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Introduction

Micro- and nano-hydrodynamics

Flows of fluids (gases and liquids) through micro- (µm) and
nano-scale (nm) structures has become technologically important,
e.g., micro-fluidics, microelectromechanical systems (MEMS).

Biologically-relevant flows also occur at micro- and nano- scales.

The flows of interest often include suspended particles: colloids,
polymers (e.g., DNA), blood cells, bacteria: complex fluids.

Essential distinguishing feature from “ordinary” CFD: thermal
fluctuations!
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Introduction

Example: DNA Filtering

Fu et al., Nature
Nanotechnology 2 (2007)

H. Craighead, Nature 442 (2006)
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Introduction

Example: Droplet Formation

Figure: From Jens Eggers, Reviews of Modern Physics, 69, 1997 (see also M.
Moseler and U. Landman, Science, 2000)
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Introduction

Example: Polymer chains

Johan Padding, Cambridge

Consider modeling of a polymer chain
in a flowing solution, for example,
DNA in a micro-array.

The detailed structure of the polymer
chain is usually coarse-grained to a
model of spherical beads.

The issue: How to coarse grain the fluid (solvent) and couple it to
the suspended structures?
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The Microscopic: Particle Methods

Molecular Dynamics

At the particle level, the state of the fluid is characterized by the set
of molecular positions, R(t) = {r1(t), r2(t), · · · , rN(t)} ∈ R3N .
The most direct and accurate way to simulate the microscopic
dynamics of fluids is Molecular Dynamics (MD), i.e., solving
Newton’s equations of motion:

mi r̈i = mi v̇i =
∑

j

f ij (rij )

Standard (time-driven) molecular dynamics:
All of the particles are displaced synchronously in small time steps ∆t,
calculating positions and forces on each particle at every time step.
For hard spheres, one can use asynchronous event-driven MD:
Spheres are advected along straight lines until they collide with
another sphere and exchange momentum and energy.

”Asynchronous Event-Driven Particle Algorithms”, by A. Donev, SIMULATION,
85(4):229-242, 2009, [cs.OH/0703096] [1].
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The Microscopic: Particle Methods

Deterministic Molecular Dynamics

MNG

Most of the computation is “wasted”
on computing detailed (exact)
trajectories of fluid particles (water
molecules)!

Over longer times it is hydrodynamics
(local momentum and energy
conservation) and fluctuations
(Brownian motion) that matter.

We need to coarse grain the fluid
model further: Replace deterministic
interactions with stochastic ones.

”Stochastic Event-Driven Molecular Dynamics”, A. Donev, A. L. Garcia and B. J.
Alder, J. Comp. Phys., 227(4):2644-2665, 2008 [2]
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The Microscopic: Particle Methods

Stochastic Molecular Dynamics

MNG

Stochastic conservative collisions of
randomly chosen nearby solvent
particles, as in Direct Simulation
Monte Carlo (DSMC).

Can think of this as the hard-sphere
equivalent of Dissipative Particle
Dynamics (DPD).

Binary DSMC collisions can be
replaced with multiparticle collisions
(MPCD/SRD).

”Stochastic Hard-Sphere Dynamics for Hydrodynamics of Non-Ideal Fluids”, by A.
Donev, A. L. Garcia and B. J. Alder, Phys. Rev. Lett. 101:075902 (2008)
[arXiv:0803.0359, arXiv:0908.0510], [3]
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The Microscopic: Particle Methods

Isotropic DSMC

Define a simplified continuous Markov-chain microscopic dynamics for
our stochastic particle system:

Particles move ballistically in-between collisions, ṙi = vi = const.
While two particles i and j are less than a diameter D apart, rij ≤ D,
there is a probability rate χD−1Kc (vij , rij ) for them to collide and
change velocities without changing their positions.
Upon collision, the center-of-mass velocity does not change, while the
relative velocity is drawn from a probability density Pc (v

′

ij ; vij , rij ),∥∥∥v
′

ij

∥∥∥ = ‖vij‖.

This Markov chain can be simulated using a Kinetic Monte Carlo
(KMC) algorithm we call the Isotropic Direct Simulation Monte
Carlo (I-DSMC).

The I-DSMC fluid is a viscous ideal gas (structureless fluid), but by
biasing collisions structure can be introduced.
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The Microscopic: Particle Methods

Where we are now

We have a serial implementation of many variants of DSMC-inspired
algorithms for a single-species fluid, including a mixed
deterministic-stochastic MD framework.

We have a preliminary parallel DSMC code for mixtures of species.

We still need to parallelize the I-DSMC algoritm (difficulty in
synchronizing random event lists)

We still need to include chemical reactions in the algorithms
(reactive mixtures).
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The Mesoscopic: Stochastic Continuum Models The Need for Coarse-Graining

Coarse-Graining: Microscopic to Macroscopic

Figure: Levels of coarse graining according to Pep Español, “Statistical Mechanics
of Coarse-Graining”
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The Mesoscopic: Stochastic Continuum Models The Need for Coarse-Graining

The Need for Coarse-Graining

In order to examine the time-scales involved, we focus on a
fundamental problem:
A single spherical bead of size a and density ρ′ suspended in a
stationary fluid with density ρ and viscosity η (Brownian walker).

The isssue: Wide separation of timescales occurs between the
timescales of microscopic and macroscopic processes as the bead
becomes much bigger than the mean free path λ of the solvent
particles.

Typical bead sizes are nm (nano-colloids, short polymers) or µm
(colloids, DNA), while typical atomistic sizes are 0.1nm.
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The Mesoscopic: Stochastic Continuum Models The Need for Coarse-Graining

Estimates from Fluid Dynamics

Classical picture for the following dissipation process: Push a sphere
suspended in a liquid with initial velocity Vth ≈

√
kT/M, M ≈ ρ′a3,

and watch how the velocity decays:

Sound waves are generated from the sudden compression of the fluid
and they take away a fraction of the kinetic energy during a sonic time
tsonic ≈ a/c, where c is the (adiabatic) sound speed.
Viscous dissipation then takes over and slows the particle
non-exponentially over a viscous time tvisc ≈ ρa2/η, where η is the
shear viscosity.
Thermal fluctuations get similarly dissipated, but their constant
presence pushes the particle diffusively over a diffusion time
tdiff ≈ a2/D, where D ∼ kT/(aη).
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The Mesoscopic: Stochastic Continuum Models The Need for Coarse-Graining

Timescale Estimates

The mean collision time is tcoll ≈ λ/vth ∼ η/(ρc2), where the thermal

velocity is vth ≈
√

kT
m , for water

tcoll ∼ 10−15s = 1fs

The sound time

tsonic ∼
{

1ns for a ∼ µm
1ps for a ∼ nm

, with gap
tsonic

tcoll
∼ a

λ
∼ 102 − 105
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The Mesoscopic: Stochastic Continuum Models The Need for Coarse-Graining

Estimates contd...

Viscous time estimates

tvisc ∼
{

1µs for a ∼ µm
1ps for a ∼ nm

, with gap
tvisc

tsonic
∼
√

C
a

λ
∼ 1− 103

Finally, the diffusion time can be estimated to be

tdiff ∼
{

1s for a ∼ µm
1ns for a ∼ nm

, with gap
tdiff

tvisc
∼ a

φR
∼ 103 − 106

which can now reach macroscopic timescales!
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The Mesoscopic: Stochastic Continuum Models Fluctuating Hydrodynamics

Continuum Models of Fluid Dynamics

Formally, we consider the continuum field of conserved quantities

U(r, t) =

 ρ
j
e

 ∼= Ũ(r, t) =
∑

i

 mi

miυi

miυ
2
i /2

 δ [r − ri (t)] ,

where the symbol ∼= means that U(r, t) approximates the true
atomistic configuration Ũ(r, t) over long length and time scales.

Formal coarse-graining of the microscopic dynamics has been
performed to derive an approximate closure for the macroscopic
dynamics [4].

Here we consider more phenomenological Langevin equations
formed by postulating a random flux term in the usual
Navier-Stokes-Fourier equations with magnitude determined from the
fluctuation-dissipation balance condition, following Landau and
Lifshitz.
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The Mesoscopic: Stochastic Continuum Models Fluctuating Hydrodynamics

The SPDEs of Fluctuating Hydrodynamics

Due to the microscopic conservation of mass, momentum and
energy,

∂tU = −∇ · [F(U)−Z] = −∇ · [FH(U)− FD(∇U)− BW] ,

where the flux is broken into a hyperbolic, diffusive, and a
stochastic flux.
Here W is spatio-temporal white noise, i.e., a Gaussian random field
with covariance〈

W(r, t)W?(r′, t ′)
〉

= δ(t − t ′)δ(r − r′).

Prototype example is the (linear) stochastic advection-diffusion
equation in one dimension

ut = −cux + µuxx +
√

2µWx .

More relevant but also problematic is the (nonlinear) stochastic
Burgers equation

ut = −c [u (1− u)]x + µuxx +
√

2µu (1− u)Wx .
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The Mesoscopic: Stochastic Continuum Models Fluctuating Hydrodynamics

Landau-Lifshitz Navier-Stokes (LLNS) Equations

Complete single-species fluctuating hydrodynamic equations:

U (r, t) =
[
ρ, j, e

]T
=
[
ρ, ρv, cvρT + ρv2

2

]T

FH =

 ρv
ρvvT + P (ρ,T ) I

(e + P)v

 , FD =

 0
σ

σ · v + ξ

 , Z =

 0
Σ

Σ · v + Ξ


σ =

[
η(∇v + ∇vT )− η

3
(∇ · v) I

]
and ξ = µ∇T

Σ =

√
2kB η̄T

[
WT +

√
1

3
WV I

]
and Ξ =

√
2µ̄kBT

2WS
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The Mesoscopic: Stochastic Continuum Models Fluctuating Hydrodynamics

Problems with the LLNS equations

Solving them numerically requires paying attention to discrete
fluctuation-dissipation balance, in addition to the usual
deterministic difficulties!

It is not clear whether the Navier-Stokes equations apply at
nano-scales.

Adding stochastic fluxes to the non-linear NS equations produces
ill-behaved stochastic PDEs (solution is too irregular).

Mathematically-rigorous limit theorems only give the linearized
fluctuations around the nonlinear mean, which lacks important
physics.

Fluctuations at scales smaller than the atomistic correlation length
and time should be renormalized to account for discreteness of matter
(recall ultra-violet catastrophe).
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The Mesoscopic: Stochastic Continuum Models Numerical Schemes for Fluctuating Hydrodynamics

Linear Additive-Noise SPDEs

Consider the general linear SPDE

Ut = LU + KW ,

where the generator L and the filter K are linear operators.

The solution is a generalized process, whose equilibrium distribution
(long-time limit, invariant measure) is a stationary Gaussian process.

In Fourier space the equilibrium distribution is characterized by the
static spectrum,

S(k) = lim
t→∞

V
〈

Û(k, t)Û
?
(k, t)

〉
.

For fluctuating hydrodynamics equations we have a spatially-white
field at equilibrium, S(k) = I.
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The Mesoscopic: Stochastic Continuum Models Numerical Schemes for Fluctuating Hydrodynamics

Spatio-Temporal Discretization

Finite-volume discretization of the field

Uj (t) =
1

∆x

∫ j∆x

(j−1)∆x
U(x , t)dx

General numerical method given by a linear recursion

Un+1
j = (I + Lj ∆t) Un + ∆tKjWn = (I + Lj ∆t) Un +

√
∆t

∆x
Kj W

n

The classical PDE concepts of consistency and stability continue to
apply for the mean solution of the SPDE, i.e., the first moment of
the solution.

For these SPDEs, it is natural to define weak convergence based on
the second moments and focus on the equilibrium distribution.
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The Mesoscopic: Stochastic Continuum Models Numerical Schemes for Fluctuating Hydrodynamics

Stochastic Consistency and Accuracy

Use the discrete Fourier transform (DFT) to separate
wavenumbers, as usual.

Analysis will be focused on the discrete static spectrum

Sk = V
〈

Ûk

(
Ûk

)?〉
= S(k) + O (∆tp1kp2) ,

for a weakly consistent scheme.

The remainder term quantifies the stochastic accuracy for large
wavelengths (∆k = k∆x � 1) and small frequencies
(∆ω = ω∆t � 1).

Note that classical CFD is not meant to deal with such irregular
fields, for which all modes are equally strong.

”On the Accuracy of Explicit Finite-Volume Schemes for Fluctuating

Hydrodynamics”, by A. Donev, E. Vanden-Eijnden, A. L. Garcia, and J. B. Bell,

CAMCOS, 5(2):149-197, 2010 [arXiv:0906.2425] [5]
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The Mesoscopic: Stochastic Continuum Models Numerical Schemes for Fluctuating Hydrodynamics

Discrete Fluctuation-Dissipation Balance

Recall our numerical scheme

Û
n+1

k =
[
I + ∆tL̂k(∆t)

]
Û

n

k +

√
∆t

∆x

[
K̂k(∆t)

]
Ŵk .

A straightforward calculation [5] gives(
I + ∆tL̂k

)
Sk

(
I + ∆tL̂

?

k

)
− Sk = −∆tK̂kK̂

?

k .

Thus S
(0)
k = lim∆t→0 Sk = S(k) = I iff discrete

fluctuation-dissipation balance holds

L̂
(0)

k +
(

L̂
(0)

k

)?
= −K̂

(0)

k

(
K̂

(0)

k

)?
. (1)

Use the method of lines: first choose a spatial discretization
consistent with the discrete fluctuation-dissipation balance condition,
and then choose a temporal discretization.
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The Mesoscopic: Stochastic Continuum Models Numerical Schemes for Fluctuating Hydrodynamics

Compressible Fluctuating Hydrodynamics

We have designed a numerical scheme for the LLNS equations that
satisfies discrete fluctuation-dissipation balance and has good
temporal accuracy.

We have developed a parallel three dimensional two species
compressible fluctuating hydrodynamics code (LBL).

Spontaneous Rayleigh-Taylor mixing of two gases

Future work: Use existing AMR framework to do mesh refinement
(fluctuation-dissipation balance at coarse-fine interfaces [6]).
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The Mesoscopic: Stochastic Continuum Models Incompressible Fluctuating Hydrodynamics

Incompressible Approximation

In 3D, for isothermal incompressible flows, the fluctuating
velocities follow

vt = η∇2v +
√

2η (∇ ·WT )

∇ · v = 0,

which is equivalent to

vt = P
[
η∇2v +

√
2η (∇ ·WT )

]
,

where P is the orthogonal projection onto the space of
divergence-free velocity fields

P = I− GV (DV GV )−1 DV , equivalently, P̂ = I− k̂k̂
T
.

Since P is idempotent, P2 = P , the equilibrium spectrum is
S(k) = P .
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The Mesoscopic: Stochastic Continuum Models Incompressible Fluctuating Hydrodynamics

Spatial Discretization

Consider a stochastic projection scheme,

vn+1 = P
{[

I + ηDT GT ∆t + O
(
∆t2

)]
vn +

√
2η∆tDTWT

}
.

The difficulty is the discretization of the projection operator P:

Exact (idempotent): P0 = I− GV (DV GV )−1 DV

Approximate (non-idempotent): P̃ = I− GV L−1
V DV

Our analysis indicates that the stochastic forcing should projected
using an exact projection, even if the velocities are approximately
projected: mixed exact-approximate projection method under
development.
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Hybrid Particle-Continuum Method

Particle/Continuum Hybrid Approach
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Hybrid Particle-Continuum Method

Solute-Solvent Coupling using Particles

MNG

Split the domain into a particle and a
continuum (hydro) subdomains,
with timesteps ∆tH = K∆tP .

Hydro solver is a simple explicit
(fluctuating) compressible LLNS
code and is not aware of particle
patch.

The method is based on Adaptive
Mesh and Algorithm Refinement
(AMAR) methodology for conservation
laws and ensures strict conservation
of mass, momentum, and energy.
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Hybrid Particle-Continuum Method

Continuum-Particle Coupling

Each macro (hydro) cell is either particle or continuum. There is
also a reservoir region surrounding the particle subdomain.

The coupling is roughly of the state-flux form:

The continuum solver provides state boundary conditions for the
particle subdomain via reservoir particles.
The particle subdomain provides flux boundary conditions for the
continuum subdomain.

The fluctuating hydro solver is oblivious to the particle region: Any
conservative explicit finite-volume scheme can trivially be substituted.

The coupling is greatly simplified because the particle fluid is ideal (no
internal structure): No overlap region.

”A hybrid particle-continuum method for hydrodynamics of complex fluids”, A.
Donev and J. B. Bell and A. L. Garcia and B. J. Alder, SIAM J. Multiscale
Modeling and Simulation 8(3):871-911, 2010 [7]
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Hybrid Particle-Continuum Method

Hybrid Algorithm

Steps of the coupling algorithm:

1 The hydro solution is computed everywhere, including the particle
patch, giving an estimated total flux ΦH .

2 Reservoir particles are inserted at the boundary of the particle patch
based on Chapman-Enskog distribution from kinetic theory,
accounting for both collisional and kinetic viscosities.

3 Reservoir particles are propagated by ∆t and collisions are processed
(including virtual particles!), giving the total particle flux Φp.

4 The hydro solution is overwritten in the particle patch based on the
particle state up.

5 The hydro solution is corrected based on the more accurate flux,
uH ← uH −ΦH + Φp.

A. Donev (CIMS) Fluct. Hydro Sept 2010 35 / 46



Hybrid Particle-Continuum Method Application: Adiabatic piston

The adiabatic piston problem

MNG
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Hybrid Particle-Continuum Method Application: Adiabatic piston

Relaxation Toward Equilibrium
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Figure: Massive rigid piston (M/m = 4000) not in mechanical equilibrium.
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Hybrid Particle-Continuum Method Application: Adiabatic piston

VACF for Piston
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Figure: The VACF for a rigid piston of mas M/m = 1000 at thermal equilibrium.
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Non-Equilibrium Fluctuations

Fluctuations in the presence of gradients

At equilibrium, hydrodynamic fluctuations have non-trivial temporal
correlations, but there are no spatial correlations between any
variables.

When macroscopic gradients are present, however, long-ranged
correlated fluctuations appear.

Consider a binary mixture of fluids and consider concentration
fluctuations around a steady state c0(r):

c(r, t) = c0(r) + δc(r, t)

The concentration fluctuations are advected by the random
velocities v(r, t), approximately:

(δc)t + v ·∇c0 = D∇2 (δc) +
√

2DkBT (∇ ·Wc)

The velocity fluctuations drive and amplify the concentration
fluctuations leading to so-called giant fluctuations.
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Non-Equilibrium Fluctuations

Equilibrium versus Non-Equilibrium

Results obtained using our fluctuating continuum compressible solver.

Concentration for a mixture of two (heavier red and lighter blue) fluids at
equilibrium, in the presence of gravity.

No gravity but a similar non-equilibrium concentration gradient is
imposed via the boundary conditions.
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Non-Equilibrium Fluctuations

Giant Fluctuations during diffusive mixing

Figure: Snapshots of the concentration during the diffusive mixing of two fluids
(red and blue) at t = 1 (top), t = 4 (middle), and t = 10 (bottom), starting from
a flat interface (phase-separated system) at t = 0.
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Non-Equilibrium Fluctuations

Giant Fluctuations in 3D

Figure: (Left) Experimental images (1mm side) of scaterring from the interface
between two miscible fluids (A. Vailati & M. Giglio, Nature 1997 [8]). (Right)
Snapshot of the interface in a computational simulation without gravity.
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Conclusions

Conclusions

Coarse-grained particle methods can be used to accelerate
hydrodynamic calculations at small scales.

Designing numerical methods for fluctuating hydrodynamics requires
attention to discrete fluctuation-dissipation balance, in addition to
the usual (deterministic) stability and accuracy considerations.

Hybrid particle continuum methods closely reproduce purely
particle simulations at a fraction of the cost.

It is necessary to include fluctuations in the continuum subdomain
in hybrid methods.

Advection by the fluctuating velocities fields leads to some very
interesting physics and mathematics, such as giant fluctuations.
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Conclusions

Future Directions

Improve and implement in a public-domain code the stochastic
particle methods (parallelize, add chemistry, analyze theoretically).

Develop numerical schemes for incompressible and Low-Mach
Number fluctuating hydrodynamics.

Theoretical work on the equations of fluctuating hydrodynamics:
regularization, renormalization, systematic coarse-graining.

Direct fluid-structure coupling between fluctuating hydrodynamics
and microstructure (solute beads).

Ultimately we require an Adaptive Mesh and Algorithm
Refinement (AMAR) framework that couples a particle model
(micro), with compressible fluctuating Navier-Stokes (meso), and
incompressible or low Mach CFD (macro).
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Conclusions
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