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Continuing on our previous work [A. Donev, A. Nonaka, Y. Sun, T. G. Fai, A. L. Gar-

cia and J. B. Bell, Comm. App. Math. and Comp. Sci., 9-1:47-105, 2014], we develop

semi-implicit numerical methods for solving low Mach number fluctuating hydrodynamic

equations appropriate for modeling diffusive mixing in isothermal mixtures of fluids with

different densities and transport coefficients. We treat viscous dissipation implicitly using a

recently-developed variable-coefficient Stokes solver [M. Cai, A. J. Nonaka, J. B. Bell, B. E.

Griffith and A. Donev, Commun. Comput. Phys., 16(5):1263-1297, 2014]. This allows us to

increase the time step size significantly for low Reynolds number flows with large Schmidt

numbers compared to our earlier explicit temporal integrator. Also, unlike most existing

deterministic methods for low Mach number equations, our methods do not use a fractional

time-step approach in the spirit of projection methods, thus avoiding splitting errors and giv-

ing full second-order deterministic accuracy even in the presence of boundaries for a broad

range of Reynolds numbers including steady Stokes flow. We incorporate the Stokes solver

into two time-advancement schemes, where the first is suitable for inertial flows and the sec-

ond is suitable for the overdamped limit (viscous-dominated flows), in which inertia vanishes

and the fluid motion can be described by a steady Stokes equation. We also describe how

to incorporate advanced higher-order Godunov advection schemes in the numerical method,

allowing for the treatment of (very) large Peclet number flows with a vanishing mass diffusion

coefficient. We incorporate thermal fluctuations in the description in both the inertial and

overdamped regimes. We validate our algorithm with a series of stochastic and determinis-

tic tests. Finally, we apply our algorithms to model the development of giant concentration

fluctuations during the diffusive mixing of water and glycerol, and compare numerical results

with experimental measurements. We find good agreement between the two, and observe

propagative (non-diffusive) modes at small wavenumbers (large spatial scales), not reported

in published experimental measurements of concentration fluctuations in fluid mixtures. Our

work forms the foundation for developing low Mach number fluctuating hydrodynamics meth-

ods for miscible multi-species mixtures of chemically reacting fluids.
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I. INTRODUCTION

Flows of realistic mixtures of miscible fluids exhibit several features that make them more dif-

ficult to simulate numerically than flows of simple fluids. Firstly, the physical properties of the

mixture depend on the concentration of the different species composing the mixture. This includes

both the density of the mixture at constant pressure, and transport coefficients such as viscosity

and mass diffusion coefficients. Common simplifying assumptions such as the Boussinesq approx-

imation, which assumes a constant density and thus incompressible flow, or assuming constant

transport coefficients, are uncontrolled and not appropriate for certain mixtures of very dissimilar

fluids. Secondly, for liquid mixtures there is a large separation of time scales between the various

dissipative processes, notably, mass diffusion is much slower than momentum diffusion. The large

Schmidt numbers Sc ∼ 103−104 typical of liquid mixtures lead to extreme stiffness and make direct

temporal integration of the hydrodynamic equations infeasible. Lastly, flows of mixtures exhibit all

of the numerical difficulties found in single component flows, for example, well-known difficulties

caused by advection in the absence of sufficiently strong dissipation (diffusion of momentum or

mass), and challenges in incorporating thermal fluctuations in the description. Here we develop a

low Mach number approach to isothermal binary fluid mixtures that resolves many of the above

difficulties, and paves the way for incorporating additional physics such as the presence of more

than two species [1], chemical reactions [2, 3], multiple phases and surface tension [4, 5], and others.

Stochastic fluctuations are intrinsic to fluid dynamics because fluids are composed of molecules

whose positions and velocities are random. Thermal fluctuations affect flows from microscopic to

macroscopic scales [6, 7] and need to be consistently included in all levels of description. Fluctuating

hydrodynamics (FHD) incorporates thermal fluctuations into the usual Navier-Stokes-Fourier laws

in the form of stochastic contributions to the dissipative momentum, heat, and mass fluxes [8].

FHD has proven to be a very useful tool in understanding complex fluid flows far from equilibrium

[4, 9–11]; however, theoretical calculations are often only feasible after making many uncontrolled

approximations [8], and numerical schemes used for fluctuating hydrodynamics are usually far

behind state-of-the-art deterministic computational fluid dynamics (CFD) solvers.

In this work, we consider binary mixtures and restrict our attention to isothermal flows. We

consider a specific equation of state (EOS) suitable for mixtures of incompressible liquids or ideal

gases, but otherwise account for advective and diffusive mass and momentum transport in full

∗Electronic address: donev@courant.nyu.edu
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generality. Recently, some of us developed finite-volume methods for the incompressible equations

[12]. We have also developed low Mach number isothermal fluctuating equations [13], which elimi-

nate the stiffness arising from the separation of scales between acoustic and vortical modes [14–16].

The low Mach number equations account for the fact that for mixtures of fluids with different den-

sities, diffusive and stochastic mass fluxes create local expansion and contraction of the fluid. In

these equations the incompressibility constraint should be replaced by a “quasi-incompressibility”

constraint [16, 17], which introduces some difficulties in constructing conservative finite-volume

techniques [13, 18–22]. In Section II we review the low Mach number equations of fluctuating

hydrodynamics for a binary mixture of miscible fluids, as first proposed in Ref. [13].

The numerical method developed in Ref. [13] uses an explicit temporal integrator. This requires

using a small time step and is infeasible for liquid mixtures due to the stiffness caused by the sep-

aration of time scales between fast momentum diffusion and slow mass diffusion. In recent work

[23], some of us developed temporal integrators for the equations of fluctuating hydrodynamics

that have several important advantages. Notably, these integrators are semi-implicit, allowing one

to treat fast momentum diffusion (viscous dissipation) implicitly, and other transport processes

explicitly. Furthermore, these temporal integrators are constructed to be second-order accurate for

the equations of linearized fluctuating hydrodynamics (LFHD), which are suitable for describing

thermal fluctuations around stable macroscopic flows over a broad range of length and time scales

[8]. Importantly, the linearization of the fluctuating equations is carried out automatically by the

code, making the numerical methods very similar to standard deterministic CFD schemes. Finally,

specific integrators are proposed in Ref. [23] to handle the extreme separation of scales between the

fast velocity and the slow concentration by taking an overdamped limit of the inertial equations.

In this work, we extend the semi-implicit temporal integrators proposed in Ref. [23] for incom-

pressible flows to account for the quasi-incompressible nature of low Mach number flows. We apply

these temporal integrators to the staggered-grid conservative finite-volume spatial discretization

developed in Ref. [13], and additionally generalize the treatment of advection to allow for the use

of monotonicity-preserving higher-order Godunov schemes [24–27].

Our work relies heavily on several prior works, which we will only briefly summarize in the

present paper. The spatial discretization we describe in more detail in Section III B is identical to

that proposed by Donev et al [13], which itself relies heavily on the treatment of thermal fluctuations

developed in Refs. [12, 13]. A key development that makes the algorithm presented here feasible

for large-scale problems is recent work by some of us [28] on efficient multigrid-based iterative

methods for solving unsteady and steady variable-coefficient Stokes problems on staggered grids.
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Our high-order Godunov method for mass advection is based on the work of Bell et al. [25–27].

The temporal integrators developed in Section III D are a novel approach to low Mach num-

ber hydrodynamics even in the deterministic context. In high-resolution finite-volume methods,

the dominant paradigm has been to use a splitting (fractional-step) or projection method [29] to

separate the pressure and velocity updates [20, 30–33]. We followed such a projection approach to

construct an explicit temporal integrator for the low Mach number equations [13]. When viscosity

is treated implicitly, however, the splitting introduces a commutator error that leads to the ap-

pearance of spurious or “parasitic” modes in the presence of physical boundaries [34–36]. There are

several techniques to reduce (but not eliminate) these artificial boundary layers [35], and for suffi-

ciently large Reynolds number flows the time step size dictated by advective stability constraints

makes the splitting error relatively small in practice. At small Reynolds numbers, however, the

splitting error becomes larger as viscous effects become more dominant, and projection methods do

not apply in the steady Stokes regime for problems with physical boundary conditions. Methods

that do not split the velocity and pressure updates but rather solve a combined Stokes system for

velocity and pressure have been used in the finite-element literature for some time, and have more

recently been used in the finite-volume context for incompressible flow [37]. Here we demonstrate

how the same approach can be effectively applied to the low Mach number equations for a binary

fluid mixture [13], to construct a method that is second-order accurate up to boundaries, for a

broad range of Reynolds numbers including steady Stokes flow.

We test our ability to accurately capture the static structure factor for equilibrium fluctuation

calculations. Then, we test our methods deterministically on two variable density and variable

viscosity low Mach number flows. First, we confirm second-order deterministic accuracy in both

space and time for a lid-driven cavity problem in the presence of a bubble of a denser miscible fluid.

Next, we simulate the development of a Kevin-Helmholtz instability as a lighter less viscous fluid

streams over a denser more viscous fluid. These tests confirm the robustness and accuracy of the

methods in the presence of large contrasts, sharp gradients, and boundaries. Next we focus on the

use of fluctuating low Mach number equations to study giant concentration fluctuations. In Section

V we apply our methods to study the development of giant fluctuations [7, 38–40] during free dif-

fusive mixing of water and glycerol. We compare simulation results to experimental measurements

of the time-correlation function of concentration fluctuations during the diffusive mixing of water

and glycerol [39]. The relaxation times show signatures of the rich deterministic dynamics, and

a transition from purely diffusive relaxation of concentration fluctuations at large wavenumbers,

to more complex buoyancy-driven dynamics at smaller wavenumbers. We find reasonably-good
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agreement given the large experimental uncertainties, and observe the appearance of propagative

modes at small wavenumbers, which we suggest could be observed in experiments as well.

II. LOW MACH NUMBER EQUATIONS

At mesoscopic scales, in typical liquids, sound waves are very low amplitude and much faster

than momentum diffusion; hence, they can usually be eliminated from the fluid dynamics descrip-

tion. Formally, this corresponds to taking the zero Mach number singular limit Ma → 0 of the

well-known compressible fluctuating hydrodynamics equations system [8, 41]. In the compressible

equations, the coupling between momentum and mass transport is captured by the equation of

state (EOS) for the pressure P (ρ, c;T0) as a local function of the density ρ(r, t) and mass concen-

tration c(r, t) at a specified temperature T0 (r), assumed to be time-independent in our isothermal

model.

The low Mach number equations can be obtained by making the ansatz that the thermodynamic

behavior of the system is captured by a reference pressure P0 (r, t), with the additional pressure

contribution π (r, t) = O
(
Ma2

)
capturing the mechanical behavior while not affecting the thermody-

namics. We will restrict consideration to cases where stratification due to gravity causes negligible

changes in the thermodynamic state across the domain. In this case, the reference pressure is

spatially constant and constrains the system so that the evolution of ρ and c remains consistent

with the thermodynamic EOS

P (ρ (r, t) , c (r, t) ;T0 (r)) = P0 (t) . (1)

Physically this means that any change in concentration must be accompanied by a corresponding

change in density, as would be observed in a system at thermodynamic equilibrium held at the fixed

reference pressure and temperature. The EOS defines density ρ (c (r, t) ;T0 (r) , P0 (t)) as an implicit

function of concentration in a binary liquid mixture. The EOS constraint (1) can be re-written as

a constraint on the divergence of the fluid velocity v(r, t),

ρ∇ · v = −β∇ · F , (2)

where F is the total diffusive mass flux defined in (10), and the solutal expansion coefficient

β (c) =
1

ρ

(
∂ρ

∂c

)
P0,T0

is determined by the specific form of the EOS.

In this work we consider a specific linear EOS,

ρ1
ρ̄1

+
ρ2
ρ̄2

=
cρ

ρ̄1
+

(1− c)ρ
ρ̄2

= 1, (3)
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where ρ̄1 and ρ̄2 are the densities of the pure component fluids (c = 1 and c = 0, respectively), giving

β = ρ

(
1

ρ̄2
− 1

ρ̄1

)
=

ρ̄1 − ρ̄2
cρ̄2 + (1− c)ρ̄1

. (4)

It is important that for this specific form of the EOS β/ρ is a material constant independent of

the concentration; this allows us to write the EOS constraint (9) in conservative form ∇ · v =

−∇ · (βρ−1F ) and take the reference pressure P0 to be independent of time. The specific form of

the density dependence (4) on concentration arises if one assumes that two incompressible fluids

do not change volume upon mixing, which is a reasonable assumption for liquids that are not too

dissimilar at the molecular level. Surprisingly the EOS (3) is also valid for a mixture of ideal gases.

If the specific EOS (3) is not a very good approximation over the entire range of concentration

0 ≤ c ≤ 1, (3) may be a very good approximation over the range of concentrations of interest if ρ̄1

and ρ̄2 are adjusted accordingly. Our choice of the specific form of the EOS will aid significantly

in the construction of simple conservative spatial discretizations that strictly maintain the EOS

without requiring complicated nonlinear iterative corrections.

In fluctuating hydrodynamics, stochastic contributions to the momentum and mass fluxes that

are formally modeled as [12]

Σ =
√
ηkBT

(
W + WT

)
and Ψ =

√
2χρµ−1

c kBT W̃ , (5)

where kB is Boltzmann’s constant, η is the shear viscosity, χ is the diffusion coefficient, µ (c;T0, P0) is

the chemical potential of the mixture with µc = (∂µ/∂c)
P0,T0

, and W(r, t) and W̃(r, t) are standard

zero mean, unit variance random Gaussian tensor and vector fields, respectively, with uncorrelated

components,

〈Wij(r, t)Wkl(r
′, t′)〉 = δikδjl δ(t− t′)δ(r − r′),

and similarly for W̃.

A standard asymptotic low Mach analysis [14], formally treating the stochastic forcing as

smooth, leads to the isothermal low Mach number equations for a binary mixture of fluids in

conservation form [13],

∂t (ρv) +∇π =−∇ ·
(
ρvvT

)
+ ∇ ·

(
η∇̄v + Σ

)
+ ρg (6)

∂t (ρ1) =−∇ · (ρ1v) + ∇ · F (7)

∂t (ρ2) =−∇ · (ρ2v)−∇ · F (8)

∇ · v =−∇ · (βρ−1F ) , (9)

where the deterministic and stochastic diffusive mass fluxes are denoted by

F = ρχ∇c+ Ψ. (10)
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Here ∇̄ = ∇ + ∇T is a symmetric gradient, ρ1 = ρc is the density of the first component, ρ2 =

(1 − c)ρ is the density of the second component, and g is the gravitational acceleration. The

gradient of the non-thermodynamic component of the pressure π (Lagrange multiplier) appears in

the momentum equation as a driving force that ensures the EOS constraint (9) is obeyed. We note

that the bulk viscosity term gives a gradient term that can be absorbed in π and therefore does not

explicitly need to appear in the equations. Temperature dynamics and fluctuations are neglected

in these equations; however, this type of approach can be extended to include thermal effects. The

shear viscosity η (c;T0, P0) and the mass diffusion coefficient χ (c;T0, P0) in general depend on the

concentration. Note that the two density equations (7,8) can be combined to obtain the usual

continuity equation for the total density,

∂tρ = −∇ · (ρv) , (11)

and the primitive (non-conservation law) form of the concentration equation,

ρ (∂tc+ v ·∇c) = ∇ · F . (12)

Our conservative numerical scheme is based on Eqs. (6,7,9,11).

In Ref. [13] we discussed the effect of the low Mach constraint on the thermal fluctuations,

suitable boundary conditions for the low Mach equations, and presented a gauge formulation of

the equations that formally eliminates pressure in a manner similar to the projection operator for-

mulation for incompressible flows. Importantly, the gauge formulation demonstrates that although

the low Mach equations have the appearance of a constrained system, one can write them in an

unconstrained form by introducing a gauge degree of freedom for the pressure. For the purposes

of time integration, one can therefore treat these equations as standard initial-value problems [13]

and use the temporal integrators developed in Ref. [23].

A. Linearized low Mach fluctuating hydrodynamics

It is important to note that the equations of fluctuating hydrodynamics should be interpreted

as a mesoscopic coarse-grained representation of the mass, momentum and energy transport in

fluids [42]. As such, these equations implicitly contain a mesoscopic coarse-graining length and

time scale that is larger than molecular scales [43] and can only formally be written as stochastic

partial differential equations (SPDEs). A coarse-graining scale can explicitly be included in the

SPDEs [44, 45]; such a coarse-graining scale explicitly enters in our finite-volume spatio-temporal

discretization through the grid spacing (equivalently, the volume of a grid cell, or more precisely,

the number of molecules per grid cell). Additional difficulties are posed by the fact that in general
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the noise in the nonlinear equations is multiplicative, requiring a careful stochastic interpretation;

the Mori-Zwanzig projection formalism [46] suggests the correct stochastic interpretation is the

kinetic one [47].

For compressible and incompressible flows, the SPDEs of linearized fluctuating hydrodynamics

(LFHD) [8] can be given a precise continuum meaning [23, 36, 48, 49]. In these linearized equa-

tions one splits each variable into a deterministic component and small fluctuations around the

deterministic solution, e.g., c (r, t) = c̄ (r, t)+δc (r, t), where c̄ is a solution of the deterministic equa-

tions (6,7,9,11) with Ψ = 0 and Σ = 0. Here δc is the solution of a linear additive-noise equation

obtained by linearizing (12) to first order in the fluctuations and evaluating the noise amplitude at

the deterministic solution; more precisely, LFHD is an expression of the central limit theorem in

the limit of weak noise. In this work, in the stochastic setting we restrict our attention to LFHD

equations. As discussed in Ref. [23], we do not need to write down the (rather tedious) complete

form of the linearized low Mach number equations (for an illustration, see Section II B) since the

numerical method will perform this linearization automatically. Namely, the complete nonlinear

equations are essentially equivalent to the LFHD equations when the noise is sufficiently weak, i.e.,

when the hydrodynamic cells contain many molecules.

The low Mach number equations pose additional difficulties because they represent a coarse-

graining of the dynamics not just in space but also in time. As such, even the linearized equations

cannot directly be interpreted as describing a standard diffusion process. This is because the

stochastic mass flux Ψ in the EOS constraint (9) makes the velocity formally white-in-time [13].

We note, however, that the analysis in Ref. [44] shows that there is a close connection between

mass diffusion and advection by the thermally-fluctuating velocity field, and thus between Ψ and

velocity fluctuations. This suggests that a precise interpretation of the low Mach constraint in the

presence of stochastic mass fluxes requires a very delicate mathematical analysis. In this work we

rely on the implicit coarse-graining in time provided by the finite time step size in the temporal

integration schemes to regularize the low Mach equations [13]. Furthermore, for the applications we

study here, we can neglect stochastic mass fluxes and assume Ψ ≈ 0, in which case the difficulties

related to a white-in-time velocity disappear.

B. Overdamped limit

At small scales, flows in liquids are viscous-dominated and the inertial momentum flux ρvvT

can often be neglected in a zero Reynolds number approximation. In addition, in liquids, there



9

is a large separation of time scales between the fast momentum diffusion and slow mass diffusion,

i.e., the Schmidt number Sc = η/ (ρχ) is large. This makes the relaxation times of velocity modes

at sufficiently large wavenumbers much smaller than those of the concentration modes. Formally

treating the stochastic force terms as smooth for the moment, the separation of time scales im-

plies that we can replace the inertial momentum equation (6) with the overdamped steady-Stokes

equation

−∇ ·
(
η∇̄v

)
+∇π = ∇ ·Σ + ρg (13)

∇ · v = − (ρ̄−1
2 − ρ̄−1

1 )∇ · (χρ∇c+ Ψ) .

The above equations can be used to eliminate velocity as a variable, leaving only the concentra-

tion equation (12). Note that the density equation (11) simply defines density as a function of

concentration and thus is not considered an independent equation.

The solution of the Stokes system

−∇ ·
(
η∇̄v

)
+∇π = f (14)

∇ · v = −h,

where f (r, t) and h (r, t) are applied forcing terms, can be expressed in terms of a generalized inverse

Stokes linear operator 1 L−1 [η (·, t)] that is a functional of the viscosity (and thus the concentration),

v = L−1 [η] (f , h) .

In the linearized fluctuating equations, one must linearize around the (time dependent) solution

of the deterministic nonlinear equation

ρ̄ (∂tc̄+ v̄ ·∇c̄) = ∇ · (ρ̄χ̄∇c̄) , (15)

where we have used the shorthand notation ρ̄ = ρ (c̄), η̄ = η (c̄), χ̄ = χ (c̄). Here the velocity is an

implicit function of concentration defined via

−∇ ·
(
η̄∇̄v

)
+∇π̄ = ρ̄g

∇ · v̄ = − (ρ̄−1
2 − ρ̄−1

1 )∇ · (χ̄ρ̄∇c̄) ,

which we can write in shorthand notation as

v̄ = L−1 [η̄] (ρ̄g, (ρ̄−1
2 − ρ̄−1

1 )∇ · (χ̄ρ̄∇c̄)) . (16)

Here we develop second-order integrators for the deterministic overdamped low Mach equation

(15,16).

1 More generally, in the presence of inhomogeneous boundary conditions, the solution operator for (14) is an affine
rather than a linear operator.
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In the stochastic setting, the solution of (13) is white in time because the stochastic mass

and momentum fluxes are white in time. This means that the advective term v · ∇c requires

a specific stochastic interpretation, in addition to the usual regularization (smoothing) in space

required to interpet all nonlinear terms appearing in formal fluctuating hydrodynamics SPDEs.

By performing a precise (albeit formal) adiabatic mode elimination of the fast velocity variable

under the assumption of infinite separation of time scales, Donev et al. arrive at a Stratonovich

interpretation of the random advection term v ·∇c (see Appendix A of Ref. [44]). This analysis

does not, however, directly extend to the low Mach number equations since it relies in key ways

on the incompressibility of the fluid. Generalizing this sort of analysis to the case of variable fluid

density is nontrivial, likely requiring the use of the gauge formulation of the low Mach equations,

and appears to be beyond the scope of existing techniques. Variable (i.e., concentration-dependent)

viscosity and mass diffusion coefficient can be handled using existing techniques although there are

subtle nonlinear stochastic effects arising from the fact that the noise in the velocity equation is

multiplicative and the invariant measure (equilibrium distribution) of the fast velocity depends on

the slow concentration.

In the linearized setting, however, the difficulties associated with the interpretation of stochastic

integrals and multiplicative noise disappear. The complete form of the linearized equations contains

many terms and is rather tedious. Since we will never need to explicitly write this form let us

illustrate the procedure by assuming χ and η to be constant. For the concentration, we obtain the

linearized equation

ρ̄ (∂t (δc) + (δv) ·∇c̄) = ∇ · (ρ̄χ∇ (δc) + ρ̄′χ (∇c̄) δc)− ρ̄−1ρ̄′∇ · (ρ̄χ∇c̄) δc, (17)

where ρ̄′ = dρ (c̄) /dc = ρ̄β (ρ̄) relates concentration fluctuations to density fluctuations via the EOS.

Here we split δv = δvc + δvf into a component δvc that is continuous in time and a component δvf

that is white in time,

δvc = L−1 [η̄] (ρ̄′gδc, (ρ̄−1
2 − ρ̄−1

1 )∇ · (ρ̄χ∇ (δc))) ,

δvf = L−1 [η̄] (∇ ·Σ, ∇ ·Ψ) .

The term ρ̄ (δvf ) ·∇c̄ in (17) is interpreted as an additive noise term with a rather complicated and

potentially time-dependent (via η̄ (c̄ (r, t))) spatial correlation structure. In this work we develop

numerical methods that solve the overdamped linearized equation (17) to second-order weakly [23].
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III. SPATIO-TEMPORAL DISCRETIZATION

Our baseline spatio-temporal discretization of the low Mach equations is based on the method

of lines approach where we first discretize the (S)PDEs in space to obtain a system of (S)ODEs,

which we then solve using a single-step multi-stage temporal integrator. The conservative finite-

volume spatial discretization that we employ here is essentially identical to that developed in our

previous works [13] and [28]. In summary, scalar fields such as concentration and densities are cell-

centered, while velocity is face-centered. In order to ensure conservation, the conserved momentum

ρv and mass densities ρ1 and ρ are evolved rather than the primitive variables v and c. Diffusion of

mass and momentum is discretized using standard centered differences, leading to compact stencils

similar to the standard Laplacian. Stochastic mass fluxes are associated with the faces of the

regular grid, while for stochastic momentum fluxes we associate the diagonal elements with the

cell centers and the off-diagonal elements with the nodes (in 2D) or edges (in 3D) of a regular grid

with grid spacing ∆x.

Here we focus our discussion on three new aspects of our spatio-temporal discretization. After

summarizing the dimensionless numbers that control the appropriate choice of advection method

and temporal integrator, in Section III B we describe our implementation of two advection schemes

and a discussion of the advantages of each. In Section III C we describe our implicit treatment of

viscous dissipation using a GMRES solver for the coupled velocity-pressure Stokes system. In Sec-

tion III D we describe our overall temporal discretization strategies for the inertial and overdamped

regimes.

A. Dimensionless Numbers

The suitability of a particular temporal integrator or advection scheme depends on the following

dimensionless numbers:

cell Reynolds number Rec =
U∆x

ν

cell Peclet number Pec =
U∆x

χ

Schmidt number Sc =
ν

χ
=

Pe
Re

,

where ν = η/ρ is the kinematic viscosity. Observe that the first two depend on the spatial resolution

and the typical flow speed U , while the Schmidt number is an intrinsic material property of the

mixture. Also note that the physically relevant Reynolds Re and Peclet Pe numbers would be

defined with a length scale much larger than ∆x, such as the system size, and thus would be much
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larger than the discretization-scale numbers above. In this work, we are primarily interested in

small-scale flows with Rec . 1 and large Sc (liquid mixtures).

The choice of advection scheme for concentration (partial densities) is dictated by Pec. If Pec & 2,

centered advection schemes will generate non-physical oscillations, and one must use the Godunov

advection scheme described below. However, it is important to note that in this case the spectrum

of fluctuations will not be correctly preserved by the advection scheme; if fluctuations need to be

resolved it is advisable to instead reduce the grid spacing and thus reduce the cell Peclet number

to Pec . 2 and use centered advection.

The choice of the temporal integrator, on the other hand, is determined by the importance of

inertia and the time scale of interest. If Rec is not sufficiently small, then there is no alternative

to resolving the inertial dynamics of the velocity. Now let us assume that Re� 1, i.e., viscosity is

dominant. If the time scale of interest is the advective timescale L/U , where L is the system size,

then one should use the inertial equations. However, the inertial temporal integrator described

in Section III D will be rather inefficient if the time scale of interest is the diffusive time scale

L2/χ, as is the case in the study of diffusive mixing presented in Section V. This is because the

Crank-Nicolson (implicit midpoint) scheme used to treat viscosity in our methods is only A-stable,

and, therefore, if the viscous Courant number ν∆t/∆x2 is too large, unphysical oscillations in the

solution will appear (note that this problem is much more serious for fluctuating hydrodynamics

due to the presence of fluctuations at all scales). In order to be able to use a time step size on the

diffusive time scale, one must construct a stiffly accurate temporal integrator. This requires using

an L-stable scheme to treat viscosity, such as the backward Euler scheme, which is however only

first-order accurate.

Constructing a second-order stiffly accurate implicit-explicit integrator in the context of vari-

able density low Mach flows is rather nontrivial. Furthermore, using an L-stable scheme leads to a

damping of the velocity fluctuations at large wavenumbers and is inferior to the implicit midpoint

scheme in the context of fluctuating hydrodynamics [36]. Therefore, in this work we choose to con-

sider separately the overdamped limit Re→ 0 and Sc→∞ (note that the value of Pe is arbitrary).

In this limit we analytically eliminate the velocity as an independent variable, leaving only the

concentration equation, which evolves on the diffusive time scale. We must emphasize, however,

that the overdamped equations should be used with caution, especially in the presence of fluctua-

tions. Notably, the validity of the overdamped approximation requires that the separation of time

scales between the fast velocity and slow concentration be uniformly large over all wavenumbers,

since fluctuations are present at all lengthscales. In the study of giant fluctuations we present in
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Section V, buoyancy effects speed up the dynamics of large-scale concentration fluctuations and

using the overdamped limit would produce physically incorrect results at small wavenumbers. In

microgravity, however, the overdamped limit is valid and we have used it to study giant fluctuations

over very long time scales in a number of separate works [44, 50].

B. Advection

We have implemented two advection schemes for cell-centered scalar fields, and describe under

what conditions each is more suitable. The first is a simpler non-dissipative centered advection

discretization described in our previous work [13]. This scheme preserves the skew-adjoint nature

of advection and thus maintains fluctuation-dissipation balance in the stochastic context. However,

when sharp gradients are present, centered advection schemes require a sufficient amount of dissipa-

tion (diffusion) in order to avoid the appearance of Gibbs-phenomenon instabilities. Higher-order

Godunov schemes have been used successfully with cell-centered finite volume schemes for some

time [24–27]. In these semi-Lagrangian advection schemes, a construction based on characteristics

is used to estimate the average value of the advected quantity passing through each cell face during

a time step. These averages are then used to evaluate the advective fluxes. Our second scheme

for advection is the higher-order Godunov approach of Bell, Dawson, and Schubin (BDS) [25].

Additional details of this approach are provided in Section III B 1.

The BDS scheme can only be used to advect cell-centered scalar fields such as densities. This

is because the scheme operatse on control volumes, and therefore applying it to staggered field

requires the use of disjoint control volumes, thereby greatly complicating the advection procedure

for non-cell-centered data. We therefore limit ourselves to using the skew-adjoint centered advection

scheme described in Refs. [12, 36] to advect momentum. Although some Godunov schemes for

advecting a staggered momentum field have been developed [37, 51], they are not at the same

level of sophistication as those for cell-centered scalar fields. For example, in Ref. [51] a piecewise

constant reconstruction is used, and in Ref. [37] only extrapolation in space is performed but

not in time. In our target applications, there is sufficient viscous dissipation to stabilize centered

advection of momentum (note that the mass diffusion coefficient is several orders of magnitude

smaller than the kinematic viscosity in typical liquids).

The BDS advection scheme is not skew-adjoint and thus adds some dissipation in regions of

sharp gradients that are not resolved by the underlying grid. Thus, unlike the case of using centered

advection, the spatially discrete (but still continuous in time) fluctuating equations do not obey



14

a strict discrete fluctuation-dissipation principle [36, 49]. Nevertheless, in high-resolution schemes

such as BDS artificial dissipation is added locally in regions where centered advection would have

failed completely due to insufficient spatial resolution. Furthermore, the BDS scheme offers many

advantages in the deterministic context and allows us to simulate high Peclet number flows with

little to no mass diffusion. For well-resolved flows with sufficient dissipation there is little difference

between BDS and centered advection. Note that both advection schemes are spatially second-order

accurate for smooth flows.

1. BDS advection

Simple advection schemes, such as the centered scheme described in our previous work [13],

directly computes the divergence of the advective flux f = φv evaluated at a specific point in

time, where φ is a cell-centered quantity such as density, and v is a specified face-centered velocity.

By contrast, the BDS scheme uses the multidimensional characteristic geometry of the advection

equation

∂φ

∂t
+∇ · (φv) = q, (18)

to estimate time-averaged fluxes through cell faces over a time interval ∆t, given φn, as well as

a face-centered velocity field v and a cell-centered source q that are assumed constant over the

time interval. In actual temporal discretizations v ≈ v(tn+
1/2) ≈ v(tn + ∆t/2) is a midpoint (second-

order) approximation of the velocity over the time step. Similarly, q ≈ q(tn+
1/2) will be a centered

approximation of the divergence of the diffusive and stochastic fluxes over the time step. In the

description of our temporal integrators, we will use the shorthand notation BDS to denote the

approximation to the advective fluxes used in the BDS scheme for solving (18),

φn+1 = φn −∆t∇ · (BDS (φn, v, q, ∆t)) + ∆t q.

BDS is a conservative scheme based on computing time-averaged advective fluxes through every

face of the computational grid, for example, in two dimensions,

BDSi+1/2,j
= fi+1/2,j

= φi+1/2,j
vi+1/2,j

,

where vi+1/2,j
is the given normal velocity at the face, and φi+1/2,j

represents the space-time average

of φ passing through face-(i + 1
2
, j) in the time interal ∆t. The extrapolated face-centered states

φi+1/2,j
are computed by first reconstructing a piecewise continuous profile of φ (r, t) in every cell

that can, optionally, be limited based on monotonicity considerations. The multidimensional char-

acteristic geometry of the flow in space-time is then used to estimate the time-averaged flux; see
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the original papers [25–27] for a detailed description. In the original advection BDS schemes in

two dimensions [25] and three dimensions [27], a piecewise-bilinear (in two dimensions) or trilinear

(in three dimensions) reconstruction of φ was used. Subsequently, the schemes were extended to a

quadratic reconstruction in two dimensions [26]. Note that handling boundary conditions in BDS

properly requires additional investigations, and the construction of specialized one-sided recon-

struction stencils near boundaries. In our implementation we rely on cubic extrapolation based

on interior cells and the specified boundary condition (Dirichlet or Neumann) to fill ghost cell

values behind physical boundaries, and then apply the BDS procedure to the interior cells using

the extrapolated ghost cell values.

BDS advection, as described in [25–27], does not strictly preserve the EOS constraint, unlike

centered advection. The characteristic extrapolation of densities to space-time midpoint values on

the faces of the grid, (ρ1)i+1/2,j
and ρi+1/2,j

, are not necessarily consistent with the EOS, unlike centered

advection where they are simple averages of values from neighboring cells, and thus guaranteed to

obey the EOS by linearity. A simple fix that makes BDS preserve the EOS, without affecting its

formal order of accuracy, is to enforce the EOS on each face by projecting the extrapolated values

(ρ1)i+1/2,j
and ρi+1/2,j

onto the EOS. In the L2 sense, such a projection consists of the update

(ρ1)i+1/2,j
← ρ̄21

ρ̄21 + ρ̄22
(ρ1)i+1/2,j

− ρ̄1ρ̄2
ρ̄21 + ρ̄22

(ρ2)i+1/2,j
,

and similarly for ρ2, or equivalently, ρ = ρ1 +ρ2. Note that this projection is done on each face only

for the purposes of computing advective fluxes and is distinct from any projection onto the EOS

performed globally.

C. GMRES solver

The temporal discretization described in our previous work [13] was fully explicit, whereas the

discretization we employ here is implicit in the viscous dissipation. The implicit treatment of

viscosity is traditionally handled by time-splitting approaches, in which a velocity system is solved

first, without strictly enforcing the constraint. The solution is then projected onto the space of

vector fields satisfying the constraint [29]. This type of time-splitting introduces several artifacts,

especially for viscous-dominated flows; here we avoid time-splitting by solving a combined velocity-

pressure Stokes linear system, as discussed in detail in Ref. [28].

The implicit treatment of viscosity in the temporal integrators described in Section III D requires

solving discretized unsteady Stokes equations for a velocity v and a pressure π,
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θρv −∇ ·
(
η∇̄v

)
+ ∇π = f

∇ · v = h,

for given spatially-varying density ρ and viscosity η, right-hand sides f and h, and a coefficient

θ ≥ 0. We solve these linear systems using a GMRES Krylov solver preconditioned by the multigrid-

based preconditioners described in detail in Ref. [28]. This approach requires only standard

velocity (Helmholtz) and pressure (Poisson) multigrid solvers, and requires about two-three times

more multigrid iterations than solving an uncoupled pair of velocity and pressure subproblems (as

required in projection-based splitting methods).

There are two issues that arise with the Stokes solver in the context of temporal integration

that need special care. In fluctuating hydrodynamics, typically the average flow v̄ changes slowly

and is much larger in magnitude than the fluctuations around the flow δv. In the predictor stages

of our temporal integrators the convergence criterion in the GMRES solver is based on relative

tolerance. Because the right-hand side of the linear system and the residual are dominated by the

deterministic flow, it is hard to determine when the fluctuating component of the flow has converged

to the desired relative accuracy. In the corrector stage of our predictor-corrector schemes, we use

the predicted state as a reference, and switch to using absolute error as the convergence criterion in

GMRES, using the same residual error tolerance as was used in the predictor stage. This ensures

that the corrector stage GMRES converges quickly if the predicted state is already a sufficiently

accurate solution of the Stokes system. Another issue that has to be handled carefully is the

imposition of inhomogeneous boundary conditions, which leads to a linear system of the form

Axnew + bBC = b,

where bBC comes from non-homogeneous boundary conditions. Both of these problems are solved

by using a residual correction technique to convert the Stokes linear system into one for the change

in the velocity and pressure ∆x = xnew−xold relative to an initial guess or reference state xold, which

is typically the last known velocity and pressure, except that the desired inhomogeneous boundary

conditions are imposed; this ensures that boundary terms vanish and the Stokes problem for ∆x

is in homogeneous form. Note that any Dirichlet boundary conditions for the normal component

of velocity should be consistent with h, and any Dirchlet boundary conditions for the tangential

component of the velocity should be evaluated at the same point in time (e.g., beginning, midpoint,

or endpoint of the time step) as h.
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D. Temporal Discretization

In this section we construct temporal integrators for the spatially-discretized low Mach number

equations, in which we treat viscosity semi-implicitly. For our target applications, the Reynolds

number is sufficiently small and the Schmidt number is sufficiently large that an explicit viscosity

treatment would lead to an overall viscous time step restriction,

η∆t

∆x2
<

1

2d
,

We present temporal integrators in which we avoid fractional time stepping and ensure strict (to

within solver and roundoff tolerances) conservation and preservation of the EOS constraint. The key

feature of the algorithms developed here is the implicit treatment of viscous dissipation, without,

however, using splitting between the velocity and pressure updates, as discussed at more length in

the introduction. The feasibility of this approach relies an efficient solver for Stokes systems on a

staggered grid [28]; see also Section III C for additional details.

In the temporal integrators developed here, we treat advection explicitly, which limits the ad-

vective Courant number to

vmax∆t

∆x
< C ∼ 1.

Mass diffusion is also treated explicitly since it is typically much slower than momentum diffusion

and in many examples also slower than advection. Explicit treatment of mass diffusion leads to an

additional stability limit on the time step since the diffusive Courant number must be sufficiently

small,

χ∆t

∆x2
<

1

2d
,

where d is the number of spatial dimensions and ∆x is the grid spacing. Implicit treatment of

mass diffusion is straightforward for incompressible flows, see Algorithm 2 in Ref [23], but is much

harder for the low Mach number equations due to the need to maintain the EOS constraint (3)

via the constraint (9). Even with explicit mass diffusion, provided that the Reynolds is sufficiently

small and the Schmidt number is sufficiently large, a semi-implicit viscosity treatment results in a

much larger allowable time step.
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1. Predictor-Corrector Time Stepping Schemes

In Algorithm 1 we give the steps involved in advancing the solution from time level n by a

time interval ∆t to time level n + 1, using a semi-implicit trapezoidal temporal integrator [23] for

the inertial fluctuating low Mach number equations (6,7,9,11). In Algorithm 2 we give an explicit

midpoint temporal integrator [23] for the overdamped low Mach number equations (7,11,13).

In order to ensure strict conservation of mass and momentum, we evolve the momentum density

m = ρv and the mass densities ρ1 and ρ (an equally valid choice is to evolve ρ1 and ρ2). Whenever

required, the primitive variables v = m/ρ and c = ρ1/ρ are computed from the conserved quantities.

Unlike the incompressible equations, the low Mach number equations require the enforcement of

the EOS constraint (3) at every update of the mass densities ρ1 and ρ, notably, both in the predictor

and the corrector stages. This requires that the right-hand side of the velocity constraint (9) be

consistent with the corresponding diffusive fluxes used to update ρ1. In order to preserve the EOS

and also maintain strict conservation, Algorithms 1 and 2 use a splitting approach, in which we first

update the mass densities and then we update the velocity using the updated values for the density

ρ and the diffusive fluxes that will be used to update ρ1 . Note, however, that after many time

steps the small errors in enforcing the EOS due to roundoff and solver tolerances can accumulate

and lead to a systematic drift from the EOS. This can be corrected by periodically projecting the

solution back onto the EOS using an L2 projection, see Section III.C in Ref. [13].

In our presentation of the temporal integrators, we use superscripts to denote where a given

quantity is evaluated, for example, ηp,n+1 ≡ η (cp,n+1). Even though we use continuum notation for

the divergence, gradient and Laplacian operators, it is implicitly understood that the equations

have been discretized in space. The white-noise random tensor fields W(r, t) and W̃(r, t) are

represented via one or two collections of i.i.d. uncorrelated normal random variables W and W̃ ,

generated independently at each time step, as indicated by superscripts and subscripts [23, 36].

Spatial discretization adds an additional factor of ∆V −
1/2 due to the delta function correlation of

white-noise, where ∆V is the volume of a grid cell [36]. For simplicity of notation we denote

W = W + W T .

Several variants of the inertial Algorithm 1 preserve deterministic second-order accuracy. For

example, in the corrector stage for ρ1, for centered advection we use a trapezoidal approximation

to the advective flux,

1

2
(ρ1v)

n
+

1

2
(ρ1v)

?,n+1
, (19)
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Algorithm 1 Semi-implicit trapezoidal temporal integrator for the inertial fluctuating low Mach

number equations (6,7,9,11).

1. Compute the diffusive / stochastic fluxes for the predictor. Note that these can be obtained from

step 5 of the previous time step,

F n = (ρχ∇c)
n

+

√
2
(
χρµ−1

c

)n
kBT

∆t∆V
W̃

n
.

2. Take a predictor forward Euler step for ρ1, and similarly for ρ2, or, equivalently, for ρ,

ρ?,n+1
1 = ρn1 + ∆t∇ · F n −∆t∇ ·

BDS (ρn1 , v
n, ∇ · F n, ∆t) for BDS

ρn1v
n for centered

.

3. Compute c?,n+1 = ρ?,n+1
1 /ρ?,n+1 and calculate corrector diffusive fluxes and stochastic fluxes,

F ?,n+1 = (ρχ∇c)
?,n+1

+

√
2
(
χρµ−1

c

)?,n+1
kBT

∆t∆V
W̃

n
.

4. Take a predictor Crank-Nicolson step for the velocity, using vn as a reference state for the residual

correction form of the Stokes system,

ρ?,n+1v?,n+1 − ρnvn

∆t
+ ∇π?,n+1 = ∇ · (−ρvv)

n
+ ρng

+
1

2
∇ ·

[(
ηn∇̄vn + η?,n+1∇̄v?,n+1

)]
+ ∇ ·

(√
ηnkBT

∆t∆V
W

n

)
,

∇ · v?,n+1 = −∇ ·
(
βρ−1F ?,n+1

)
.

Take a corrector step for ρ1, and similarly for ρ2, or, equivalently, for ρ,

ρn+1
1 = ρn1 + ∆t∇ · F ?,n+1/2 −∆t∇ ·

BDS
(
ρn1 , v

?,n+1/2, ∇ · F ?,n+1/2, ∆t
)

for BDS

1
2 (ρ1v)

n
+ 1

2 (ρ1v)
?,n+1

for centered

,

where F ?,n+1/2 =
(
F n + F ?,n+1

)
/2 and v?,n+1/2 =

(
vn + v?,n+1

)
/2.

5. Compute cn+1 = ρn+1
1 /ρn+1 and compute

F n+1 = (ρχ∇c)
n+1

+

√
2
(
χρµ−1

c

)n+1
kBT

∆t∆V
W̃

n+1
.

6. Take a corrector step for velocity by solving the Stokes system, using v?,n+1 as a reference state,

ρn+1vn+1 − ρnvn

∆t
+ ∇πn+ 1

2 =
1

2
∇ ·

(
(−ρvv)

n
+ (−ρvv)

?,n+1
)

+
1

2

(
ρn + ρn+1

)
g

+
1

2
∇ ·

(
ηn∇̄vn + ηn+1∇̄vn+1

)
+

1

2
∇ ·

[(√
ηnkBT

∆t∆V
+

√
ηn+1kBT

∆t∆V

)
W

n

]
∇ · vn+1 = −∇ ·

(
βρ−1F n+1

)
.

.
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but we could have also used a midpoint approximation(
ρn1 + ρ?,n+1

1

2

)(
vn + v?,n+1

2

)
. (20)

without affecting the second-order weak accuracy [23]. Note that BDS advection by construction

requires a midpoint approximation to the advective velocity; no analysis of the order of stochastic

accuracy is available for BDS advection at present. In the corrector step for velocity, in Algorithm

1 we use corrected values for the viscosity, but one can also use the values from the predictor η∗,n+1.

2. Order of Accuracy

For explicit temporal integrators, we relied on a gauge formulation to write the low Mach

equations in the form of a standard unconstrained initial-value problem, thus allowing us to use

standard integrators for ODEs [13]. In the semi-implicit case, however, we do not use a gauge

formulation because the Stokes solver we use works directly with the pressure and velocity. This

makes proving second-order temporal accuracy nontrivial even in the deterministic context; we

therefore rely on empirical convergence testing to confirm the second-order deterministic accuracy.

In the stochastic context, there is presently no available theoretical analysis when BDS advection

is employed; existing analysis [23, 36, 49] assumes a method of lines (MOL) discretization in which

space is discretized first to obtain a system of SODEs. For centered advection, which does lead

to an MOL discretization, the algorithms used here are based on the second-order weak temporal

integrators developed in Ref. [23]. In particular, for the case of the inertial equations (6,7,9,11) we

base our temporal integrator on an implicit trapezoidal method. It should be emphasized however

that the analysis in Ref. [23] applies to unconstrained Langevin systems, while the low Mach

equations are constrained by the EOS. Nevertheless, the deterministic accuracy of the method is

crucial even when fluctuations of primary interest because in linearized fluctuating hydrodynamics

the fluctuations are linearized around the solution of the determinisitc equations, which must itself

be computed numerically [23] accurately in order to have any chance to compute the fluctuations

accurately. For the case of the overdamped equations (7,11,13), we base our temporal integrator on

an implicit midpoint method. In this case the analysis presented in Ref. [23] does apply since the

velocity is not a variable in the overdamped equations and the limiting equation for concentration

is unconstrained. This analysis indicates that the overdamped temporal integrator below is second-

order weakly accurate for the linearized overdamped low Mach number equations.
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Algorithm 2 A time step of our implicit midpoint temporal integrator for the overdamped

equations (7,11,13).

1. Calculate predictor diffusive fluxes and generate stochastic fluxes for a half step to the midpoint,

F n = (ρχ∇c)
n

+

√
2
(
χρµ−1

c

)n
kBT

(∆t/2) ∆V
W̃

n

A.

2. Generate a random advection velocity by solving the steady Stokes equation with random forcing,

∇πn = ∇ ·
(
ηn∇̄vn

)
+ ∇ ·

(√
ηnkBT

(∆t/2) ∆V
W

n

A

)
+ ρng

∇ · vn = −∇ ·
(
βρ−1F n

)
.

3. Take a predictor midpoint Euler step for ρ1, and similarly for ρ2, or, equivalently, for ρ,

ρ
?,n+1/2
1 = ρn1 +

∆t

2
∇ · F n − ∆t

2
∇ ·

BDS
(
ρn1 , v

n, ∇ · F n, ∆t
2

)
for BDS

ρn1v
n for centered

,

and compute c?,n+1/2 = ρ
?,n+1/2
1 /ρ?,n+1/2.

4. Calculate corrector diffusive fluxes and generate stochastic fluxes,

F ?,n+1/2 = (ρχ∇c)
?,n+1/2 +

√
2
(
χρµ−1

c

)?,n+1/2
kBT

∆t∆V

(
W̃

n

A + W̃
n

B√
2

)
,

where W̃
n

B is a collection of random numbers generated independently of W̃
n

A.

5. Solve the corrected steady Stokes equation

∇π?,n+1/2 = ∇ ·
(
η?,n+1/2∇̄v?,n+1/2

)
+ ∇ ·

[√
η?,n+1/2kBT

∆t∆V

(
W

n

A + W
n

B√
2

)]
+ ρ?,n+1/2g

∇ · v?,n+1/2 = −∇ ·
(
βρ−1F ?,n+1/2

)
.

6. Correct ρ1, and similarly for ρ2, or, equivalently, for ρ,

ρn+1
1 = ρn1 + ∆t∇ · F ?,n+1/2 −∆t∇ ·

BDS
(
ρn1 , v

?,n+1/2, ∇ · F ?,n+1/2, ∆t
)

for BDS

(ρv)
?,n+1/2 for centered

,

and set cn+1 = ρn+1
1 /ρn+1.

IV. VALIDATION AND TESTING

In this section we apply the inertial and overdamped low Mach algorithms described in Section

III in a stochastic and several deterministic contexts. First, we demonstrate our ability to accurately
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model equilibrium fluctuations by analyzing the static spectrum of the fluctuations. Next, we

confirm the second-order deterministic order of accuracy of our methods on a low Mach number

lid-driven cavity test. Next, we confirm that the BDS advection scheme enables robust simulation

in cases when there is little or no mass diffusion (i.e., nearly infinite Peclet number). Lastly, we

use the inertial algorithm to simulate the development of a Kelvin-Helmholtz instability when a

lighter less viscous fluid is impulsively set in motion on top of a heavier more viscous fluid.

A. Equilibrium Fluctuations

One of the key quantities used to characterize the intensity of equilibrium thermal fluctuations

is the static structure factor or static spectrum of the fluctuations at thermodynamic equilibrium.

We examine the static structure factors in both the inertial and overdamped regimes. We use

arbitrary units with T = 1, kB = 1, molecular masses m1 = 1, m2 = 2, and pure component densities

ρ̄1 = 2/3, ρ̄2 = 2. We initialize the domain with c = 0.5, which gives ρ = 1. The diffusion coefficient

was constantχ = 1, whereas the viscosity varies linearly from η = 1 to η = 10 (for the inertial tests),

and from η = 1 to η = 100 (for the overdamped tests) as c varies from 0 to 1, but note that at

equilibrium the concentration fluctuations are small so the viscosity varies little over the domain.

We assume an ideal mixture, giving chemical potential µ−1
c kBT = c(1− c)[cm2 + (1− c)m1] [13, 52].

At these conditions, the equilibrium density variance is ∆V 〈(δρ)2〉 = Sρ = 0.375, where ∆V is the

volume of a grid cell (see Appendix A1 in [13]). We use a periodic system with 32 × 32 grid cells

with ∆x = ∆y = 1, with the thickness in the third direction set to give a large ∆V = 106 and thus

small fluctuations, ensuring consistency with linearized fluctuating hydrodynamics. A total of 105

time steps are skipped in the beginning to allow equilibration of the system, and statistics are then

collected for an additional 106 steps. We run both the inertial and overdamped algorithms using

three different time steps, ∆t = 0.1, 0.05, and 0.025, the largest of which corresponds to 40% of the

maximum allowable time step by the explicit mass diffusion CFL condition.

In Table I we observe that as we reduce the time step by a factor of two, we see a reduction in

error in the average value of Sρ over all wavenumbers by a factor of ˜4 (second-order convergence)

for the inertial algorithm, and a factor of ˜8 (third-order convergence) for the overdamped algorithm

(the latter being consistent with the fact that the explicit midpoint method is third-order accurate

for static covariances [36]). In Figure 1 we show the spectrum of density fluctuations at equilibrium

for three different time step sizes. At thermodynamic equilibrium, the static structure factors are

independent of the wavenumber due to the local nature of the correlations. Since we include mass
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Table I: Equilibrium static structure factor Sρ averaged over all wavevectors for the inertial and overdamped

algorithms using three different time steps. The exact solution from theory is Sρ = 0.375, allowing us to

estimate an order of accuracy from the average error over all wavenumbers. Note that there are significant

statistical errors present, especially at small wavenumbers, and these make it difficult to reliably estimate

the asymptotic order of accuracy empirically when the error is very small (as for the overdamped integrator).

∆t Sρ |Error| Order

Inertial 0.1 0.3201 0.0549

0.05 0.3624 0.0126 2.12

0.025 0.3722 0.0029 2.14

Overdamped 0.1 0.4192 0.0442

0.05 0.3786 0.0036 3.63

0.025 0.3755 0.0005 2.92

Figure 1: Equilibrium static structure factor Sρ as a function of wavevector (zero being at the center of the

figures) for the overdamped simulations with ∆t = 0.1 (left), ∆t = 0.05 (middle), and ∆t = 0.025 (right).

The correct result, which is recovered in the limit ∆t→ 0, is Sρ = 0.375. The artifacts decrease by roughly

a factor of 8 as the time step is reduced in half.

diffusion using an explicit temporal integrator, for larger time steps we expect to see additional

deviation from a flat spectrum at the largest wavenumbers (i.e., for k ∼ ∆x−1)[36, 49]. In the limit

of sufficiently small time steps, we recover the correct flat spectrum, demonstrating that our model

and numerical scheme obey a fluctuation-dissipation principle.

B. Deterministic Lid-Driven Cavity Convergence Test

In this section, we simulate a smooth test problem and empirically confirm deterministic second-

order accuracy of Algorithms 1 and 2 even in the presence of boundary conditions, inertial effects,

and gravity, as well as nonconstant density, mass diffusion coefficient, and viscosity. The problem is
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a deterministic lid-driven cavity flow, following previous work by Boyce Griffith for incompressible

constant-density and constant-viscosity flow [37].

We use CGS units (centimeters for length, seconds for time, grams for mass). We consider a

square (two dimensions) or cubic (three dimensions) domain with side of length L = 1 bounded on

all sides by no-slip walls moving with a specified velocity. The bottom and top walls (y-direction)

are no-slip walls moving in equal and opposite directions, setting up a circular flow pattern, while

the remaining walls are stationary. The top wall has a specified velocity, in two dimensions,

u(x, t) =


1
4

[
1 + sin (2πx− π

2
)
] [

1 + sin (2πt− π
2
)
]
, t < 1/2

1
2

[
1 + sin (2πx− π

2
)
]
, t ≥ 1/2

(21)

and in three dimensions,

u(x, z, t) = w(x, z, t) =


1
8

[
1 + sin (2πx− π

2
)
] [

1 + sin (2πz − π
2
)
] [

1 + sin (2πt− π
2
)
]
, t < 1/2

1
4

[
1 + sin (2πx− π

2
)
] [

1 + sin (2πz − π
2
)
]
. t ≥ 1/2

. (22)

Note that the wall velocity tapers to zero at the corners in order to regularize the corner singularities

[37]; similarly, the velocity smoothly increases with time to its final value in order to avoid potential

loss of accuracy due to an impulsive start of the flow. The two liquids have pure-component densities

ρ̄1 = 2 and ρ̄2 = 1. The initial conditions are v = 0 for velocity, and a Gaussian bump of higher

density for the concentration, c (r, t) = exp (−75r2), where r is the distance to the center of the

domain. The viscosity varies linearly as a function of concentration, such that η = 0.1 when c = 0

and η = 1 when c = 1. Similarly, the mass diffusion coefficient varies linearly as a function of

concentration, such that χ = 10−4 when c = 0 and χ = 10−3 when c = 1. In order to confirm that

second-order accuracy is preserved even in the limit of infinite Peclet number if BDS advection is

employed, we also perform simulations with χ = 0. Figure 2 illustrates the initial and final (at time

t = 2) configurations of concentration and velocity in two dimensions.

Recall that advection of the concentration can be treated using centered advection or the BDS

advection scheme (see Section III B 1). BDS advection can use either a bi-linear (trilinear in 3D)

or a quadratic reconstruction (2D only), and can further be limited to avoid the appearance of

spurious local extrema. Here we present convergence results for the following test problems:

• Test 1: Centered advection, nonzero χ

• Test 2: Unlimited bilinear BDS advection, nonzero χ

• Test 3: Unlimited quadratic BDS advection, nonzero χ

• Test 4: Unlimited bilinear BDS advection, χ = 0.
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Figure 2: Initial (t = 0) and final (t = 2) concentration (scalar color field) and velocities (vector field) for

the low Mach number lid-driven cavity test problem.

We perform Tests 1-4 using both the inertial Algorithm 1 and the overdamped Algorithm 2. The

Reynolds number in this test is of order unity and there is only a small difference in the results for

the inertial and overdamped equations. Recall that concentration is the only independent variable

in the overdamped equations.

In two dimensions, we discretize the problem on a grid of 642, 1282, 2562 or 5122 grid cells.

The time step size for the coarsest simulation is ∆t = 5 × 10−3 and is reduced by a factor of 2

as the resolution increases by a factor of 2. This corresponds to an advective Courant number

of vmax∆t/∆x ∼ 0.3 for each simulation. The diffusive Courant number is χ∆t/∆x2 ∼ 0.16 (recall

that the stability limit is 1/4 = 0.25 in two dimensions) for the finest simulation, reducing by a

factor of 2 with each successive grid coarsening. We simulate the flow and compute error norms at

time t = 2. In table II we present estimates of the order of convergence in the L∞ (max) norm for

the velocity components and concentration for the inertial equations. We see clear second-order

pointwise convergence, without any artifacts near the boundaries. Similar results are obtained for

the concentration in the overdamped limit, as shown in table III.

In three dimensions, we discretize the problem on a grid of 323, 643, 1283 or 2563 grid cells. The

time step size for the coarsest simulation is ∆t = 1.25 × 10−2, which corresponds to an advective

Courant number of ∼ 0.4, and diffusive Courant number of ∼ 0.10 (stability limit is 1/6 ≈ 0.17) for

the finest resolution simulation. We simulate the flow and compute error norms at time t = 1. We

limit our study here to inertial flow and only perform Tests 1 and 2 (note that there is presently
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Table II: Convergence of errors in the L∞ norm for a two-dimensional inertial low Mach lid-driven cav-

ity problem as the grid is refined in space and time, for the components of the velocity v = (u, v) and

concentration c. Order of convergence is estimated from the error ratio between two successive refinements.

refinement 64-128 Order 128-256 Order 256-512

Test 1: u 1.93e-03 1.91 5.12e-04 1.96 1.32e-04

v 8.69e-04 1.99 2.19e-04 2.00 5.49e-05

c 3.02e-04 1.99 7.60e-04 2.00 1.90e-04

Test 2: u 1.92e-03 1.91 5.11e-04 1.95 1.32e-04

v 9.08e-04 1.96 2.34e-04 1.99 5.91e-05

c 2.63e-03 1.72 7.99e-04 1.92 2.11e-04

Test 3: u 1.92e-03 1.91 5.11e-04 1.95 1.32e-04

v 8.62e-04 1.95 2.23e-04 1.98 5.64e-05

c 1.95e-03 1.99 4.91e-04 2.00 1.23e-04

Test 4: u 1.91e-03 1.92 5.06e-04 1.96 1.30e-04

v 9.78e-04 2.01 2.43e-04 2.02 6.00e-05

c 4.29e-03 1.90 1.15e-03 1.97 2.93e-04

Table III: Convergence of errors in the L∞ norm for a two-dimensional overdamped low Mach lid-driven

cavity problem as the grid is refined in space and time, for concentration c. Order of convergence is estimated

from the error ratio between two successive refinements.

refinement 64-128 Order 128-256 Order 256-512

Test 1: 3.57e-03 2.01 8.89e-04 2.00 2.22e-04

Test 2: 2.70e-03 1.78 7.87e-04 1.92 2.08e-04

Test 3: 1.95e-03 1.98 4.95e-04 1.89 1.34e-04

Test 4: 4.23e-03 1.93 1.11e-03 1.96 2.86e-04

no available unlimited quadratic BDS advection scheme in three dimensions, so test 3 cannot be

performed). We also try a higher-order one-sided difference for the tangential velocity at the no-

slip boundaries, which does not affect the asymptotic rate of convergence, but it can significantly

reduce the magnitude of the errors, and enables us to reach the asymptotic regime for smaller

grid sizes [37]. The numerical convergence results shown in table IV demonstrate the second-order

deterministic accuracy of our method in three dimensions.
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Table IV: Convergence of errors in the L∞ norm for a three-dimensional inertial low Mach lid-driven cavity

problem as the grid is refined in space and time, for the components of the velocity v = (u, v, w) and

concentration c. Order of convergence is estimated from the error ratio between two successive refinements.

32-64 Rate 64-128 Rate 128-256

Test 1: u 7.66e-03 1.75 2.27e-03 1.88 6.16e-04

v 3.12e-03 1.96 8.02e-04 1.99 2.02e-04

w 7.66e-03 1.75 2.27e-03 1.88 6.16e-04

c 1.22e-02 2.00 3.06e-03 2.00 7.64e-04

Test 1: u 2.30e-03 1.97 5.88e-04 2.02 1.45e-04

with higher-order v 9.01e-04 2.23 1.92e-04 1.99 4.82e-05

boundary stencil w 2.30e-03 1.97 5.88e-04 2.02 1.45e-04

c 1.21e-02 1.99 3.05e-03 2.00 7.62e-04

Test 2: u 7.67e-03 1.75 2.28e-03 1.89 6.16e-04

v 3.11e-03 1.96 8.01e-04 1.99 2.02e-04

w 7.67e-03 1.75 2.28e-03 1.89 6.16e-04

c 9.79e-03 1.91 2.61e-03 1.97 6.68e-04

Test 2: u 2.30e-03 1.96 5.89e-04 2.01 1.46e-04

with higher-order v 8.90e-04 2.21 1.92e-04 1.99 4.82e-05

boundary stencil w 2.30e-03 1.96 5.89e-04 2.01 1.46e-04

c 9.70e-03 1.91 2.59e-03 1.96 6.67e-04

C. Deterministic Sharp Interface Limit

In this section we verify the ability of the BDS advection scheme to advect concentration and

density without creating spurious oscillations or instabilities, even in the absence of mass diffusion,

χ = 0, and in the presence of sharp interfaces. The problem setup is similar to the inertial lid-

driven cavity test presented above, with the following differences. First, the gravity is larger,

g = (0,−5), so that the higher density region falls downward a significant distance. Secondly, the

initial conditions are a constant background of c = 0 with a square region covering the central

25% of the domain initialized to c = 1 (see the left panel of Figure 3). The correct solution of the

equations must remain a binary field, c = 1 inside the advected square curve, and c = 0 elsewhere.

In this test we employ limited quadratic BDS, and use a grid of 2562 grid cells and a fixed time

step size ∆t = 2.5×10−3, corresponding to an advective CFL number of ∼ 0.6. In Figure 3, we show

the concentration at several points in time, observing very little smearing of the interface, even as

the deformed bubble passes near the bottom boundary.
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Figure 3: Advection of a square bubble in a lid-driven cavity flow, using the limited quadratic BDS scheme.

Concentration is shown as a color plot at times t = 0, 2, 4.

D. Deterministic Kelvin-Helmoltz Instability

We simulate the development of a Kelvin-Helmholtz instability in three dimensions in order

to demonstrate the robustness of our inertial time-advancement scheme in a deterministic setting.

Our simulation uses 256 × 128 × 256 computational cells with grid spacing ∆x = 1/256. We use

periodic boundary conditions in the x and z directions, a no-slip conditions on the y boundaries,

with prescribed velocity v (x, y = 0, z) = 0 on the bottom boundary and v (x, y = 0.5, z) = (1, 0, 0) on

the top boundary. We use an adaptive time step size ∆t adjusted to maintain a maximum advective

CFL number vmax∆t/∆x ≤ 0.9. The binary fluid mixture has a 10:1 density contrast with ρ̄1 = 10

and ρ̄2 = 1. Viscosity varies linearly with concentration, such that η = 10−4 for c = 0 and η = 10−3

for c = 1. The mass diffusion coefficient is fixed at χ = 10−6, which makes the diffusive CFL number

χ∆t/∆x2 ∼ 10−4, making it necessary to use BDS advection in order to avoid instabilities due to

sharp gradients at the interface. We employ the bilinear BDS advection scheme [25] with limiting

in order to preserve strict monotonicity and maintain concentration within the bounds 0 ≤ c ≤ 1.

The initial condition is c = 1 in the lower-half of the domain, and c = 0 in the upper-half of

the domain, so that light fluid sits on top of heavy fluid with a discontinuity in the concentration

and velocity at the interface. The initial momentum is set to ρv = (1, 0, 0) in the upper-half of the

domain and ρv = 0 in the lower-half of the domain. Gravity has a magnitude of g = 0.1 acting in

the downward y-direction. In order to set off the instability, in a row of cells at the centerline, c is

initialized to a random value between 0 and 1. The subsequent temporal evolution of the density

(which is related to concentration via the EOS) is shown in Fig. 4, showing the development of

the instability with no visible numerical artifacts. We also observe uniformly robust convergence

of the GMRES Stokes solver throughout the simulation.
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Figure 4: The development of a Kelvin-Helmholtz instability as a lighter less-viscous fluid streams over a

ten times denser and more viscous fluid. Contour surfaces of the density, ranging from ρ = 1 (red) to ρ = 10

(blue), are shown at times t = 1.72, 3.16, 4.53, and 5.85s.

V. GIANT CONCENTRATION FLUCTUATIONS

Advection of concentration by thermal velocity fluctuations in the presence of large concentra-

tion gradients leads to the appearance of giant fluctuations of concentration, as has been studied

theoretically and experimentally for more than a decade [7, 38–40, 53]. In this Section, we use

our algorithms to simulate experiments measuring the temporal evolution of giant concentration

fluctuations during free diffusive mixing in a binary liquid mixture. In Ref. [39], Croccolo et al.

report experimental measurements of the temporal evolution of the time-correlation functions of

concentration fluctuations during the diffusive mixing of water and glycerol. In the experiments, a

solution of glycerol in water with mass fraction of c = 0.39 is carefully injected in the bottom half

of the experimental domain, under the c = 0 pure water in the top half. The two fluids slowly mix

over the course of many hours while a series of measurements of the concentration fluctuations are

performed.

In the experiments, quantitative shadowgraphy is used to observe and measure the strength of

the fluctuations in the concentration via the change in the index of refraction. The observed light
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intensity, once corrected for the optical transfer function of the equipment, is proportional to the

intensity of the fluctuations in the concentration averaged along the vertical (gradient) direction,

c⊥(x, z; t) = H−1

∫ H

y=0

c(x, y, z; t)dy,

where H is the thickness of the sample in the vertical direction. The quantity of interest is the

correlation function of the Fourier coefficients δ̂c⊥ (kx, kz; t) of c⊥(x, z; t),

C (τ ; t, k) =
〈(
δ̂c⊥ (kx, kz; t+ τ)

)(
δ̂c⊥ (kx, kz; t)

)?〉
,

where k =
√
k2
x + k2

z is the wavenumber (in our two dimensional simulations kz = 0), τ is a delay time,

and t is the elapsed time since the beginning of the experiment. In principle, the averaging above is

an ensemble average but in the experimental analysis, and also in our processing of the simulation

results, a time averaging over a specified time window T is performed in lieu of ensemble averaging.

This approximation is justified because the system is ergodic and the evolution of the deterministic

(background) state occurs via slow diffusive mixing of the water and glycerol solutions, and thus

happens on a much longer time scale (hours) than the time delays of interest (a few seconds).

The Fourier transform (in time) of C (τ) is called the dynamic structure factor. The equal-time

correlation function

S (k; t) = C (τ = 0; t, k)

is the static structure factor, and is more difficult to measure in experiments [39]. For this reason,

the experimental results are presented in the form of normalized time-correlation functions,

C̃ (τ ; t, k) =
C (τ ; t, k)

S (k; t)
.

The wavenumbers observed in the experiment and simulation are k = κ ·2π/L, where κ is an integer

and L is the horizontal extent of the observation window or the simulation box size. When evalu-

ating the theory, we account for errors in the discrete approximation to the continuum Laplacian

by using the effective wavenumber

k⊥ = kx
sin (kx∆x/2)

(kx∆x/2)
(23)

instead of the actual discrete wavenumber kx [12].

The confinement in the vertical direction is expected to play a small role because of the large

thickness (2cm) of the sample, and a simple quasi-periodic (bulk) approximation can be used.

Approximate theoretical analysis [8] suggests that at steady state the dominant nonequilibrium

contribution to the static structure factor,

S (k; t) =
kBT

(ηχk4 − ρβgh)
h2, (24)
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exhibits a k−4 power-law decay at large wavenumbers, and a plateau to kBT h/ (ρβg) for wavenum-

bers smaller than a rollover k4
c = ρβgh/ (ηχ) due to the influence of gravity (buoyancy). Here

h (t) = dc̄(y; t)/dy is the deterministic (background) concentration gradient, which decays slowly

with time due to the continued mixing of the water and glycerol solutions.

An overdamped approximation suggests that the time correlations decay exponentially,

C̃ (τ ; t, k) = exp (−τ/τk), with a relaxation time or decay time

τ−1
k = χk2

[
1 +

ρβgh

ηχk4

]
, (25)

that has a minimum at k = kc with value τ−1
min = 2χk2

c ∼
√
hg. For wavenumbers k < kc the relaxation

time becomes smaller and can in fact become very small at the smallest wavenumbers, requiring

small time step sizes in the simulations to resolve the dynamics and ensure stability of the temporal

integrators. In the presence of gravity, at small wavenumbers the separation of time scales used

to justify the overdamped limit fails and the fluid inertia has to be taken into account [23]. This

changes the prediction for the time correlation function to be a sum of two exponentials with

relaxation times,

τ−1
1/2 =

1

2
(ν + χ) k2 ± 1

2

√
k4 (ν − χ)

2 − 4βgh, (26)

where ν = η/ρ. This expression becomes complex-valued for

k . kp =

(
4βgh

ν2

) 1
4

=
(

4
χ

ν

) 1
4

kc,

indicating the appearance of propagative rather than diffusive modes for small wavenumbers, closely

related to the more familiar gravity waves. While experimental measurements over wavenum-

bers k . kp are not reported by Croccolo et al [39], their experimental data does contain several

wavenumbers in that range. We report here simulation results for propagative concentration modes

at small wavenumbers. To our knowledge, experimental observation of propagative modes has only

been reported for temperature fluctuations [54].

Because it is essentially impossible to analytically solve the linearized fluctuating equations in

the presence of spatially-inhomogeneous density and transport cofficients and nontrivial boundary

conditions, the existing theoretical analysis of the diffusive mixing process [38] makes a quasi-

periodic constant-coefficient and constant-gradient incompressible approximation [8]. This approx-

imation, while sufficient for qualitative studies, is not appropriate for quantitative studies because

the viscosity η and mass diffusion coefficient χ vary by about a factor of three from the bottom to

the top of the sample. In our simulations we account for the full dependence of density, viscosity

and diffusion coefficient on concentration.
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A. Simulation Parameters

For LFHD there is no difference between the two and three dimensional problems due to the

symmetries of the problem [8]. Because very long simulations with a small time step size are

required for this study, we perform two-dimensional simulations. Furthermore, in these simulations

we do not include a stochastic flux in the concentration equation, i.e., we set Ψ = 0, so that

all fluctuations in concentration arise from the coupling to the fluctuating velocity. With this

approximation we do not need to model the chemical potential of the mixture and obtain µc. This

approximation is justified by the fact that it is known experimentally that the nonequilibrium

fluctuations are much larger than the equilibrium ones for the conditions we consider [39]; in

fact, the fluctuations due to nonzero Ψ are smaller than solver or even roundoff tolerances in the

simulations reported here.

We base our parameters on the experimental studies of diffusive mixing in a water-glycerol

mixture, as reported by Croccolo et al. [39]. In the actual experiments the fluid sample is confined

in a cylinder 2 cm in diameter and 2 cm thick in the vertical direction. In our simulations, the

two-dimensional physical domain is 1.132 cm × 1.132 cm discretized on a uniform 256 × 256 two

dimensional grid, with a thickness of 1 cm along the z direction. This large thickness makes the

magnitude of the fluctuations very small since the cell volume ∆V contains a very large number

of molecules, and puts us in the linearized regime [23]. The width of the domain L = 1.132 cm is

chosen to match the observation window in the experiments, and thus also match the discrete set

of wavenumbers between the simulations and experiments. Earth gravity g = −9.81 m2/s is applied

in the negative y (vertical) direction; for comparison we also perform a set of simulations without

gravity. Periodic boundary conditions are applied in the x-direction and impenetrable no-slip walls

are placed at the y boundaries. The initial condition is c = 0.39 in the bottom half of the domain

and c = 0 in the top half, with velocity initialized to zero. The temperature is kept constant at

300 K throughout the domain. Centered advection is used to ensure fluctuation-dissipation balance

over the whole range of wavenumbers represented on the grid.

A very good fit to the experimental equation of state (dependence of density on concentration at

standard temperature and pressure) over the whole range of concentrations of interest is provided

by the EOS (3) with the density of water set to ρ̄2 = 1 g/cm3 and the density of glycerol set to

ρ̄1 = 1.29 g/cm3. Experimentally, the dependence of viscosity on glycerol mass fraction has been fit

to an exponential function [39], which we approximate with a rational function over the range of
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concentrations of interest [55],

η(c) ≈ 1.009 + 1.1262 c

1− 1.5326 c
· 10−2 g

cm s
. (27)

The diffusion coefficient dependence on the concentration has been studied experimentally, and we

employ the fit proposed in Ref. [56],

χ(c) =
1.024− 1.002 c

1 + 0.663 c
· 10−5 cm2

s
, (28)

which is in reasonable but not perfect agreeement with a Stokes-Einstein relation η(c)χ(c) = const.

Note that the Schmidt number Sc = ν/χ ∼ 103. In Ref. [39], based on the experimental mea-

surements and the approximate theoretical model, it is suggested that χ ≈ 10−5 cm2/s is constant

over the range of concentrations present. For comparison, we also perform simulations in which

we keep the diffusion coefficient independent of concentration, while still taking into account the

concentration dependence of viscosity. It is worth noting that there is a notable disagreement

between experimental measurements of χ(c) using different experimental techniques [56] and the

true dependence is not known with the same accuracy as that of η(c).

When gravity is present, we use the inertial Algorithm 1, with a rather small time step size

∆t = 0.01375s due to the fact that the smallest relaxation time measured is on the order of 0.1s.

For this time step size, the viscous CFL number is ν∆t/∆x2 ∼ 10− 30, indicating that the viscous

dynamics is resolved except at the wavenumbers comparable to the grid spacing. In the absence of

gravity we use the overdamped Algorithm 2, which allows us to use a much larger time step size (on

the diffusive time scale), ∆t = 0.22s, giving a diffusive CFL number on the order of χ∆t/∆x2 . 0.1.

Using larger time step sizes than this would require an implicit treatment of mass diffusion.

B. Results

Our simulations closely mimic the experiments of Croccolo et al [39]. We perform a long

(stochastic) run of the diffusive mixing up to physical time t = 21, 021s, saving a snapshot and

statistics every 21,840 time steps, which corresponds to 300 seconds of physical time. We then

perform 8 short runs with different random seeds starting from the saved snapshots, and compute

time correlation functions averaged over a short time interval. Note that in the experiments a

similar procedure is used in which data is collected over short time intervals during a single long

mixing process. Croccolo et al. report measurements at t = 600s, 3060s, 8160s, and 14880s. Table

V lists the time intervals over which we collect statistics in the simulations, which match those in

the experiments as well as possible. The time interval between successive snapshots used in the

computation of the time correlation function is four time steps or 0.055s, which is four times smaller
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Starting Time Total Time Steps End Time

600.6 s 3328 600 + 3328∆t = 646.36 s

3003 s 10784 3151.28 s

8108.1 s 4992 8176.74 s

15015 s 4768 15080.6 s

Table V: Time intervals over which we average the dynamic correlation functions used to compute the

relaxation times shown in Fig. 5.

than the interval used in the experimental analysis. In the experiments averaging is performed

over a range of wavenumbers in the (kx, kz) plane with similar magnitude. Since we perform two

dimensional simulations we average over the 8 independent simulations; in the end the statistical

errors are lower in the simulation results since experiment are subject to a large experimental noise

not present in the simulations.

1. Dynamic Structure Factors

In order to extract a relaxation time, we fit the numerical results for the normalized time-

correlation function to an analytical formula. For the first four wavenumbers k = (1, 2, 3, 4) · 2π/L,

clear oscillations (propagative modes) were observed, as illustrated in the left panel of Fig. 5. For

these wavenumbers we used the fit

C̃ (t) = exp

(
− t
τ

)(
A sin

(
2π

t

T

)
+ cos

(
2π

t

T

))
, (29)

where the relaxation time τ , the coefficient A and the period of oscillation T are the fitting param-

eters. For the remaining wavenumbers, we used a double-exponential decay for the fitting,

C̃ (t) = α exp

(
− t

τ1

)
+ (1− α) exp

(
− t

τ2

)
, (30)

where α, τ1 and τ2 are the fitting parameters. This leads to good fits for k > kp ∼ 32 cm−1; for a few

transitional wavenumbers such as k ∼ 28 cm−1 the fit is not as good, as illustrated in the left panel

of Fig. 5. From the fit (30) we obtain the relaxation time τ as the point at which the amplitude

decays by C̃ (τ) = 1/e.

A similar procedure was also used to obtain the relaxation time from the experimental data of

Croccolo et al. [39] for all wavenumbers 2. The experimental data shows monotonically decaying

correlation functions C̃ (τ ; t, k) for all measured wavenumbers, not consistent with the oscillatory

correlation function observed for the four smallest wavenumbers in our simulations [23], see the

2 The experimental data for the time correlation functions were graciously given to us by Fabrizio Croccolo.
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Figure 5: Dynamics of concentration fluctuations during free-diffusive mixing of water and glycerol. (Left)

Numerical results for the time correlation functions for several selected wavenumbers about 8160s from the

beginning of the experiment. Symbols indicate results from the simulations and lines of the same color

indicate the fit to (29) for the first (k ≈ 5.6 cm−1) and fourth (k ≈ 22.2 cm−1) wavenumbers, or to (30) for

the remaining wavenumbers. Note that the statistical errors due to the finite averaging increase with time

and the tails of the correlation functions are not reliably estimated. (Right) Relaxation or decay times as a

function of wavenumber at several points in time. Empty symbols show results from computer simulations,

and filled from experimental measurements [39].

left panel of Fig. 5. We believe that this mismatch is due to the way measurements for dif-

ferent wavenumbers of similar modulus are averaged in the experimental calculations. In our

two-dimensional simulations, we do not perform any averaging over wavenumbers. We believe that

the experimentally measured time correlation functions capture the real part of the decay times

only and thus have the form of a sum of exponentials. Due to the lower time resolution and the fact

that the static structure factor is not known, for the experimental data we used a single exponential

fit and added an offset to account for the background noise,

C (t) = A exp

(
− t
τ

)
+B.

In the right panel of Fig. 5 we compare simulation and experimental results for the real part

of the decay or relaxation time τk, at several points in time measured from the beginning of the

experiment. Good agreement is observed between the two with the same qualitative trends: A

diffusive relaxation time τ−1
k ≈ χk2 for large wavenumbers, with a maximum at k ≈ kc, and then

another minimum at k ≈ kp. Note that decay times are not reported by Croccolo et al [39] for

wavenumbers k . kp since that work focuses on the effect of gravity for k . kc. In our analysis of the

experimental data we included all measured wavenumbers, including those for which propagative

modes are observed. Here, the diffusion coefficient varies with concentration according to (28);
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very similar results for the relaxation times were obtained by keeping χ ≈ 10−5 cm2/s constant, as

suggested by Croccolo et al [39]. This indicates that the dynamic correlations are not very sensitive

to the concentration dependence χ(c). In future work we will perform a more careful comparison

to experiments.

2. Static Structure Factors

Extracting the static structure factor from experimental measurements is complicated by several

factors, including the presence of optical prefactors such as the transfer function of the instrument,

and the appearance of additional contributions to the scattered light intensity such as shot noise,

contributions due to giant temperature fluctuations [54], and capillary waves [57, 58]. We therefore

study the evolution of the static structure factor using simulations only. In the left panel of Fig.

6 we show numerical results for the static structure factor S (k; t) of the discrete concentration

field averaged along the y-axes, at a series of times t chosen to match those of the experimental

measurements. Instead of ensemble averaging, here we performed a temporal average of the spec-

trum of the vertically-averaged concentration over a period of 300s, ending at the time indicated

in the legend of the figure. The characteristic k−4 power law decay at large wavenumbers and the

plateau at small wavenumbers predicted by (24) are clearly observed in Fig. 6, consistent with a

value of h decreasing with time. A quantitative difference is seen between the results for variable

and constant diffusion coefficients, consistent with a different value of the imposed concentration

gradient h due to the somewhat different evolution of c̄(y, t).

In the right panel of Fig. 6 we show numerical results for the static structure factor that would

be obtained had the experiment been performed in microgravity (g = 0). In this case, we use the

overdamped algorithm 2 since there is a persistent large separation of time scales between the slow

concentration and fast velocity. We see clear development of a k−4 power law as predicted by (24)

for g = 0. Note that here the concentration gradient is established instantaneously, in fact, it is

the largest in the initial configuration and then decays on the diffusive time scale; this is different

from simulations of the development of giant fluctuations in microgravity during the GRADFLEX

experiment reported in [23], in which the concentration gradient is slowly established on a diffusive

scale. The results in Fig. 6 show that it takes some time for the giant fluctuations at smallest

wavenumbers to develop; the diffusive relaxation time corresponding to the smallest wavenumber

studied, kmin ≈ 5 cm−1 is τmax = (χk2
min)

−1 ∼ 4, 000s. After a time ∼ (χk2)
−1, the amplitude of the

fluctuations S(k) ∼ k−4h2(t) decays slowly due to the diffusive mixing, and eventually the system
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Figure 6: Evolution of the static structure factor during free-diffusive mixing of water and glycerol. (Left)

With Earth gravity. Solid lines show results for simulations in which χ(c) depends on concentration according

to (28), while dashed lines of the same color correspond to simulations in which χ ≈ 10−5 cm2/s is constant.

Fluctuations at large wavenumbers follow a k−4 power law but are damped by gravity at small wavenumbers.

(Right) Without gravity; observe the large difference in the vertical axes showing “giant” fluctuations in the

microgravity case. Note that these are results from a single simulation, mimicking a single experimeent, and

therefore there are large statistical uncertainties at small wavenumbers (large decorrelation times).

will fully mix and reach thermodynamic equilibrium.

VI. CONCLUSIONS

We have developed a low Mach number algorithm for diffusively-mixing mixtures of two liquids

with potentially different density and transport coefficients. In the low Mach number setting,

the incompressible constraint is replaced by a quasi-compressible constraint that dictates that

stochastic and diffusive mass fluxes must create local expansion and contraction of the fluid to

maintain a constant thermodynamic (base) pressure.

We employed a uniform-grid staggered-grid spatial discretization [12]. Following prior work

in the incompressible simple-liquid case [37], we treated viscosity implicitly without splitting the

pressure update, relying on a recently-developed variable-coefficient Stokes solver [28] for efficiency.

This approach works well for any Reynolds number, including the viscous-dominated overdamped

(zero Reynolds number) limit, even in the presence of nontrivial boundary conditions. Furthermore,

by using a high-resolution BDS scheme [25] to advect the concentration we robustly handled the

case of no mass diffusion (no dissipation in the concentration equation). In our spatial discretization

we strictly preserved mass and momentum conservation, as well as the equation of state (EOS)
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constraint, by using a finite-volume (flux-based) discretization of advective fluxes in which fluxes are

computing using extrapolated values of concentration and density that obey the EOS. Our temporal

discretization used a predictor-corrector integrator that treats all terms except momentum diffusion

(viscosity) explicitly [23].

We empirically verified second-order spatio-temporal accuracy in the deterministic method. In

the stochastic context, establishing the weak order of accuracy is nontrivial in the general low

Mach number setting. For centered advection our temporal integration schemes can be shown to

be second-order accurate for the special case of a Boussinesq constant-density (incompressible)

approximation, or in the overdamped (inertia-free) limit. Existing stochastic analysis does not

apply to the case of BDS advection because Godunov schemes do not fit a method-of-lines approach,

but rather, employ a space-time construction of the fluxes. The presence of nontrivial density

differences between the pure fluid components and nonzero mass diffusion coefficient, complicates

the analysis even for centered advection, due to the presence of a nontrivial EOS constraint on

the fluid dynamics. It is a challenge for future work to develop improved numerical analysis of our

schemes in both the deterministic and the stochastic setting.

In future work, we will demonstrate how to extend the algorithms proposed here to multispecies

mixtures of liquids using a generalization of the low Mach number constraint. The nontrivial

multispecies formulation of the diffusive and stochastic mass fluxes has already been developed by

some of us in the compressible setting [1].

It is also possible to include thermal effects in our formulation, by treating the temperature in

a manner similar to the way we treated concentration here. Two key difficulties are constructing

a spatial discretization that ensures preservation of an appropriately generalized EOS, as well as

developing temporal integrators that can handle the moderate separation of time scales between the

(typically) slower heat diffusion and (typically) faster momentum diffusion. In particular, it seems

desirable to also treat temperature implicitly. Such implicit treatment of mass or heat diffusion is

nontrivial because it would require solving coupled (via the EOS constraint) velocity-temperature

or velocity-concentration linear systems, and requires further investigation.

In the staggered-grid based discretization developed here, we can only employ existing higher-

order Godunov advection schemes for the cell-centered scalar fields such as concentration and

density. It is a challenge for future work to develop comparable methods to handle advection of

the staggered momentum field. This would enable simulations of large Reynolds number flows.

It should be noted, however, that our unsplit approach is most advantageous at small Reynolds

numbers.
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A challenge for future work on low Mach number fluctuating hydrodynamics is to account for the

effects of surface tension in mixtures of immiscible or partially miscible liquids. This can be most

straightforwardly accomplished by using a diffuse-interface model, as some of us recently did in the

compressible setting for a single-fluid multi-phase system [5]. One of the key challenges is handling

the fourth-order derivative term in the concentration equation in a way that ensures stability of

the temporal integrator, as well as developing a consistent discretization of the Korteweg stresses

on a staggered grid [4].

The semi-implicit temporal integrators we described here can deal well with a broad range of

Reynolds or Schmidt numbers in the deterministic (smooth) setting. In the context of fluctuating

hydrodynamics, however, all modes are thermally excited and treatment of viscosity based on a

Crank-Nicolson method (implicit midpoint rule) are bound to fail for sufficiently large Schmidt

numbers (or sufficiently low Reynolds numbers). In this work we solved this problem for the case

of infinite Schmidt, zero Reynolds number flows by taking an overdamped limit of the original

inertial equations before temporal discretization. It is a notable challenge for the future to develop

uniformly accurate temporal integrators that work over a broad range of Reynolds or Schmidt

numbers, including the asymptotic overdamped limit, in the presence of thermal fluctuations.
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