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Introduction

Micro- and nano-hydrodynamics

Flows of fluids (gases and liquids) through micro- (µm) and
nano-scale (nm) structures has become technologically important,
e.g., micro-fluidics, microelectromechanical systems (MEMS).

Biologically-relevant flows also occur at micro- and nano- scales.

The flows of interest often include suspended particles: colloids,
polymers (e.g., DNA), blood cells, bacteria: complex fluids.

Essential distinguishing feature from “ordinary” CFD: thermal
fluctuations!
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Introduction

Example: DNA Filtering

Figure: From the work of David Trebotich (LLNL)
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Introduction

Example: Droplet Formation

Figure: From Jens Eggers, Reviews of Modern Physics, 69, 1997
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Introduction

Polymer chains

Johan Padding, Cambridge

I consider modeling of a polymer chain
in a flowing solution, for example,
DNA in a micro-array.

The detailed structure of the polymer
chain is usually coarse-grained to a
model of spherical beads:

Bead-Link The beads are free joints between inextensible links

Bead-Spring Kuhn segments of the chain are point particles (beads)
connected by non-linear elastic springs (FENE, worm-like,
etc.)

The issue: How to couple the polymer model with the surrounding
fluid model?
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Introduction

Particle/Continuum Hybrid Approach
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Particle Methods

Particle Methods for Complex Fluids

The most direct and accurate way to simulate the interaction between
the solvent (fluid) and solute (beads, chain) is to use a particle
scheme for both: Molecular Dynamics (MD)

mr̈i =
∑

j

f ij (rij )

Standard (time-driven) molecular dynamics:
All of the particles are displaced synchronously in small time steps ∆t,
calculating positions and forces on each particle at every time step.

The stiff repulsion among beads demands small time steps, and
chain-chain crossings are a problem.

For hard spheres, one can use asynchronous event-driven MD.
”Asynchronous Event-Driven Particle Algorithms”, by A. Donev,
SIMULATION, 2009, cs.OH/0703096.
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Particle Methods

Event-Driven (Hard-Sphere) MD

(MNG)

Tethered (square-well) hard-sphere
chain polymers are the simplest but
useful model.

Most of the computation is “wasted”
on the unimportant solvent particles!

Over longer times it is hydrodynamics
(local momentum and energy
conservation) and fluctuations
(Brownian motion) that matter.

”Stochastic Event-Driven Molecular Dynamics” [1],
A. Donev, A. L. Garcia and B. J. Alder,
J. Comp. Phys., 227(4):2644-2665, 2008
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Particle Methods

Direct Simulation Monte Carlo (DSMC)

(MNG)

Stochastic conservative collisions of
randomly chosen nearby solvent
particles, as in Direct Simulation
Monte Carlo (DSMC).

Solute particles still interact with both
solvent and other solute particles as
hard spheres.

Binary DSMC collisions can be
replaced with multiparticle collisions
(MPCD/SRD).

No fluid structure: Viscous ideal gas! [2]
”Stochastic Hard-Sphere Dynamics for Hydrodynamics of Non-Ideal
Fluids”, by A. Donev, A. L. Garcia and B. J. Alder, Phys. Rev. Lett.
101:075902 (2008) [arXiv:0803.0359, arXiv:0908.0510]
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Coarse Graining of the Solvent

The Need for Coarse-Graining

In order to examine the time-scales involved, we focus on a
fundamental problem:
A single bead of size a and density ρ′ suspended in a stationary fluid
with density ρ and viscosity η (Brownian walker).

The isssue: Wide separation of timescales occurs between the
timescales of microscopic and macroscopic processes as the bead
becomes much bigger than the mean free path λ of the solvent
particles.

Typical bead sizes are nm (nano-colloids, short polymers) or µm
(colloids, DNA), while typical atomistic sizes are 0.1nm.
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Coarse Graining of the Solvent

Estimates from Fluid Dynamics

Classical picture for the following dissipation process: Push a sphere
suspended in a liquid with initial velocity Vth ≈

√
kT/M, M ≈ ρ′a3,

and watch how the velocity decays:

Sound waves are generated from the sudden compression of the fluid
and they take away a fraction of the kinetic energy during a sonic time
tsonic ≈ a/c, where c is the (adiabatic) sound speed.
Viscous dissipation then takes over and slows the particle
non-exponentially over a viscous time tvisc ≈ ρa2/η, where η is the
shear viscosity.
Thermal fluctuations get similarly dissipated, but their constant
presence pushes the particle diffusively over a diffusion time
tdiff ≈ a2/D, where D ∼ kT/(aη).
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Coarse Graining of the Solvent

Timescale Estimates

The mean collision time is tcoll ≈ λ/vth ∼ η/(ρc2), where the thermal

velocity is vth ≈
√

kT
m , for water

tcoll ∼ 10−15s = 1fs

The sound time

tsonic ∼
{

1ns for a ∼ µm
1ps for a ∼ nm

, with gap
tsonic

tcoll
∼ a

λ
∼ 102 − 105
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Coarse Graining of the Solvent

Estimates contd...

Viscous time estimates

tvisc ∼
{

1µs for a ∼ µm
1ps for a ∼ nm

, with gap
tvisc

tsonic
∼
√

C
a

λ
∼ 1− 103

Finally, the diffusion time can be estimated to be

tdiff ∼
{

1s for a ∼ µm
1ns for a ∼ nm

, with gap
tdiff

tvisc
∼ a

φR
∼ 103 − 106

which can now reach macroscopic timescales!
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Coarse Graining of the Solvent

Levels of Coarse-Graining

Figure: From Pep Español, “Statistical Mechanics of Coarse-Graining”
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Fluctuating Hydrodynamics

The equations of hydrodynamics

Formally, we consider the continuum field of conserved quantities

U(r, t) =

 ρ
j
e

 ∼= Ũ(r, t) =
∑

i

 mi

mi vi

miυ
2
i /2

 δ [r − ri (t)] ,

where the symbol ∼= means that U(r, t) approximates the true
atomistic configuration Ũ(r, t) over long length and time scales.

Due to the microscopic conservation of mass, momentum and
energy,

∂tU = −∇ · [F(U)−Z] = −∇ · [FH(U)− FD(∇U)− BW] ,

where the flux is broken into a hyperbolic, diffusive, and a
stochastic flux.

Here W is spatio-temporal white noise, i.e., a Gaussian random field
with covariance〈

W(r, t)W?(r′, t ′)
〉

= δ(t − t ′)δ(r − r′).

A. Donev (LLNL/LBNL) Stoch. hybrid Jan. 2009 16 / 39



Fluctuating Hydrodynamics

Landau-Lifshitz Navier-Stokes (LLNS) Equations

Complete single-species fluctuating hydrodynamic equations:

U (r, t) =
[
ρ, j, e

]T
=
[
ρ, ρv, cvρT + ρv2

2

]T

FH =

 ρv
ρvvT + P (ρ,T ) I

(e + P)v

 , FD =

 0
σ

σ · v + ξ

 , Z =

 0
Σ

Σ · v + Ξ


σ =

[
η(∇v + ∇vT )− η

3
(∇ · v) I

]
and ξ = µ∇T

Σ =

√
2kB η̄T

[
WT +

√
1

3
WV I

]
and Ξ =

√
2µ̄kBT

2WS
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Fluctuating Hydrodynamics

Problems with the LLNS equations

Solving them numerically requires paying attention to discrete
fluctuation-dissipation balance, in addition to the usual
deterministic difficulties [3]!

It is not clear whether the Navier-Stokes equations apply at
nano-scales.

Adding stochastic fluxes to the non-linear NS equations produces
ill-behaved stochastic PDEs: At small scales one gets negative
densities and temperatures.

Mathematically-rigorous limit theorems only give the linearized
fluctuations around the nonlinear mean, which lacks important
physics.

Fluctuations at scales smaller than the atomistic correlation length
and time should be renormalized to account for discreteness of matter
(recall ultra-violet catastrophe).
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Fluctuating Hydrodynamics

Spatio-Temporal Discretization

Consider the general linear SPDE

Ut = LU + KW ,

where the generator L and the filter K are linear operators.

Quite generally, numerical schemes use a linear recursion of the form

Un+1
j = (I + Lj ∆t) Un + ∆tKjWn = (I + Lj ∆t) Un +

√
∆t

∆x
Kj W

n

For analysis, convert the iteration to Fourier space.

When analyzing stochastic methods, it is natural to focus on the
second moments (covariance).
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Fluctuating Hydrodynamics

Stochastic Consistency and Accuracy

Focus on the discrete static spectrum

Sk = V
〈

Ûk

(
Ûk

)?〉
= S(k) + O (∆tp1kp2) ,

for a weakly consistent scheme.

Recall that S(k) = I for fluctuating conservation laws.

The remainder term quantifies the stochastic accuracy for large
wavelengths (∆k = k∆x � 1) and small frequencies
(∆ω = ω∆t � 1).

A straightforward calculation [3] gives(
I + ∆tL̂k

)
Sk

(
I + ∆tL̂

?

k

)
− Sk = −∆tK̂kK̂

?

k .
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Fluctuating Hydrodynamics

Discrete Fluctuation-Dissipation

For small ∆t
L̂kS

(0)
k + S

(0)
k L̂

?

k = −K̂kK̂
?

k ,

and thus S
(0)
k = lim∆t→0 Sk = I iff discrete fluctuation-dissipation

balance [4] holds

L̂k + L̂
?

k = −K̂kK̂
?

k .

Use the method of lines: first choose a spatial discretization
consistent with the discrete fluctuation-dissipation balance condition,
and then choose a temporal discretization.

”On the Accuracy of Explicit Finite-Volume Schemes for Fluctuating
Hydrodynamics”, by A. Donev, E. Vanden-Eijnden, A. L. Garcia, and J. B. Bell,
2009, submitted. [arXiv:0906.2425]
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Fluctuating Hydrodynamics

Three Dimensions

In 3D, for compressible flows, the fluctuating velocities follow

vt = η

[
∇2v +

1

3
∇ (∇ · v)

]
+
√

2η

[
(∇ ·WT ) +

√
1

3
∇WV

]

= η

(
DT GT +

1

3
GV DV

)
v +

√
2η

(
DT WT +

√
1

3
GVWV

)
.

To obtain discrete fluctuation-dissipation balance, we require discrete
tensorial divergence and gradient operators GT = D?

T , and vectorial
divergence and gradient GV = D?

V .

We use the MAC (marker-and-cell) discretizations for the tensorial
operators and the Fortin (corner) discretization for vectorial
operators, both previously used in incompressible projection schemes.

For incompressible flows only the MAC discretization is required.
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Hybrid Particle-Continuum Method

Fluid-Microstructure Coupling

The solvent (fluid, liquid) can be modeled implicitly via analytical
solutions (Brownian dynamics). But we want reverse coupling of the
polymer motion on the flow (e.g., drag reduction)! We also need to
resolve shorter time scales at nano systems.

Macroscopically, the coupling between flow and moving
bodies/structures/beads relies on:

No-stick boundary condition vrel = 0 at the surface of the bead.
Force on the bead is the integral of the stress tensor over the bead
surface.

The above two conditions are questionable at nanoscales, but even
worse, they are very hard to implement numerically in an efficient and
stable manner, even in the (phenomenological) Lattice-Boltzmann
method.
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Hybrid Particle-Continuum Method

Point-Bead Approximations

The coupling between the solute and solvent is phenomenological
and approximate for most methods in use:

md v̇ = [F(R)− γv] dt +
√

2γkT dW

Point beads with artificial friction coefficients γ ≈ 6πaη based on
asymptotic Stokes law
Point beads exerting (smeared) δ-function forces on the fluid
Uncorrelated fluctuating forces on the beads

Such a Langevin equation is physically inconsistent, except at
(unrealistic?) asymptotic time-scales!

One can improve on this by giving the beads a physical size (not a
point!) and consistently including thermal fluctuations in the fluid
equations (see LB and SIB methods).
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Hybrid Particle-Continuum Method

Solute-Solvent Coupling using Particles

Instantaneous (fluctuating) flow
Mean (plug) flow

Split the domain into a particle and a
continuum (hydro) subdomains,
with timesteps ∆tH = K∆tP .

Hydro solver is a simple explicit
(fluctuating) compressible LLNS
code and is not aware of particle
patch.

The method is based on Adaptive
Mesh and Algorithm Refinement
(AMAR) methodology for
conservation laws and ensures strict
conservation of mass, momentum,
and energy [5, 6].
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Hybrid Particle-Continuum Method

Continuum-Particle Coupling

Each macro (hydro) cell is either particle or continuum. There is
also a reservoir region surrounding the particle subdomain.

The coupling is roughly of the state-flux form:

The continuum solver provides state boundary conditions for the
particle subdomain via reservoir particles.
The particle subdomain provides flux boundary conditions for the
continuum subdomain.

The fluctuating hydro solver is oblivious to the particle region: Any
conservative explicit finite-volume scheme can trivially be substituted.

The coupling is greatly simplified because the particle fluid is ideal (no
internal structure): No overlap region.

”A hybrid particle-continuum method for hydrodynamics of complex fluids”
A. Donev and J. B. Bell and A. L. Garcia and B. J. Alder, to appear in SIAM
Multiscale Modeling and Simulation, 2010.
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Hybrid Particle-Continuum Method

Hybrid Algorithm

Steps of the coupling algorithm [7]:

1 The hydro solution is computed everywhere, including the particle
patch, giving an estimated total flux ΦH .

2 Reservoir particles are inserted at the boundary of the particle patch
based on Chapman-Enskog distribution from kinetic theory,
accounting for both collisional and kinetic viscosities.

3 Reservoir particles are propagated by ∆t and collisions are processed
(including virtual particles!), giving the total particle flux Φp.

4 The hydro solution is overwritten in the particle patch based on the
particle state up.

5 The hydro solution is corrected based on the more accurate flux,
uH ← uH −ΦH + Φp.
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Results Brownian bead VACF

Back to the Brownian Bead

MNG
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Results Brownian bead VACF

Velocity Autocorrelation Function

We investigate the velocity autocorrelation function (VACF) for a
Brownian bead

C (t) = 〈v(t0) · v(t0 + t)〉

From equipartition theorem C (0) = kT/M.

For a neutrally-boyant particle, ρ′ = ρ, incompressible hydrodynamic
theory gives C (0) = 2kT/3M because the momentum correlations
decay instantly due to sound waves.

Hydrodynamic persistence (conservation) gives a long-time
power-law tail C (t) ∼ (kT/M)(t/tvisc)−3/2 not reproduced in
Brownian dynamics.
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Results Brownian bead VACF

Small Bead (˜10 particles)
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Results Brownian bead VACF

Large Bead (˜1000 particles)

0.01 0.1 1

t / tvisc

1

0.1

0.01

M
 C

(t
) 

/ k
B
T

Stoch. hybrid (L=2)
Det. hybrid (L=2)
Stoch. hybrid (L=3)
Det. hybrid (L=3)
Particle (L=2)
Theory

0.01 0.1 1
t cs / R

1

0.75

0.5

0.25

tL=2

A. Donev (LLNL/LBNL) Stoch. hybrid Jan. 2009 32 / 39



Results Adiabatic piston

The adiabatic piston problem

MNG
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Results Adiabatic piston

Relaxation Toward Equilibrium
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Figure: Massive rigid piston (M/m = 4000) not in mechanical equilibrium.
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Results Adiabatic piston

VACF for Piston

0 1 2 3

0

5×10
-4

1×10
-3

Particle
Stoch. wP=2

Det. wP=2

Det. wP=4

Det. wP=8

0 50 100 150 200 250
t

-5.0×10
-4

-2.5×10
-4

0.0

2.5×10
-4

5.0×10
-4

7.5×10
-4

1.0×10
-3

C(t)

Particle
Stoch. hybrid
Det. (wP=4)

Det. x10

Figure: The VACF for a rigid piston of mas M/m = 1000 at thermal equilibrium.
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Conclusions

Conclusions

Coarse-grained particle methods can be used to accelerate
hydrodynamic calculations at small scales.

Designing numerical methods for fluctuating hydrodynamics requires
attention to fluctuation-dissipation balance, in addition to the
usual (deterministic) stability and accuracy considerations.

Hybrid particle continuum methods closely reproduce purely particle
simulations at a fraction of the cost.

It is necessary to include fluctuations in the continuum subdomain
in hybrid methods.
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Conclusions

Future Directions

Numerical schemes for Low-Mach Number fluctuating
hydrodynamics.

Theoretical work on the equations of fluctuating hydrodynamics:
systematic coarse-graining and approximations.

Direct coupling between fluctuating hydrodynamics and
microstructure (solute beads).

Test, validate, and apply the methodology for polymer problems.

Couple our non-ideal stochastic hard-sphere gas to continuum
hydrodynamics with microscopic fidelity.

Ultimately we require an Adaptive Mesh and Algorithm
Refinement (AMAR) framework that couples deterministic MD for
the polymer chains (micro), a stochastic solvent (micro-meso), with
compressible fluctuating Navier-Stokes (meso), and incompressible
CFD (macro).
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