffusively over a diffusion time  $t_{diff} \approx a^2/D$ , where

 $D \sim k_B T/(a\eta)$  (Stokes-Einstein relation).

• The mean collision time is  $t_{coll} \approx \lambda/V_{th} \sim \eta/(\rho c^2)$ ,

$$t_{coll} \sim 10^{-15} s = 1 fs$$

• The sound time

$$t_{sonic} \sim \left\{ egin{array}{c} 1 ns \mbox{ for } a \sim \mu m \\ 1 ps \mbox{ for } a \sim nm \end{array} 
ight., \mbox{ with gap } rac{t_{sonic}}{t_{coll}} \sim 10^2 - 10^5$$

• It is often said that sound waves do not contribute to the long-time diffusive dynamics because their contribution to the VACF integrates to zero.

• Viscous time estimates

$$t_{visc} \sim \left\{ egin{array}{c} 1\mu s \mbox{ for } a \sim \mu m \ 1\rho s \mbox{ for } a \sim nm \end{array} 
ight., \mbox{ with gap } rac{t_{visc}}{t_{sonic}} \sim 1-10^3$$

• Finally, the diffusion time can be estimated to be

$$t_{diff} \sim \left\{ egin{array}{c} 1s \mbox{ for } a \sim \mu m \ 1ns \mbox{ for } a \sim nm \end{array} 
ight., \mbox{ with gap } rac{t_{diff}}{t_{visc}} \sim 10^3 - 10^6$$

which can now reach macroscopic timescales!

• In practice the Schmidt number is very large,

$$Sc = \nu/D = t_{diff}/t_{visc} \gg 1,$$

which means the diffusive dynamics is overdamped.

## **Brownian Dynamics**

• Overdamped equations of **Brownian Dynamics** (BD) for the particle positions **R**(*t*) are

$$\frac{d\mathbf{R}}{dt} = \mathcal{M}\mathbf{F} + (2k_B T \mathcal{M})^{\frac{1}{2}} \mathcal{W}(t) + k_B T \left(\partial_{\mathbf{R}} \cdot \mathcal{M}\right), \qquad (1)$$

where  $\mathcal{M}(R) \succeq 0$  is the symmetric positive semidefinite (SPD) hydrodynamic mobility matrix.

Hydrodynamic mobility matrix is given by Green-Kubo formula

$$(k_B T) \mathcal{M}_{ij} = \int_0^\tau dt \, \langle \mathbf{V}_i(0) \cdot \mathbf{V}_j(t) \rangle^{\text{eq}} \,. \tag{2}$$

• The upper bound au must satisfy

$$au \gg rac{r_{ij}^2}{
u} \sim rac{L^2}{
u} \gg t_{
m visc},$$

so that the whole VACF power law tail is included in the integral. Therefore computing hydrodynamic interactions is infeasible with MD.

A. Donev (CIMS)

## Hydrodynamic Diffusion Tensor

Since computing the hydrodynamic mobility is so difficult in MD, usually *M* is modeled by the Rotne-Prager mobility [1],

$$\mathcal{M}_{ij} \approx \eta^{-1} \left( \mathbf{I} + \frac{a^2}{6} \nabla_{\mathbf{r}}^2 \right) \left( \mathbf{I} + \frac{a^2}{6} \nabla_{\mathbf{r}'}^2 \right) \mathbf{G}(\mathbf{r} - \mathbf{r}') \Big|_{\mathbf{r}' = \mathbf{q}_i}^{\mathbf{r} = \mathbf{q}_j}.$$

where G is the Green's function for the Stokes problem (**Oseen** tensor for infinite domain).

- This is not only an approximate closure neglecting a number of effects, but also requires an estimate of the effective hydrodynamic radius *a* as input.
- Our goal will be to split the integral into a short-time piece, computed by **feasible** MD via Green-Kubo integrals, and a long-time contribution, computed by fluctuating hydrodynamics coupled to an immersed particle.

## "Old" approach: Particle/Continuum Hybrid



Figure : Hybrid method for a polymer chain.

A. Donev (CIMS)

## VACF using a hybrid



- Split the domain into a **particle** and a **continuum (hydro) subdomains** [2].
- Particle solver is a coarse-grained fluid model (**Isotropic DSMC**).
- Hydro solver is a simple explicit (fluctuating) compressible fluctuating hydrodynamics code.
- Time scales are limited by the MD part despite increased efficiency.

## Small Bead (~10 particles)



A. Donev (CIMS)

7/2016 11 / 21

# Large Bead (~1000 particles)



A. Donev (CIMS)

## New Approach: Fluctuating Hydrodynamics



Figure : Coarse-Graining a Nanoparticle: Schematic representation of a nanoparticle (left) surrounded by molecules of a simple liquid solvent (in blue). The shaded area around node  $\mu$  located at  $\mathbf{r}_{\mu}$  is the support of the finite element function  $\psi_{\mu}(\mathbf{r})$  and defines the hydrodynamic cell (right).

#### Notation

• Define an orthogonal set of basis functions,

$$\|\delta_{\mu}\psi_{\nu}\| = \delta_{\mu\nu},\tag{3}$$

where  $||f|| \equiv \int d\mathbf{r} f(\mathbf{r})$ .

• Continuum fields which are interpolated from discrete "fields":

$$\overline{\rho}(\mathbf{r}) = \psi_{\mu}(\mathbf{r})\rho_{\mu} \tag{4}$$

• Introduce a *regularized* Dirac delta function

•.

$$\Delta(\mathbf{r},\mathbf{r}') \equiv \delta_{\mu}(\mathbf{r})\psi_{\mu}(\mathbf{r}') = \Delta(\mathbf{r}',\mathbf{r})$$
(5)

Note the exact properties

$$\int d\mathbf{r} \delta_{\mu}(\mathbf{r}) = 1, \quad \int d\mathbf{r} \ \mathbf{r} \delta_{\mu}(\mathbf{r}) = \mathbf{r}_{\mu}$$
(6)  
$$\int d\mathbf{r}' \Delta(\mathbf{r}, \mathbf{r}') \delta_{\mu}(\mathbf{r}') = \delta_{\mu}(\mathbf{r})$$

### Slow variables

- Key to the Theory of Coarse-Graining is the proper selection of the relevant or **slow variables**.
- We assume that the **nanoparticle is smaller than hydrodynamic cells** and accordingly choose the coarse-grained variables [3],

$$\hat{\mathbf{R}}(z = \{\mathbf{q}, \mathbf{p}\}) = \mathbf{q}_0, \tag{7}$$

• We define the mass and momentum densities of the **hydrodynamic node**  $\mu$  according to

$$\hat{\rho}_{\mu}(z) = \sum_{i=0}^{N} m_i \delta_{\mu}(\mathbf{q}_i), \quad \text{discrete of} \quad \hat{\rho}_{\mathbf{r}}(z) = \sum_{i=0}^{N} m_i \delta(\mathbf{q}_i - \mathbf{r})$$
$$\hat{\mathbf{g}}_{\mu}(z) = \sum_{i=0}^{N} \mathbf{p}_i \delta_{\mu}(\mathbf{q}_i), \quad \text{discrete of} \quad \hat{\mathbf{g}}_{\mathbf{r}}(z) = \sum_{i=0}^{N} \mathbf{p}_i \delta(\mathbf{q}_i - \mathbf{r})$$

where i = 0 labels the nanoparticle. Note that both mass and momentum densities **include the nanoparticle**!

A. Donev (CIMS)

Coarse Blob

## Final Discrete (Closed) Equations

$$\frac{d\mathbf{R}}{dt} = \overline{\mathbf{v}}(\mathbf{R}) - \frac{D_0}{k_B T} \frac{\partial \mathcal{F}}{\partial \mathbf{R}} + \frac{D_0}{k_B T} \mathbf{F}^{\text{ext}} + \sqrt{2k_B T D_0} \, \mathcal{W}(t)$$

$$\frac{d\rho_{\mu}}{dt} = \|\overline{\rho} \, \overline{\mathbf{v}} \cdot \nabla \delta_{\mu}\|$$

$$\frac{d\mathbf{g}_{\mu}}{dt} = \|\overline{\mathbf{g}} \, \overline{\mathbf{v}} \cdot \nabla \delta_{\mu}\| + k_B T \nabla \delta_{\mu}(\mathbf{R}) - \|\delta_{\mu} \nabla P\| + \delta_{\mu}(\mathbf{R}) \mathbf{F}^{\text{ext}}$$

$$+ \eta \|\delta_{\mu} \nabla^2 \overline{\mathbf{v}}\| + \left(\frac{\eta}{3} + \zeta\right) \|\delta_{\mu} \nabla (\nabla \cdot \overline{\mathbf{v}})\| + \frac{d\tilde{\mathbf{g}}_{\mu}}{dt} \qquad (8)$$

The pressure equation of state is modeled by

$$P(\mathbf{r}) \simeq \frac{c^2}{2\rho_{\rm eq}} \left( \overline{\rho}(\mathbf{r})^2 - \rho_{\rm eq}^2 \right) + m_0 \frac{(c_0^2 - c^2)}{\rho_{\rm eq}} \Delta(\mathbf{R}, \mathbf{r}) \overline{\rho}(\mathbf{r}), \tag{9}$$

and the gradient of the free energy is modeled by

$$\frac{\partial \mathcal{F}}{\partial \mathbf{R}} \simeq m_0 \frac{(c_0^2 - c^2)}{\rho_{\rm eq}} \int d\mathbf{r} \Delta(\mathbf{R}, \mathbf{r}) \boldsymbol{\nabla} \overline{\rho}(\mathbf{r}).$$
(10)

## Final Continuum Equations

The same equations can be obtained from a Petrov-Galerkin discretization of the following system of the fluctuating hydrodynamics SPDEs

$$\frac{d}{dt}\mathbf{R} = \int d\mathbf{r}\Delta(\mathbf{r},\mathbf{R})\mathbf{v}(\mathbf{r}) + \frac{D_0}{k_B T}\mathbf{F}^{\text{ext}} + \sqrt{2k_B T D_0} \,\mathcal{W}(t) - \frac{D_0}{k_B T} \frac{m_0(c_0^2 - c^2)}{\rho_{\text{eq}}} \int d\mathbf{r}\Delta(\mathbf{R},\mathbf{r})\nabla\rho(\mathbf{r}) \partial_t \rho(\mathbf{r},t) = -\nabla \cdot \mathbf{g} \partial_t \mathbf{g}(\mathbf{r},t) = -\nabla \cdot (\mathbf{g}\mathbf{v}) - k_B T \nabla\Delta(\mathbf{r},\mathbf{R}) - \nabla P(\mathbf{r}) + \mathbf{F}^{\text{ext}}\Delta(\mathbf{r},\mathbf{R}) + \eta \nabla^2 \mathbf{v} + \left(\frac{\eta}{3} + \zeta\right) \nabla(\nabla \cdot \mathbf{v}) + \nabla \cdot \boldsymbol{\Sigma}_{\mathbf{r}}^{\alpha\beta}$$
(11)

where  $\mathbf{v}=\mathbf{g}/\rho$  , and the pressure is given by

$$P(\mathbf{r}) = \frac{c^2}{2\rho_{\rm eq}} \left(\rho(\mathbf{r})^2 - \rho_{\rm eq}^2\right) + \frac{m_0(c_0^2 - c^2)}{\rho_{\rm eq}} \Delta(\mathbf{R}, \mathbf{r})\rho(\mathbf{r})$$
(12)

### **Diffusion Coefficient**

• The scalar bare diffusion coefficient is grid-dependent,

$$D_{0} = \frac{1}{d} \int_{0}^{\tau} dt \left\langle \delta \hat{\mathbf{V}}(0) \cdot \delta \hat{\mathbf{V}}(t) \right\rangle_{\text{eq}}$$
(13)

where the particle excess velocity over the fluid is

1

$$\delta \hat{\mathbf{V}} = \hat{\mathbf{V}} - \left\langle \hat{\mathbf{V}} \right\rangle^{\hat{\mathbf{R}}\hat{
ho}\hat{\mathbf{g}}} pprox \hat{\mathbf{V}} - \overline{\mathbf{v}}(\mathbf{R}).$$

- The crucial point is that now the integration time τ ≫ h<sup>2</sup>/ν, where h is the grid spacing, is accessible in MD.
- The true or **renormalized diffusion coefficient** [4] *should* be **grid-independent**,

$$egin{split} D &= D_0 + \Delta D pprox D_0 + rac{1}{d} \int_0^ au dt ig\langle oldsymbol{ar{v}}(oldsymbol{\mathsf{R}}(0)) \cdot oldsymbol{ar{v}}(oldsymbol{\mathsf{R}}(t)) ig
angle^{ ext{eq}} \ &pprox D_0 + rac{1}{d} \int_0^\infty dt \; \psi_\mu(oldsymbol{\mathsf{R}}) ig\langle oldsymbol{v}_\mu(0) \cdot oldsymbol{v}_{\mu'}(t) ig
angle^{ ext{eq}}_{oldsymbol{\mathsf{R}}} \psi_{\mu'}(oldsymbol{\mathsf{R}}) \end{split}$$

## Numerical VACF



Figure : VACF for a neutrally buoyant particle for  $D_0 = 0$  and  $c = c_0$ , from coupling a **finite-volume** fluctuating hydrodynamic solver [5, 6].

## Conclusions

- We considered the problem of modeling the Brownian motion of a solvated nanocolloidal particle over a range of time scales.
- Hydrodynamic scales are not accessible in direct MD so coarse-grained models are necessary.
- If one eliminates the solvent DOFs one obtains a *long-memory non-Markovian* SDE in the inertial case or a *long-ranged* overdamped SDE in the Brownian limit.
- If **fluctuating hydrodynamic variables** are retained in the description, one obtains a *large system of Markovian S(P)DEs*.
- A concurrent **hybrid coupling approach** couples MD directly to fluctuating hydrodynamics; **time scales are limited by the MD**.
- We derive coarse-grained equations by a combination of Mori-Zwanzig with physically-informed modeling.
- It remains to actually try this in practice and see what range of effects can be captured correctly and efficiently.
   It also remains to generalize this to a denser suspension of colloids.

#### References



S. Delong, F. Balboa Usabiaga, R. Delgado-Buscalioni, B. E. Griffith, and A. Donev. Brownian Dynamics without Green's Functions. J. Chem. Phys., 140(13):134110, 2014. Software available at https://eithub.com/stochasticHvdroTools/FIB.



A. Donev, J. B. Bell, A. L. Garcia, and B. J. Alder.

A hybrid particle-continuum method for hydrodynamics of complex fluids. SIAM J. Multiscale Modeling and Simulation, 8(3):871–911, 2010.

#### P. Español and A. Donev.

Coupling a nano-particle with isothermal fluctuating hydrodynamics: Coarse-graining from microscopic to mesoscopic dynamics.

J. Chem. Phys., 143(23), 2015.

#### A. Donev, T. G. Fai, and E. Vanden-Eijnden.

A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law. Journal of Statistical Mechanics: Theory and Experiment, 2014(4):P04004, 2014.



F. Balboa Usabiaga, R. Delgado-Buscalioni, B. E. Griffith, and A. Donev. Inertial Coupling Method for particles in an incompressible fluctuating fluid. *Comput. Methods Appl. Mech. Engrg.*, 269:139–172, 2014. Code available at https://github.com/fbusabiaga/fluam.



F. Balboa Usabiaga, X. Xie, R. Delgado-Buscalioni, and A. Donev. The Stokes-Einstein Relation at Moderate Schmidt Number. J. Chem. Phys., 139(21):214113, 2013.